酵母朊蛋白Sup35NM体外淀粉样纤维形成与解聚的动力学及其细胞毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉样纤维是一种高度有序的蛋白聚集体,富含β折叠的结构,具有较强的抗蛋白酶K消化能力,并且可被刚果红染色而呈现出特定的黄绿色双折光。已发现人类大约有20种疾病与淀粉样纤维的沉积有关,如可传播性海绵状脑病(transmissible spongiform encephalopathy,TSE)、阿兹海默病(Alzheimer's disease)、系统性淀粉样变等等,对于这些疾病目前尚无有效的治疗手段。因此,淀粉样变机制的阐明,对于这些疾病的治疗和预防均具有重要的科学意义和应用价值,但目前淀粉样纤维的形成机制仍不清楚。
     非染色体遗传原件[URE3]和[PSI~+]分别是酿酒酵母中Ure2p和Sup35p的朊病毒形式。之所以被称为“酵母朊病毒”(yeast prion),是因为它们的增殖方式与哺乳动物朊病毒非常相似。[URE3]和[PSI~+]的产生分别是由Ure2p和Sup35p发生聚集形成具有自我增殖(selfpropagating)功能的淀粉样物质的结果。因此,酵母朊病毒为研究淀粉样纤维的形成以及朊病毒样的构象转变均提供了一个极有价值的模型。酵母Sup35p是一个蛋白翻译终止因子的亚单位,类似于真核细胞释放因子3(eRF3)。它由685个氨基酸组成,其结构可以划分为3个区。N端区(N,1~123位氨基酸)是酵母形成[PSI~+]所必需的,因此也称为朊病毒结构域(prion domain,PrD)。PrD可以维持酵母[PSI~+]的增殖,而且在体外环境中很容易聚集形成淀粉样纤维。中间区(M,124~253位氨基酸)带有大量的电荷,其功能还不是很清楚。C端区(C,254~685位氨基酸)
Amyloid fibrils are highly ordered protein aggregates characterized by high β-sheet content, protease-resistance, and apple green birefringence on staining with Congo red. Its formation and deposition has been linked to about 20 important human degenerative diseases, including transmissible spongiform encephalopathie (TSE), Alzheimer's disease and systemic amyloidosis. All these diseases lack presently effective treatment and prevention. It is therefore critical to elucidate the mechanisms by which the amyloid fibrils generate and spread to provide targets for diasese treatment and prevention strategy development.
    The nonchromosomal genetic elements [URE3] and [PSI~+] are prion forms of the Saccharomyces Cerevisiae proteins Ure2p and Sup35p, respectively. They are called "yeast prions" because of the similarity between their proposed mechanisms of propagation and that of TSE. Both [URE3] and [PSI~+] arise as a consequence of self propagating polymerization of their protein determintants into amyloid-like aggregates. Therefore, yeast prions offer a useful model for studying not only the amyloid formation but also the prion-like transmission of protein conformation. Sup35p is now known to be the yeast homologue of the eukaryotic release factor 3 (eRF3). It functions together with another protein Sup45p to bring about the faithful termination of translation at all three nonsense codons. The Sup35p is composed of three domains. The N-terminal region (amino acids 1-123) constitutes the prion domain (PrD), which is required for induction and maintenance of [PSI~+]. The C-terminal (amino acids 254-685) region contains 4 GTP-binding sites and
引文
1. Prusiner SB. Molecular biology of prion diseases. Science, 1991, 252: 1515-1522.
    
    2. Prusiner SB. Novel proteinaceous infectious particle cause scrapie. Science, 1982,216:136-144.
    
    3. Brown DR, Qin K, Herms JW, Madlung A, Manson J, Strome R, Fraser PE, Kruck T, von Bohlen A, Schulz-Schaeffer W, Giese A, Westaway D, Kretzschmar H. The cellular prion protein binds copper in vivo. Nature, 1997, 390: 684-687.
    
    4. Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O. Signal transduction through prion protein. Science, 2000,289:1925-1928.
    
    5. Hundt C, Peyrin JM, Haik S, Gauczynski S, Leucht C, Rieger R, Riley ML, Deslys JP, Dormont D, Lasmezas CI, Weiss S. Identification of interaction domains of the prion protein with its 37-kDa/67-kDa laminin receptor. EMBO J., 2001,20: 5876-5886.
    
