ZK61镁合金薄板轧制与组织、织构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金板材轧制工艺的不成熟,如道次变形量小,轧制道次多,中间多次加热、材料利用低等问题,严重制约着镁合金板材的广泛应用,因此,探索出高效、高性能、高材料利用率的镁合金板材轧制工艺,有利于促进变形镁合金的发展与应用。本文为此以ZK61镁合金铸坯和挤压坯为研究对象,研究了多道次降温热轧工艺及轧制过程中的组织性能演变,以求获得一条既有利于提高效率又可改善板材综合性能的轧制工艺路线,并重点研究了轧制温度和道次变形量对2.0mm以下薄板组织、织构及性能的影响,以寻求制备ZK61镁合金薄板的热轧工艺。根据镁合金冷变形特点,开拓出小变形量多道次累积冷轧工艺,可以使累积冷变形量达到20-35%,成功制备出了0.4-0.7mm厚性能优异、表面质量良好的ZK61镁合金薄板板材。本文还研究了热轧和冷轧过程的沉淀析出问题,并深入分析了晶粒尺寸、织构对板材力学性能的影响。
     ZK61镁合金24mm厚铸坯经30%道次变形量6道次连续降热轧制获得了晶粒尺寸7.2μm、延伸率24%、屈服和抗拉强度分别约为208MPa和306MPa的2.0mm镁合金板材,并完全消除了中间加热工序,体现了的多道次降温轧制的高效性。对比20-40%不同道次变形量下的ZK61镁合金挤压坯多道次降温热轧过程中的组织性能演变,发现30%道次变形量对挤压坯热轧板材的组织性能改善仍具有很好的适用性。系统研究了道次变形量20-50%、轧制温度160-300℃对2.0mm板材单道次热轧轧后板材组织性能的影响,得出有利于ZK61镁合金薄板组织细化和性能优化的30-40%道次最佳变形量区间及230-250℃最佳温度区间,轧后板材组织晶粒细化至约3.2μm且尺寸分布均匀、延伸率稳定高于22%、屈服和抗拉强度分别高达222MPa和324MPa。采用40%逐次降温的热轧工艺,成功制备出延伸率高达30%的ZK61镁合金0.7mm厚薄板。随后探索了小变形多道次累积的冷轧工艺方案,成功制出板厚0.42-0.50mm、表面平整的ZK61细晶镁合金薄板,板材延伸率稳定高于25%、屈服强度高于220MPa、抗拉强度约为280MPa。进一步的180℃2h退火处理消除ZK61镁合金冷轧薄板的板平面强度各向异性,使得镁合金薄板板材延伸率进一步升高到了30%以上,对镁合金冲压性能的改善有重要意义。
     对轧制过程中板材组织内Mg-Zn相析出研究表明,300℃以下热轧易于促进应变诱导沉淀析出,沉淀析出相形态随热轧进行由长杆型(I-type)和短棒型(II-type)为主,逐渐转变为以短棒型(II-type)和球型(III-type)为主。随后时效处理显示,175℃仅需0.5h便达到峰值时效状态,而通常则需时效10h以上。因此,多道次降温轧制伴随沉淀析出,有利于缩短板材生产的整体周期,实现了时效强化和细晶强化同时发生的效果。
     板材的力学性能与组织密切相关,晶粒尺寸以Hall-Petch关系式的方式影响着板材的强度。本文研究表明,随织构状态不同,镁合金中存在着滑移主导的Hall-Petch关系和孪生主导的Hall-Petch关系。织构的改变引起滑移主导的Hall-Petch关系的斜率k在120-246MPa·μm~(1/2)之间变化,并与Schmid因子m成反比。孪生主导的Hall-Petch关系表现出恒定的k值约为300MPa·μm~(1/2)。板材组织状态对板材塑性的影响显著,晶粒细化对板材拉伸过程中的均匀延伸率影响甚微,主要表现通过提高应变速率敏感指数改善板材拉伸时的非均匀延伸率。织构状态直接决定着板材的均匀延伸率,表现为随着垂直于拉伸方向基面织构的减弱均匀延伸率不断提高。基于硬化行为的研究表明,这种均匀延伸率对织构的依赖性源于室温拉伸硬化行为中存在的类似的织构依赖关系,并拟合得到一指数型关系, δ_u=δ_0+c1exp (c_2K_(III), K_(III)<0)。变形过程中的孪生一定程度可通过延缓应变硬化方式提高均匀延伸率。
Wide application of magnesium alloy sheets is limited by the immaturemagnesium alloy plate manufacturing technology at present. Therefore, exploring arolling processing technology with high efficiency and high quality for magnesiumalloy sheets is of great significance to promote the development of magnesium alloy.In this study, as-cast and as-extruded billets of ZK61magnesium alloy were used asthe starting materials to study multi-pass rolling process with decreasingtemperature and microstructure evolution, for the purpose of reducing productioncost and improving mechanical properties at room temperature. Further study wasfocused on the effect of rolling temperature and thickness reduction on theperformance of hot-rolled sheets with2.0mm thickness to design a warm rollingprocess for fabricating thick ZK61magnesium alloy sheets. In addition,precipitation during rolling process as well as relationships between microstructureand mechanical properties was also studied.
