长压杆结构内力识别与稳定分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对实际工程中运营的压杆进行精确的内力识别和临界力求解是准确判别压杆的稳定安全系数的重要方面。对于结构的内力测试与识别中,频率法作为一种方便且实用的方法被广泛地运用,但主要集中于受拉力的索或杆,将这种思想用于压杆的内力识别与稳定分析还较少。事实上,运用频率法不仅可以通过频率测试压杆的内力,而且由动力准则,可以通过频率为零时对应的内力来求得其临界力,对其稳定性进行分析。所以对压杆的振动频率法进行研究和完善,对于压杆的安全系数评估具有重要的意义。
     本文结合振动频率法和有限元法的基本思想,对压杆进行内力识别与临界力求解。该方法对于任意边界条件的不均匀变截面杆均可以适用。
     1)构造了一种能够综合考虑各种边界条件和变截面影响的高精度长压杆单元。在综合考虑压杆结构特点与振动特性的基础上,选择合适的位移模式,基于能量变分原理推导出压杆单元的刚度矩阵,形成压杆单元自由振动方程,进而得到频率方程,确定频率与内力之间的对应关系;运用动力准则,通过求得压杆频率为零时的内力值来求压杆稳定的临界力。
     2)根据压杆振动频率法有限元理论,编制相应的MATLAB程序,包括单元特性程序(单元刚度矩阵与单元质量矩阵)、频率求解程序、内力识别程序、临界力求解程序,并通过算例验证了本文方法及程序的正确性。
     3)对压杆临界力计算的欧拉公式中的计算长度系数针对不同的弹性边界进行精确求解,并制成表格,通过查阅表格并进行插值计算,可以方便地得到任意弹性边界条件下的计算长度系数并进行压杆临界力求解。
     4)对东江大桥的长压杆进行稳定分析,并对边界条件、计算长度、孔洞率、内力等因素对压杆频率的影响大小进行了分析。结果表明,孔洞的产生对欧拉梁的临界承载力没有明显影响;边界条件、孔洞率、计算长度等对压杆的频率影响较大,而内力远小于临界力时,内力对压杆的频率影响较小。
Internal force identification and critical pressure are two most important aspects to determine the stability safety factor of a compressed bar in engineering project. Today frequency method has been widely used in force identification of structures such as cables and tie rods, but less used in compressed bar. Actually, based on frequency method, not only the pressure force can be identified, but also the critical pressure can be gained according to dynamic criterion. Doing research in vibration frequency method in safety coefficient evaluation of compressed bar has important meanings.
     Combined with the vibration frequency method and finite element method, several research is done in this thesis about pressure force identification and critical pressure analysis. It is suitable for variable section roll and inhomogeneous slender pressure roll as well.
     1) Use the appropriate function to be the displacement function, then base on the energy variation principle, the frequency equation is derived, which considers the pressure force and the boundary conditions of the compressed bar. This method can take the influence of arbitrary boundary and variable cross-section into account. As the corresponding relation between the pressure and frequencies is obtained, the critical force can get by ? ? 0 according to dynamic criterion.
     2) According to the finite element method, the computer executable procedure is setted up. Programmed with MATLAB, several programmes are designed, including solving of stiffness matrix, mass matrix, frequencies, pressure force, critical pressure and so on. Then, an example is given to testify this method.
     3) Effective length factor ? in Euler's Formula is calculated accurately according to different kinds of elastic boundary. The effective length factor can be looked up or interpolation calculation through the tables made. It is convenient to use ? in these tables to calculate the critical pressure of compressed bar with arbitrary elastic boundary.
     4) With the programs, stability analysis is done to the slender pressured bar of Dongjiang river. What is more, the influence of boundary condition, effective length, hole ratio in section and internal force to frequencies are analyzed. The result shows that, hole ratio has no obvious influence on critical pressure. However, boundary condition, effective length, and hole ratio in section all have significant influence on frequency of compressed bar. The internal force has little influence on frequency when the it is much less than critical pressure.
引文
[1]童根树.钢结构的平面内稳定[M].北京:中国建筑工业出版社,2005
    [2]徐芝纶.弹性力学(下册)[M].北京:高等教育出版社,1992
    [3]邓科.梭形变截面轴心受压柱的稳定性能与设计方法研究[D].清华大学工学博士论文,2005
    [4]吴明德.弹性杆件稳定理论[M].北京:高等教育出版社,1988
    [5] Chen,W.F. and Lui, E.M, Structural Stability-Theory and Implementation[M], Elsevier, New York, 1987.
    [6]戴天民等译.稳定理论,上卷.北京:中国工业出版社,1964
    [7] A.Chajes. Principle of Structure Stability Theory. Prentice-Hall,1974
    [8] W.F.Chen and T.Atsuta. Theory of Beam-Columns, Vol.2; Space Behavior and Design.Mc Graw-Hall Book Company,1977
    [9] S.Santathadaporn and D.W.Murrary. Finite Element Solution of Inelastic Beam Equations, J.of Structure Division.ASCE,Vol.99,No.6,1973.