    6. Stahl N, Baldwin MA, Teplow DB, Hood L, Gibson BW, Burlingame AL, Prusiner SB. Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry, 1993,32: 1991-2002.
    
    7. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc.Natl.Acad.Sci.USA, 1993,90: 10962-10966.
    
    8. Caughey BW, Dong A, Bhat KS, Ernst D, Hayes SF, Caughey WS. Secondary structure analysis of the scrapie-associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry, 1991, 30: 7672-7680.
    
    9. Safar J, Roller PP, Gajdusek DC, Gibbs CJ Jr. Thermal stability and conformaltional transitions of scrapie amyloid (prion) protein correlate with infectivity. Protein Sci, 1993,2: 2206-2216.
    
    10. Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr.Genet, 1993,24: 268-270.
    
    11. Horwich AL, Weissman JS. Deadly conformations-protein misfolding in prion diease. Cell, 1997, 89: 499-510.
    
    12. Prusiner SB. Prion disease and the BSE crisis. Science, 1997, 278: 245-251.
    
    13. Prusiner SB. Prions.Proc.Natl.Acad.Sci.USA, 1998, 95:13363-13383.
    
    14. Weissman C. Prion diseases Yielding under the strain. Nature, 1995, 375:628-629.
    
    15. Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI~+], a heritable prion-like factor of S. cerevisiae. Cell, 1997, 89: 811-9.
    
    16. Cox B. ψ, a cytoplasmic suppressior of super-suppression in yeast. Heredity, 1965,20:505-521.
    
    17. Seiro TR, Lindquist SL. [PSI~+]: an epigenetic modulator of translation termination efficiency. Annu.Rev.Cell Dev. Biol, 1999,15: 661-703.
    
    18. Liebman SW, Stewart JW, Sherman F. Serine substitutions caused by an ochre suppressor in yeast. J. Mol. Biol., 1975,94: 595-610.
    
    19. Firoozan M, Grant CM, Duarte JA, Tuite MF. Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast, 1991, 7: 173-183.
    
    20. Cox BS, Tuite MF, McLaughlin CS. The ψ factor of yeast: a problem in inheritance. Yeast, 1988,4: 159-178.
    
    21. Horwich AL, Weissman JS. Deadly conformations-protein misfolding in prion disease. Cell, 1997, 89: 499-510.
    
    22. Hawthorne DC, Mortimer RK. Genetic mapping of nonsense suppressors in yeast. Genetics, 1968, 60: 735-742.
    
    23. Inge-Vechtomov SG, Andrianova VM. Recessive super-suppressors in yeast. Genetika, 1970,6:103-115.
    
    24. Crouzet M, Tuite MF. Genetic control of translational fidelity in yeast: Molecular cloning and analysis of the allosuppressor gene SAL3. Mol. Gen. Genet., 1987,210:581-583.
    
    25. Chernoff YO, Galkin AP, Lewitin E, Chernova TA, Newnam GP, Belenkiy SM. Evolutionary conservation of prion-forming abilities of the yeast Sup35 protein. Mol Microbiol, 2000, 35: 865-76.
    
    26. Bessen RA, Marsh RF. Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. J.Virol, 1994, 68: 7859-7868.
    
    27. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI~+] prion in Saccharomyces cerevisiae. Genetics, 1997,147: 507-519.
    
    28. Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature, 1994,372:701-703.
    
    29. Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRFl and eRF3. EMBO J., 1995,14: 4065-4072.
    
    30. Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J., 1995,14: 4365-4373.
    
    31. Wickner RB. Prion and RNA viruses of Saccharomyces cerevisiae. Annu. Rev. Genet, 1996, 30: 109-139.
    
    32. Wickner RB. [URE3] as an altered Ure2 protein: evidence for a prion analog in Saccharomyces cereviseae. Science, 1994,264: 566-569.
    
    33. Singh A, Helms C, Sherman F. Mutation of the non-mendelian suppressor ψ+ in yeast by hypertonic media. Proc Natl.Acad.Sci.U.S.A, 1979, 76: 1952-1956.
    
    34. Lund PM, Cox BS. Reversion analysis of [psi~-] mutations in Saccharomyces cerevisiae. Genet.Res, 1981, 37: 173-182.
    
    35. Tuite MF, Mundy CR, Cox BS. Agent that cause a high frequency of genetic change from [PSI~+] to [psi~-] in Saccharomyces cerevisiae. Genetics, 1981, 98: 691-711.
    