     As-cast ZK61magnesium alloy billet was subjected to6-pass rollingdeformation with30%thickness reduction per pass. The final ZK61magnesiumalloy sheets with grain size7.2μm attained an improved elongation of24%. It wasfound that30%thickness reduction applied on the rolling of as-extruded billet stillhad a good applicability. The effects of rolling parameters including rollingtemperature and reduction, on the microstructure and mechanical properties ofZK61magnesium alloy sheets rolled at160-300℃with thickness reductionranging from20-40%were investigated. Microstructure evolution of the as-rolledsheets was controlled by the rolling reduction and rolling temperature. Grain size ofZK61magnesium alloy was refined effectively at rolling reduction of30%-40%and rolling temperature of230-250℃. Homogeneous dynamic recrystallizedmicrostructure with an average grain size of3.2μm was fabricated, and theelongation was enhanced to about24%by grain refinement. Then, through coldrolling process, fine-grained ZK61magnesium alloy sheet with a thickness of0.4-0.7mm, yield strength of more than220MPa, tensile strength of about280MPa,and enhanced elongation of25%was successfully fabricated. Further annealingtreatment of180℃for2h can be used to eliminate the strength anisotropy and toimprove the elongation to above30%. This is of great significance for theapplication of magnesium alloy sheets in the field of stamping.
     Precipitation during rolling process was promoted by hot rolling under300℃ due to the effect of strain-induced precipitation. Particles of needle-like I type androd-like II-type were primarily distributed in ZK61magnesium alloy, and graduallytransformed into with rod-like II-type and spherical III-type. Subsequent agingtreatments suggested that a peak aging state occurred at about175℃for0.5h.Thus, multi-pass hot rolling process is beneficial to shortening the production cycleas a whole.
     Mechanical properties of sheets are closely related to microstructure. Grainsize effect on strength can be described by Hall-Petch equation. Tensile testssignificantly reveal two different Hall-Petch relations with the variation of texture,corresponding to the mechanical response. One is multislip-yield Hall-Petch fittingwith a texture dependent slope ranging from120to246MPa·μm~(1/2)and a slightdecreasing friction stress of about142MPa with basal texture weakening, which isstrongly dependent on combination of activated slip systems rather than thedominated; the other is twinning-yield Hall-Petch fitting, showing a uniqueempirical equation ofσ25+3001/2y≈d, indicating an insensitivity of twinning-yield strength to texture. This could be ascribed to the lower values in {1012}twinning and basal slip, and an unchanged but lower friction stress in term of theprofuse twinning with the onset of yielding. Tensile tests along transverse directionat room temperature revealed that post-uniform strain may be controlled by theenhancement of increasing strain-rate sensitivity and the deterioration of grainboundary sliding in grain refining, resulting to a maximal fracture strain at the grainsize of about6μm. Although the uniform strain is not associated with grain size, itcan be related exclusively to the texture patterns and increased with basal intensityweakening. The texture dependence of uniform strain was characterized by anexponential relationship on estimated Taylor factor deduced from the Kocks-Mecking hardening model. Additional results and discussions presented on theeffect of twinning deformation suggest that uniform strains can also be enhanced bytwinning deformation via retarding strain hardening.
引文
[1] Busk R S. Magnesium Production Design [M]. New York: Marcel Dekker Inc.1986:12-13.
    [2] Mordike B L, Ebert T. Magnesium Properties-Application-Potential [J].Materials Science and Engineering A,2001,302:37-45.
    [3] Avedesian M M, Baker H. Magnesium and magnesium alloys [M]. ASMInternational,1999:78-81.
    [4]常丽丽.变形镁合金AZ31的织构演变与力学性能[D].大连:大连理工大学博士论文,2009:32-102.