    [10] Z.Y.Shen and L.W.Lu. Analysis of Initially Crooked End Restrained Steel Columns, J. of Constructional Steel Research. Vol.3,No.1,1983
    [11]沈祖炎,张其林.薄壁钢构件非线性稳定问题的曲壳有限单元法.土木工程学报, Vol.24, No.1,1991
    [12]任伟新,曾庆元.钢压杆稳定极限承载力分析[M],中国铁道出版社,1994
    [13]刘协权,倪新华.支座弹性对压杆临界荷载的影响[J].军械工程学院学报.2003(03):73-78
    [14]刘洋,杨永波,梁枢平.轴向均布载荷下压杆稳定问题的DQ解[J].力学与实践.2005(02):44-47
    [15]任凤鸣,范学明.天兴洲长江大桥箱形带肋钢压杆稳定性.建筑科学.2008(03):12-14+26
    [16]刘庆潭,倪国荣.压杆稳定性和横向自由振动计算的传递矩阵法.长沙铁道学院学报.1999(01):90-94
    [17]吴晓.细长压杆大挠度问题非线性振动比拟[J].力学与实践.1997(02):72-73+61
    [18]刘茂燧,程渭民.压杆稳定的动力分析[J].南方冶金学院学报.2004(05):6-8
    [19]孙保苍,陈威,何仁.基于振动理论的压杆稳定性分析[J].噪声与振动控制.2005(04):8-10
    [20]刘茂燧,程渭民,龚永胜.振动测试压杆的临界力[J].西安科技大学学报.2006(02):279-282
    [21]陈明,张秋华,严勇.测量压杆临界压力的理论与实验[J].力学与实践.2007(01):74-76
    [22] Hiroshi Zui,Tohru Shinke and Yoshio Namita, Practical Formulas For Estimation of Tension by Vibration method. Journal of Structural Engineering, Vol.122,No.6,1996.
    [23]冯仲仁,靳敏超,胡春宇等.武汉市晴川桥吊杆索力测试分析.武汉理工大学学报.2002.24(12):49~51
    [24]余岭,朱若燕.大型桥梁吊杆自振频率测试与分析.湖北工学院学报.1995,10(增刊):70~74
    [25]邵旭东、李国峰、李立峰等,吊杆振动分析与力的测量,中外公路,2004,24(6):29-31
    [26]方志,张智勇等.斜拉桥索力的测试.中国公路学报,1997(3):51-56.
    [27]郑罡、倪一清、高赞明、徐兴等,斜拉索张力测试和参数评估的理论和应用,土木工程学报,2005,38(3):196-201
    [28]苏成,徐郁峰,韩大建等.频率法测量索力中的参数分析与索抗弯刚度的识别,公路交通科技,2005,22(5):75-78
    [29] Kim J, Chang SP.Dynamic stiffness matrix of an inclined cable. Engineering. Structure 2001,23(12):1614-1621。
    [30]王卫峰,韩大建.斜拉桥的索力测试及其参数识别.华南理工大学学报(自然科学版).2000,29(1):18-21.
    [31]刘文峰,应怀樵,柳春图.考虑刚度及边界条件的索力精确求解.振动与冲击,2003,22(4):12-25.
    [32]许汉铮,黄平明.带减振架的吊索索力测试研究.公路,2003(8):76-78.
    [33]陈常松,陈政清,颜东煌.柔索索力主频阶次误差及支承条件误差.交通运输工程学报,2004,4(4):17-20.
    [34]任伟新,陈刚等,由基频计算拉索拉力的实用公式,土木工程学报.2005·38(11):26-31
    [35]魏建东.索力测定常用公式精度分析.公路交通科技.2004(21):53-56.
    [36]魏建东.斜拉索各参数取值对索力测定结果的影响.力学与实践,2004(26):4.
    [37]陈常松,陈政清,颜东煌.柔索索力主频阶次误差及支承条件误差.交通运输工程学报,2004,4(4):17-20.
    [38]田仲初.大跨度钢箱拱桥的施工控制关键技术与动力特性研究.博士学位论文.2007
    [39] Halkyard C R, Mace B R. Structural in tensity in beams’waves transducers and theconditioning problem[J]. Journal of Sound and Vibration, 1995, 185(2):279-298
    [40] Beale L S, Accorsi M L. Power flow in two and three-dimentional frames structures[J]. Journal of Sound and Vibration, 1995,185(4):685-702
    [41] Harland N R, Mace B R, Jones R W. Wave propagation, reflection and transmission in tunable fluid-field beams[J]. Journal of Sound and Vibration, 2001, 241(5): 735-754
    [42]任建亭,林磊,姜节胜.简单周期结构波传播主动控制研究[J].应用力学学报,2004,12(3):85-88
    [43]苏志霄,刘宏昭,李鹏飞,曹维庆。振动系统参数识别的Taylor变换法[J].应用力学学报,2000,17(1):47-53
    [44]邓长华,任建亭,任兴民,姜节胜.基于遗传算法的梁结构边界条件识别[J].机械科学与技术,2007,16(11):1439-1441
    [45]高跃飞,姜节胜,张永强,康兴无。利用Taylor变换的结构动力学边界条件识别[J].机械科学与技术,2005,24(2):155-158
    [46]郑罡,倪一清,高赞明,徐兴。斜拉索张力和参数评估的理论和应用[J].土木工程学报,2005,38(3):64-69
    [47]张永强,结构动力学边界条件识别及实现方法研究[D],西北工业大学,2005.3
    [48]邓长华,任建亭,任兴民,高跃飞,梁结构边界条件识别的行波法[J].中国机械工程,2005,16(11):861-863
    [49]郭彤,李爱群,费庆国,王浩.零阶与一阶优化算法在悬索桥模型修正中的应用对比分析[J].振动与冲击,2007,26(4):35-38
    [50]王沫然.MATLAB与科学计算[M].电子工业出版社,2003.9(2)
    [51]高会生,李新叶,胡智奇译。MATLAB原理与工程应用[M].电子工业出版社,2002.6(1)
    [52]刘树堂.杆系结构有限元分析与MATLAB应用.水利水电出版社,2007.1
    [53]王正林,龚清,何倩.精确MATLAB科学计算[M].电子工业出版社,2007.7