    36. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [PSI~+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J, 1996, 15: 3127-3134.
    
    37. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. In vitro propagation of the prion like state of yeast Sup35 protein. Science, 1997, 277: 381-383.
    
    38. Hawthorne DC, Leupold U. Suppressors in yeast. Curr.Top.Microbiol.Immunol, 1974, 64: 1-47.
    
    39. Chernoff YO, Ptyushkina MV, Samsonova MG, Sizonencko GI, Pavlov YI, Ter-Avanesyan MD, Inge-Vechtomov SG. Conservative system for dosage-dependent modulation of translation fidelity in eukaryotes. Biochimie, 1992,74:455-461.
    
    40. Parsell DA, Kowal AS, Singer MA, Lindquist S. Protein disaggregation mediated by Hsp104. Nature, 1994, 372: 475-478.
    
    41. Santoso A, Chien P, Osherovich LZ, Weissman JS. Molecular basis of a yeast prion species barrier. Cell, 2000,100: 277-288.
    
    42. Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene, 1988, 66: 45-54.
    
    43. Balbirnie M, Grothe R, Eisenberg DS. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. U S A, 2001,98: 2375-80.
    
    44. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determineant [PSI~+] in the yeast Saccharomyces cerevisiae. Genetics, 1994,137: 671-676.
    
    45. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI~+] prion factors in Saccharomyces cerevisiae. Genetics, 1996, 144: 1375-1386.
    
    46. DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagines repeats in the formation and propagation of a yeast prion. Cell, 1998, 93: 1241-1252.
    
    47. Bousset L, Melki R. Similar and divergent features in mammalian and yeast prions. Microbes and Infection, 2002,4: 461-469.
    
    48. Raymond GJ, Hope J, Kocisko DA, Priola SA, Raymond LD, Bossers A, Ironside J, Will RG, Chen SG, Petersen RB, Gambetti P, Rubenstein R, Smits MA, Lansbury PT Jr, Caughey B. Molecular assessment of the transmissibilities of BSE and scrapie to human. Nature, 1997, 388: 285-288.
    
    49. Korth C, Kaneko K, Groth D, Heye N, Telling G, Mastrianni J, Parchi P, Gambetti P, Will R, Ironside J, Heinrich C, Tremblay P, DeArmond SJ, Prusiner SB. Abbreviated incubation times for human prions in mice expressing a chimeric mouse-human prion protein transgene. Proc. Natl. Acad. Sci. U S A, 2003,100: 4784-9.
    
    50. Scott MR, Peretz D, Nguyen HO. Transmission barriers for bovine, ovine, and human prions in transgenic mice. J Virol., 2005, 79: 5259-71.
    51. Kocisko DA, Priola SA, Raymond GJ, Chesebro B, Lansbury PT Jr, Caughey B. Species specificity in the cell-free conversion of prion protein to protease-resistant forms: a model for the scrapie species barrier. Proc. Natl. Acad. Sci. USA, 1995: 92: 3923-27.
    
    52. Kushnirov W, Kochneva-Pervukhova NV, Chechenova MB, Frolova NS, Ter-Avanesyan MD. Prion properties of the Sup35 protein of yeast Pichia methanolica. EMBO J., 2000,19: 324-31.
    
    53. Zhou P, Derkatch IL, Uptain SM, Patino MM, Lindquist S, Liebman SW. The yeast non-mendelian factor [ETA~+] is a variant of [PSI~+], a prion-like form of release factor eRF3. EMBO J., 1999,18: 1182-1191.
    
    54. Depace AH, Weissman JS. Origins and kinetic consequences of diversity in Sup35 yeast prion fibers. Nature structural biology, 2002,9: 389-395.
    
    55. Frolova L, Le Goff X, Rasmussen HH, Cheperegin S, Drugeon G, Kress M, Arman I, Haenni AL, Celis JE, Philippe M. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature, 1994,372:701-3.
    
    56. Inge-Vechtomov S, Andrianova V. A new type of super suppressor in yeast. Molecular Mechanisms of Genetic Processes (Dubinin N. and Goldfarb D, eds), 1975,181-186, wiley.
    
    57. Klkuchi Y, Shimatake H, Kikuchi A. A yeast gene required for the Gl-to-S transition encodes a protein containing an A-kinase target site and GTPase domain. EMBO J, 1998, 7: 1175-82.
    