    [5] Chevalier P, Canadian Minerals Yearbook1997[M]. Ottawa, Canada: NaturalResources,1997,31:1–12.
    [6]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版,2004.
    [7]何良菊,李培杰.中国镁工业现状与镁合金开发技术[J].铸造技术,2003:161-162.
    [8]陈策.中国铝加工行业未来态势分析[J].中国有色金属,2000:40-41.
    [9]马世光.中国铝加工行业未来态势分析[J].新材料产业,2010:5-11.
    [10]丁文江.镁合金科学与技术[M].北京:科学出版社,2007:1-2.
    [11] Eliezer D, Aghion E, Froes F H. Magnesium Science, Technology andApplications [J]. Advanced Performance Materials,1998,5:201-212.
    [12] Wang Y N, Huang J C. Review: Texture analysis in hexagonal materials [J].Materials Chemistry and Physics,2003,81:11-26.
    [13] Partridge P G. The Crystallography and Deformation Modes of HexagonalClose-Packed Metals [J]. Metallurgical Reviews,1967,12:169-194.
    [14] Prasad Y V R K, Rao K P. Processing Maps for Hot Deformation of RolledAZ31Magnesium Alloy Plate: Anisotropy of Hot Workability [J]. MaterialsScience and Engineering A,2008,487:316-327.
    [15] Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H, Hardening evolution ofAZ31B Mg sheet [J]. International Journal of Plasticity2007,23:44-86.
    [16] Brooks C R. Heat Treatment Structure and Properties of Nonferrous Alloys[M]. OH: Metals Park,1982:324-360.
    [17] Staroeslsky A. A constitutive model for hcp materials deforming by slip andtwinning: application to magnesium alloy AZ31B [J]. International Journal ofPlasticity,2003,19:1843.
    [18] Brown D W, Agnew S R. Internal strain and texture evolution duringdeformation twinning in magnesium [J]. Materials Science and Engineering A,2005,399:1-12.
    [19] Yoo M H. Slip, Twinning, and Fracture in Hexagonal Close-Packed Metals [J].Metallurgical Transactions A,1981,12:409-418.
    [20] Christian J W, Laughlin D E. Twinning in derivative structures of BCC andFCC [J], Scripta Metallurgica,1987,21:1131-1135.
    [21]苏燕铃.孪生在镁合金塑性变形中的作用[D].南京:南京理工大学硕士论文,2007:38-39.
    [22] Kelly E W, Hosford W F. Plane-strain Compression of Magnesium andMagnesium Alloy Crystals[J]. Metallurgical and Materials Transactions AIME,1968,242:5–13
    [23] Meyers M A, Vohringer O, Lubarda V A. The onset of twinning in metals: aconstitutive description [J]. Acta Materialia,2001,49:4025-4039.
    [24] Christian J W, Mahajan S. Deformation twinning [J], Progress in MaterialsScience,1995,39:1-157.
    [25]陈彬.高强度Mg-Y-Zn镁合金的研究[D].上海:上海交通大学博士论文.2007:114.
    [26]陈振华.变形镁合金[M].北京:化学工业出版社,2005:239-248.
    [27]麻惠丽,王祝堂.世界镁及镁合金板带轧制回眸与展望(1)[J].轻合金技术,2007,35:1-12.
    [28] Agnew S R. Wrought Magnesium: A21st Century Outlook [J]. JOM,2004,56:20-21.
    [29]刘雅庭.前苏联时期的镁合金及其加工材[A].中国镁业2000-2003年论文编选[C].中国有色金属工业协会镁业分会,2004:252-258.
    [30]王祝堂.镁合金板带材轧制的过去、现在与将来[A].中国镁业2000-2003年论文选编[C].中国有色金属工业协会镁业分会,2004:277-280.
    [31] Barnett M R. Recrystallization during and Following Hot Working ofMagnesium Alloy [J]. Material Science Forum,2003,5(3):419-422.
    [32] Beer A G, Barnett M R. Microstructure evolution in hot worked and annealedmagnesium alloy AZ31[J]. Materials Science and Engineering A,2008,485:318-324.
    [33] Barnett M R. A practical condition for migration dynamic recrystallization [J].Acta Materialia,2007,55:3271-3278.
    [34] Miao Q, Hu L X, Wang G J, Wang E D. Fabrication of excellent mechanicalproperties AZ31magnesium alloy sheets by conventional rolling andsubsequent annealing[J]. Materials Science and Engineering A,2011,528:6694-6701.
    [35] Chang T C, Wang J Y, O C M, et al. Grain Refining of Magnesium Alloy AZ31by Rolling [J]. Journal of Materials Processing Technology,2003,140:588-591.
    [36] Perez-Prado M T, Del Valle J A, Ruano O A. Achieving High Strength inCommercial Mg Cast Alloys through Large Strain Rolling [J]. MaterialsLetters,2005,59:3299-3303.
    [37] Wang H L, Wang G J, Hu L X, Wang Q, Wang E D. Effect of hot rolling ongrain refining and mechanical properties of AZ40magnesium alloy[J].Transactions of Nonferrous Metals Society of China,2011, S2:229-234.
    [38] Barnett M R, Nave M D, Bettles C J. Deformation microstructures andtextures of some cold rolled Mg alloys [J]. Materials Science and EngineeringA,2004,386:205-211.
    [39]晁红颍. AZ31镁合金丝材冷拉拔变形与再结晶研究[D].哈尔滨:哈尔滨工业大学博士论文,2011:19-48.
    [40] Yun M, Lokyer S, Hunt J D. Twin roll casting of aluminum alloys [J].Journal of Materials Science and Engineering A,2000,280:116-123.
    [41] Ding P D, Pan F S, Jiang B, Wang J, Li H L, Wu J C, Xu Y W, Wen Y. Twin-roll strip casting of magnesium alloys in China [J]. Transactions of NonferrousMetals Society of China,2008, S18:7-11.
    [42] Haga T, Tkahashi K, Ikawaand M, Watari H. Twin roll casting of aluminumalloy strips [J]. Journal of Materials Processing Technology,2004,153-154:42-47.
    [43]刘国钧,徐骏,杨柳青.镁合金板带铸轧技术与进展[J].稀有金属,2012,36:477-482.
    [44] Kaya A A, Duygulu O, Ucuncuoglu S, Oktay G, Temur D Yucel S O.Production of150cm wide AZ31magnesium sheet by twin roll casting [J].Transactions of Nonferrous Metals Society of China,2008,18:482-185.
    [45] Liang D, Cowley B. The Twin-Roll Strip Casting of Magnesium [J]. JOM.2004,56:26-28.
    [46] Cowley B. New Production-ready Magnesium Sheet [J]. Materials Australia.2003,35(6):11.
    [47] Watri H, Koga N, Davey K, Haga T, Alonso Ragado M T. Warm deep drawingof wrought magnesium alloy sheets produced by semi-solid roll strip castingprocess [J]. International Journal of Machine Tools&Manufacture,2006,46:1233-1237.
    [48]陈绪宏,丁培道,杨春楣.双辊快速凝固AZ31镁合金薄带试验研究[J].轻合金加工技术,2003,31(5):19-21.
    [49]陈洪美.铸轧镁合金的变形工艺及其组织和力学性能的研究[D].济南:山东大学博士论文,2009:19-20.
    [50]黄育宏.双辊异步连续铸轧镁合金板材生产线在福州试制成功[J].中国镁业,2004(12):47.
    [51] Lee J, Lee D N. Texture control and grain refinement of AA1050Al alloysheets by asymmetric rolling [J]. International Journal of Mechanical Sciences,2008,50:869-887.
    [52] Watanabe H, Mukai T, Ishikawa K. Effect of Temperature of DifferentialSpeed Rolling on Room Temperature Mechanical Properties and Texture in anAZ31Magnesium Alloy [J]. Journal of Materials Processing Technology,2007,182:644-647.
    [53] Kim W J, Lee J B, Kim W Y, et al. Microstructure and Mechanical Propertiesof Mg-Al-Zn Alloy Sheets Severely Deformed by Asymmetrical Rolling [J].Scripta Materialia,2007,56:309-312.
    [54] Wang Q F, Xiao X P, Hu J, Xu W W, Zhao X Q, Zhao S J. An Ultrafine-Grained AZ31Magnesium Alloy Sheet with Enhanced SuperplasticityPrepared by Accumulative Roll Bonding [J]. Journal of Iron and SteelResearch, International,2007, S14:167-172.
    [55] Chino Y, Sassa K, Kamiyaa A, et al. Enhanced Formability at ElevatedTemperature of a Cross-Rolled Magnesium Alloy Sheet [J]. Materials Scienceand Engineering A,2006,441:349-356.