    58. Wilson PG, Culbertson MR. SUP12 suppressor protein of yeast, A fusion protein related to the EF-1 family of elongation factors. J.Mol.Biol., 1998, 199: 559-573.
    
    59. Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol., 1993,7:683-92.
    
    60. Jarrett JT, Lansbury PT. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell, 1993, 73: 1055-1058.
    
    61.Caughey B, Kocisko DA, Raymond GJ, Lansbury PT Jr. Aggregates of scrapie-associated prion protein induce the cell-free conversion of protease-sensitive prion protein to the protease-resistant state. Chem. Biol., 1995,2:807-17.
    
    62. Ernst DR, Race RE. Comparative analysis of scrapie agent inactivation methods. J Virol Methods, 1993, 41:193-201.
    
    63. Taylor DM. Inactivation of transmissible degenerative encephalopathy agents: a review. Vet J., 2000,159: 10-7.
    
    64. Schreuder BE, Geertsma RE, van Keulen LJ, van Asten JA, Enthoven P, Oberthur RC, de Koeijer AA, Osterhaus AD. Studies on the efficacy of hyperbaric rendering procedures in inactivating bovine spongiform encephalopathy (BSE) and scrapie agents. Vet Rec, 1998,142: 474-80.
    
    65. Somerville RA, Oberthur RC, Havekost U, MacDonald F, Taylor DM, Dickinson AG. Characterization of thermodynamic diversity between transmissible spongiform encephalopathy agent strains and its theoretical implications. J Biol Chem, 2002,277: 11084-9.
    
    66. Brown P, Meyer R, Cardone F, Pocchiari M. Ultra-high-pressure inactivation of prion infectivity in processed meat: a practical method to prevent human infection. Proc. Natl. Acad. Sci. USA, 2003,100: 6093-7.
    67. Jung G, Jones G, Masison DC. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl. Acad. Sci. USA, 2002,99: 9936-41.
    
    68. Langeveld JP, Wang JJ, Van de Wiel DF, Shih GC, Garssen GJ, Bossers A, Shih JC. Enzymatic Degradation of Prion Protein in Brain Stem from Infected Cattle and Sheep. J. Infect. Dis., 2003, 188: 1782-1789.
    
    69. Saupe SJ. New anti-prion drugs make yeast blush. Tends. Biotechnol., 2003,21: 516-519.
    
    70. Cox B. Psi phenomena in yeast. In The Early Days of Yeast Genetics, 1993, 219-39. Cold Spring Harbor, NY: Cold Spring Harbor lab. Press.
    
    71. Chen CY, Rojanatavorn K, Clark AC, Shih JC. Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. Protein Science, 2005, 14: 2228-2235.
    
    72. Kelly JW. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol, 1998, 8: 101-106.
    
    73. Dobson CM. The structural basis of protein folding and its links with human disease. Phil. Trans.R. Soc. Lond. B, 2001, 356: 133-145.
    
    74. Sipe JD, Cohen AS. Review: history of the amyloid fibril. J. Struct. Biol., 2000, 130: 88-98.
    
    75. Ellis RJ, Pinheiro TJT. Danger-misfolding proteins. Nature, 2002, 416: 483-484.
    
    76. Dobson CM. Protein misfolding, evolution and disease. Trends Biochem. Sci., 1999,24:329-332.
    
    77. Fandrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature, 2001,410: 165-166.
    
    78. Kelly JW. Mechanisms of amyloidogenesis. Nat. Struct. Biol., 2000, 7: 824-826.
    
    79. Perutz M. Polar zippers: Their role in human diseases. Protein Sci., 1994, 3: 1629-1637.
    
    80. Perutz MF, Finch JT, Berriman J, Lesk A. Amyloid fibers are water filled nanotubes. Proc. Natl. Acad. Sci. USA, 2002, 99: 5591-5595.
    
    81. Schlunegger MP, Bennett MJ, Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv. Protein Chem., 1997,50:61-122.
    
    82. Parham SN, Resende CG, Tuite MF. Oligopeptied repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO, 2001, 20(9): 2111-2119.
    
    83. Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci., 1999,19: 8876-84.
    
    84. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002, 416: 507-511.
    
    85. Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J. Biol. Chem., 2004,279: 31374-82.
    
    86. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J.Biol.Chem., 2005,280: 17294-17300.
    
    87. Kayed R, Head E, Thompson JL, Mclntire TM, Milton SC, Cotman CW, Glabe CG Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300: 486-489.
    