    [56] Estrin Y, Vinogradov A. Extreme grain refinement by severe plasticdeformation: A wealth of challenging science [J]. Acta Materialia2013,61:782–817.
    [57] Segal V M, Reznikov V I, Drobyshevski A E. Plastic metal working by simpleshear [J]. Metally,1981,1:115-123.
    [58] Saito Y, Utsunomiya H, Suzuki H, Sakai T. Improvement in the r-Value ofAluminum Strip by a Continuous Shear Deformation Process [J]. ScriptaMaterialia,2000,42:1139-1144.
    [59] Lee J C, Seok H K, Han J H, Chung Y H. Controlling the textures of the metalstrips via the continuous confined strip shearing (C2S2) process[J]. MaterialsResearch Bulletin,2001,36:997-1004.
    [60]程永奇,陈振华,夏伟军等.等径角轧制AZ31镁合金板材的组织与性能[J].中国有色金属学报,2005,15(9):1369-1375.
    [61] Raab G J, Valiev R Z, Lowe T C, Zhu Y T, Continuous processing of ultrafinegrained Al by ECAP-Conform [J]. Materials Science and Engineering A,2004,382:30-34
    [62] Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31magnesium alloy by controlling its grain structure [J]. Scripta Materialia,2001,45:89-94.
    [63]王立东,莫德秀.等径角挤压工艺对AZ31B镁合金板材冲压性能的影响[J].山东理工大学学报(自然科学版),2010,24:104-107.
    [64]肖东飞,谭敦强,欧阳高勋,陈伟.镁合金快速凝固技术的研究现状及进展[J].铸造,2007,56:909-913.
    [65]赵红亮,郑飞燕,关绍康,周占霞,石广新.厚条带Mg-Al-Zn基合金的显微组织研究[J].材料科学与工程学报,2005,23:607-609.
    [66]刘天喜,傅定发,夏伟军,陈振华,刘放军.双辊快淬制备镁合金薄带的工艺研究[J].矿冶工程,2007,27:64-67.
    [67] Dahle A K, Lee Y C, Nave M D, Schaffer P L, StJohn D H. Development ofthe as-cast microstructure in magnesium–aluminium alloys [J]. Journal ofLight Metals,2001,1:61-72.
    [68]毛卫民,赵新兵.金属的再结晶和晶粒长大[M].北京:冶金出版社,1993:197-241.
    [69] Ding S X, Lee W T, Chang C P, et al. Improvement of strength of magnesiumalloy processed by equal channel angular extrusion [J]. Scripta Materialia,2008,59(9):1006-1009.
    [70] Chang C I, Dua X H, Huang J C. Achieving ultrafine grain size in Mg-Al-Znalloy by friction stir processing [J]. Scripta Materialia,2007,57:209-212.
    [71] Biswas S, Suwas S. Evolution of sub-micron grain size and weak texture inmagnesium alloy Mg–3Al–0.4Mn by a modified multi-axial forging process[J]. Scripta Materialia,2012,66:89-92.
    [72] Yang Q, Ghosh A K. Deformation behavior of ultrafine-grain (UFG) AZ31BMg alloy at room temperature [J]. Acta Materialia,2006,54(19):5159-5170.
    [73] Liang S J, Liu Z Y, Wang E D. Microstructure and mechanical properties ofMg-Al-Zn alloy deformed by cold extrusion [J]. Materials Letters,2008,62:3051-3054.
    [74] Liang S J, Liu Z Y, Wang E D. Microstructure and mechanical properties ofMg-Al-Z alloy sheet fabricated by cold extrusion [J]. Materials Letters,2008,62:4009-4011.
    [75] Su C W, Lu L, Lai M O. Recrystallization and grain growth of deformedmagnesium alloy [J]. Philosophical Magazine,2008,88(2):181-200.
    [76]詹美燕,李元元,陈维平,陈宛德. AZ31镁合金轧制板材在退火处理中的组织性能演变[J].金属热处理,2007,32(7):8-12.
    [77] Chao H Y, Sun H F, Wang E D. Static recrystallization kinetics of a heavilycold drawn AZ31magnesium alloy under annealing treatment [J]. MaterialsCharacterization,2011,62:312-320.
    [78] J ger A, Luká P, G rtnerová V, et al. Influence of annealing on themicrostructure of commercial Mg alloy AZ31after mechanical forming [J].Materials Science and Engineering A,2006,432:20-25.
    [79] Yuan W, Panigrahi S K, Su J Q, Mishra R S. Influence of grain size andtexture on Hall–Petch relationship for a magnesium alloy [J]. ScriptaMaterialia,2011,65:994-997.
    [80] Li B, Joshi B, Azevedo K, Ma E, Ramesh K T, Figueiredo R B, Langdon T G.Dynamic testing at high strain rates of an ultrafine-grained magnesium alloyprocessed by ECAP [J]. Materials Science and Engineering A,2009,517:24–29.
    [81] Agnew S R, Horton J A, Lillo T M, Brown D W. Enhanced ductility instrongly textured magnesium produced by equal channel angular processing[J]. Scripta Materialia,2004,50:377-381.
    [82] Chino Y, Iwasaki H, Mabuchi M. Stretch formability of AZ31Mg alloy sheetsat different testing temperatures [J]. Materials Science and Engineering A,2007:466:90.
    [83] Michael M Avedesian, Hugh Baker. ASM Specialty Handbook—Magnesiumand Magnesium Alloys. Ohio: ASM International, Materials Park,1999.
    [84] Chen W Z, Wang X, Hu L X, Wang E D. Fabrication of ZK60magnesiumalloy thin sheets with improved ductility by cold rolling and annealingtreatment [J]. Materials and Design,2012,40:319-323.
    [85] Berbenni S, Favier V, Berveiller M, Impact of the grain size distribution on theyield stress of heterogeneous materials [J]. International Journal of Plasticity,2007,23:114-142.
    [86]刘向阳.镁合金压铸技术及应用[J].轻金属,2005,2:35-39.
    [87]苗青.高塑性AZ31镁合金薄板轧制工艺与组织性能研究[D].哈尔滨:哈尔滨工业大学博士论文,2011:39-58.
    [88] Del Valle J A, Carre o F, Ruano O A. Influence of texture and grain size onwork hardening and ductility in magnesium-based alloys processed by ECAPand rolling [J]. Acta Materialia,2006,54:4247-4259.
    [89] Vander V, George F, Grain size measurement, Practical applications ofquantitative Metallography ASTM STP839[M]. Philadephia: ASTM,1984:85-131.
    [90] Luká P, Trojanová Z. Hardening and softening in selected magnesium alloys[J]. Materials Science and Engineering A,2007,462:23-28.
    [91] Pérez-Prado M T, Del Vallel J A, Ruano O A. Effect of Sheet Thickness onthe Microstructural Evolution of an Mg AZ61Alloy during Large Strain HotRolling [J]. Scripta Materialia,2004,50:667-671.
    [92] Azeem M A, Tewari A, Ramamurty U. Effect of recrystallization and graingrowth on the mechanical properties of an extruded AZ21Mg alloy [J].Materials Science and Engineering A,2010,527:898-903.
    [93] Miao Q, Hu L X, Wang E D, Liang S J, Chao H Y. Microstructure andMechanical Properties of AZ31Magnesium Alloy Sheet by Hot Rolling [J].International Journal of Modern Physics B,2009,23(6-7):984-989.
    [94] Chao H Y, Yu Y, Wang E D. Effect of grain size distribution and texture on thecold extrusion behavior and mechanical properties of AZ31Mg alloy [J].Materials Science and Engineering A,2011,528:3428-3434.
    [95] Mishra S K, Pant P, Narasimhan K, Rollett A D, Samajdar I. On the widths oforientation gradient zones adjacent to grain boundaries [J]. Scripta Materialia,2009,61:273-276.
    [96] Balogh L, Figueiredo R B, Ungár T, Langdon T G. The contributions of grainsize, dislocation density and twinning to the strength of a magnesium alloyprocessed by ECAP [J]. Materials Science and Engineering A,2010,528:533-538.
    [97] Singh A, Somekawa H, Mukai T. Compressive strength and yield asymmetryin extruded Mg–Zn–Ho alloys containing quasicrystal phase [J]. ScriptaMaterialia,2007,56:935-938.
    [98]张晓宁. ZK60镁合金往复挤压工艺研究[D].哈尔滨:哈尔滨工业大学,2010.
    [99] Buha J. The effect of micro-alloying addition of Cr on age hardening of anMg–Zn alloy [J]. Materials Science and Engineering A,2008,492:293-299.
    [100] Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speedrolling on room temperature mechanical properties and texture in an AZ31magnesium alloy [J]. Journal of Materials Processing Technology,2007,182:644-647.