    88. Kayed R, Sokolov Y, Edmonds B, Mclntire TM, Milton SC, Hall JE, Glabe CG. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J.Biol.Chem., 2004,279: 46363-46366.
    
    89. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J.Biol.Chem., 2005,280: 17294-17300.
    
    90. Sparrer HE, Santoso A, Szoka FC Jr. Evidence for the prion hypothesis: Induction of the yeast [PSI~+] factor by in vitro-converted Sup35 protein. Science, 2000, 289: 595-599.
    91. Spiess E, Zimmerman HP, Lunsdorf H. In Electron Microscopy in Molecular Biology: A Practical A Practical Approach. J. Sommerville and U. Scheer, eds. (Oxford: IRL Press Ltd.), 1987,147-166.
    
    92. King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc. Natl. Acad. Sci. USA, 1997,94: 6618-22.
    
    93. Chernoff YO, Uptain SM, Lindquist SL. Analysis of prion factors in yeast. Methods Enzymol., 2002, 351: 499-538.
    
    94. Taylor KL, Cheng N, Williams RW. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science, 1999, 283: 1339-1343.
    
    95. Glenner GG. Amyloid deposits and amyloidosis: the beta-fibrilloses. N Engl J Med., 1980, 302: 1333-43.
    
    96. Kisilevsky R, Fraser PE. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit Rev Biochem Mol Biol., 1997, 32: 361-404.
    
    97. Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc. Natl. Acad. Sci. USA, 2005,102: 12825-30.
    
    98. Michelitsch MD, Weissman JS. A census of glutamine/asparagines-rich regions: Implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA, 2000,97: 11910-11915.
    
    99. Maddelein ML, Wickner RB. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell. Biol., 1999,19:4516-4524.
    
    100. Pierce MM, Baxa U, Wickner RB. Is the prion domain of soluble Ure2p unstructured? Biochemistry, 2005,44: 321-328.
    
    101.Scheibel T, Lindquist SL. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol. 2001, 8: 958-962.
    102.Xu SH, Bevis B, Arnsdorf MR The assembly of amyloidogenic yeast Sup35 as assessed by scaning (atomic) force microscopy: an analogy to linear colloidal aggregateion. Biophysical Journal, 2001, 81: 446-454.
    103.Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLOS Biology, 2004,2: 1-9.
    104.Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 2000,289: 1317-1321.
    
    105. Dill KA, Chan HS. From Levinthal to pathways to funnels. Nat. Struct. Biol., 1997,4:10-19.
    
    106. Chan HS, Dill KA. Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics. Proteins, 1998,30: 2-33.
    
    107. Stefani M, Dobson CM. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J. Mol.Med., 2003, 81: 678-699.
    
    108.Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci., 2003,26: 267-298.
    109.Kirkitadze MD, Bitan G, Teplow DB. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J. Neurosci. Res., 2002,69: 567-577.
    110. Novitskaya V, Bocharova OV, Bronsteinc I. Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons. J. Mol. Med., 2006, in press.
    111. Pieri L, Bucciantini M, Nosi D. The yeast prion Ure2p native-like assemblies are toxic to mammalian cells regardless to their aggregating state. J. Mol. Med., 2006, in press.
    112.Janciauskiene S, Ahrén B. Fibrillar islet amyloid polypeptidedifferentially affects oxidative mechanisms and lipoprotein uptake in correlation with cytotoxicity in two insulin-producing cell lines. Biochem. Biophys. Res. Commun., 2002,267: 619-625.
    113.Sakahira H, Breuer P, Hayer-Hartl MK, Hartl FU. Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proc. Natl. Acad. Sci. USA, 2002,99: 16412-16418.
    114.Squier TC. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol., 2001, 36: 1539-1550.
    115. Kourie JI, Henry CL. Ion channel formation and membrane-linked pathologies of misfolded hydrophobic proteins: the role of dangerous unchaperoned molecules. Clin. Exp. Pharmacol. Physiol., 2002,29: 741-753.
    116.Orrenius S, Zhovotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat. Rev., 2003,4: 552-565.
    
    117. Relini A, Torrassa S, Rolandi R, Gliozzi A, Rosano C, Canale C, Bolognesi M, Plakoutsi G, Bucciantini M, Chiti F, Stefani M. Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J. Mol. Biol., 2004, 338: 943-957.
    
    118. Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M. Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J. Cell. Sci., 2005,118: 3459-3470.