    [101] Oh-ishi K, Mendis C L, Homma T, Kamado S, Ohkubo T, Hono K. Bimodallygrained microstructure development during hot extrusion of Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) alloys [J]. Acta Materialia,2009,57:5593-5604.
    [102] Sha G, Zhu H M, Liu J W, Luo C P, Liu Z W, Ringer S P. Hydrogen-induceddecomposition of Zr-rich cores in an Mg6Zn0.6Zr0.5Cu alloy [J]. ActaMaterialia,2012,60:5616-5625.
    [103] Maeng D Y, Kim T S, Lee J H, Hong S J, Seo S K, Chun B S. Microstructureand strength of rapidly solidified and extruded Mg-Zn alloys [J] ScriptaMaterialia,2000,43:385-389.
    [104] Monnet G, Naamane S, Devincre B. Orowan strengthening at low temperaturesin bcc materials studied by dislocation dynamics simulations [J]. ActaMaterialia,2011,59:451-461.
    [105] Miao Q, Hu L X, Wang E D. Grain growth kinetics of a fine-grained AZ31magnesium alloy produced by hot rolling [J]. Journal of Alloys andCompounds,2010,493:87-90.
    [106]徐奔. AZ31镁合金丝材拉拔工艺的研究[D].哈尔滨:哈尔滨工业大学硕士论文,2006:35-52.
    [107] Hong S G, Park S H, Lee C S. Role of10-12twinning characteristics in thedeformation behavior of a polycrystalline magnesium alloy [J]. ActaMaterialia,2010,58:5873-5885.
    [108] Zhao Z D, Chen Q, Chao H Y, Huang S H. Microstructural evolution andtensile mechanical properties of thixoforged ZK60-Y magnesium alloysproduced by two different routes [J]. Materials and Design,2010,31:1906-1916.
    [109] Chun Y B, Davies C H J. Twinning-induced negative strain rate sensitivity inwrought Mg alloy AZ31.[J] Materials Science and Engineering A,2011,528:5713-5722.
    [110] Kocks U F, Mecking H. Physics and phenomenology of strain hardening: theFCC case [J]. Progress in Materials Science,2003,48:171-273.
    [111] Wang X L, Yu Y, Wang E D. Effect of extrusion deformation onmicrostructures and properties of AZ31magnesium alloy [J].Transactions ofNonferrous Metals Society of China,2005, S2:183-186.
    [112] Sun H F, Chao H Y, Wang E D. Microstructure stability of cold drawn AZ31magnesium alloy during annealing process [J]. Transactions of NonferrousMetals Society of China,2011, S21:215-221.
    [113] Pérez-Prado M T, Ruano O A. Texture evolution during annealing ofmagnesium AZ31alloy [J]. Scripta Materialia,2002,46:149-155.
    [114] Cáceres C H, Luká P, Blake A. Strain hardening due to {1012} twinning inpure magnesium [J]. Philosophical Magazine,2008,88(7):991-1003.
    [115] Cáceres C H, Blake A H. On the strain hardening behaviour of magnesium atroom temperature [J]. Materials Science and Engineering A,2007,462:193-196.
    [116] Kocks U F. The relation between polycrystal deformation and single-crystaldeformation [J]. Metallurgical and Materials Transactions B,1970,1(5):1121-1143.
    [117] Ohyama R, Koike J, Kobayashi T, et al. Enhanced grain boundary sliding atroom temperature in AZ31magnesium alloy [J]. Materials Science Forum,2003,419-422:237-242.
    [118] Cáceres C H, Luká P. Strain hardening behaviour and the Taylor factor ofpure magnesium [J]. Philosophical Magazine,2008,88:977-989.
    [119] Devincre B, Kubin L, Hoc T. Physical analyses of crystal plasticity by DDsimulations [J] Scripta Materialia,2006,54:741-746.
    [120] Ono N, Nowak R, Miura S. Effect of deformation temperature on Hall–Petchrelationship registered for polycrystalline magnesium [J]. Materials Letters,2004,58:39-43.
    [121] Jain A, Duygulu O, Brown D W, Tomé C N, Agnew S R. Grain size effects onthe tensile properties and deformation mechanisms of a magnesium alloyAZ31B sheet [J]. Materials Science and Engineering A,2008,486:545-555.
    [122] Kim W J, Kim Y S. Mechanical properties and microstructures of an AZ61Mgalloy produced by equal channel angular pressing [J]. Scripta Materialia,2002,47(1):39-44.
    [123] Wang Y N, Chang C L, Lee C J, Lin H K, Huang J C. Texture and weak grainsize dependence in friction stir processed Mg–Al–Zn alloy [J]. ScriptaMaterialia,2006,55:637-640.
    [124] Kim H K. The grain size dependence of flow stress in an ECAPed AZ31Mgalloy with a constant texture [J]. Materials Science and Engineering A,2009,515:66-70.
    [125] Koike J, Kobayashi T, Mukai T, et al. The activity non-basal slip and dynamicrecovery at room temperature in fine-grained AZ31Mg alloy [J]. ActaMaterialia,2003,51:2055-2065.
    [126] Barnett M R. Influence of deformation conditions and texture on the hightemperature flow stress of magnesium AZ31[J]. Journal of Light Metall,2001,1:167-177..
    [127] Kim H K. The grain size dependence of flow stress in an ECAPed AZ31Mgalloy with a constant texture [J].
    [128] Koike J, Ohyama R. Geometrical criterion for the activation of prismatic slipin AZ61Mg alloy sheets deformed at room temperature [J]. Acta Materialia,2005,53:1963-1972.
    [129] Wang Y N, Huang J C. The role of twinning and untwinning in yieldingbehavior in hot-extruded Mg–Al–Zn alloy [J]. Acta Materialia,2007,55:897-905.
    [130] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Influence of grain size on thecompressive deformation of wrought Mg-3Al-1Zn [J]. Acta Materialia,2004,52:5093-5103.
    [131] Cáceres C H, Mann G E, Griffiths J R. Grain size hardening in Mg and Mg-Znsolid solutions [J]. Metallurgical and Materials Transactions A,2011,42:1950-1959.
    [132] Kleiner S, Uggowitzer P J. Mechanical anisotropy of extruded Mg–6%Al–1%Zn alloy [J]. Materials Science and Engineering A,2004,379:258-263.
    [133] Barnett M R, Nave M D, Ghaderi A. Yield point elongation due to twinning ina magnesium alloy [J]. Acta Materialia,2012,60:1433-1443.
    [134] Figueiredo R B, Száraz Z, Trojanová Z, Luká P, Langdon T G. Significanceof twinning in the anisotropic behavior of a magnesium alloy processed byequal-channel angular pressing [J]. Scripta Materialia,2010,63:504–507.
    [135] Chen W Z, Wang X, Wang E D, Liu Z Y, Hu L X. Texture dependence ofuniform elongation for a magnesium alloy [J]. Scripta Materialia,2012,67:858–861.
    [136] Lin J B, Wang Q D, Peng L M, Roven H J. Microstructure and high tensileductility of ZK60magnesium alloy processed by cyclic extrusion andcompression [J]. Journal of Alloys and Compounds,2009,476:441-445.
    [137] Kim W J, Lee H W, Yoo S J, Park Y B. Texture and mechanical properties ofultrafine-grained Mg–3Al–1Zn alloy sheets prepared by high-ratio differentialspeed rolling [J] Materials Science and Engineering A,2011,528:874-879.
    [138] Woo W, Choo H, Brown D W, Liaw P K, Feng Z. Texture variation and itsinfluence on the tensile behavior of a friction-stir processed magnesium alloy[J]. Scripta Materialia,2006,54:1859-1864.
    [139] Sandl bes S, Zaefferer S, Schestakow I, Yi S, Gonzalez-Martinez R. On therole of non-basal deformation mechanisms for the ductility of Mg and Mg–Yalloys [J]. Acta Materialia,2011,59:429-439
    [140] Wu D, Chen R S, Han E H. Excellent room-temperature ductility andformability of rolled Mg–Gd–Zn alloy sheets [J]. Journal of Alloys andCompounds,2011,509:2856-2863.
    [141] Wang X, Chen W Z, Hu L X. Wang G J, Wang E D. Microstructure refiningand property improvement of ZK60magnesium alloy by hot rolling [J].Transactions of Nonferrous Metals Society of China,2011, S21:242-226
    [142] Wang Y M, Ma E. Strain hardening, strain rate sensitivity, and ductility ofnanostructured metals [J]. Materials Science and Engineering A,2004,375-377:46-52
    [143] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation anddynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001,49:1199-1207.
    [144] Min X H, Tsuzaki K, Emura S, Tsuchiya K. Enhancement of uniformelongation in high strength Ti–Mo based alloys by combination of deformationmodes [J]. Materials Science and Engineering A,2011,528:4569-4578.