酵母朊蛋白Sup35NM及其变异体体外淀粉样纤维形成动态及其细胞毒性作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
已发现人类有多种疾病和淀粉样纤维的沉积有关,包括阿尔兹海默病、帕金森病、可传播性海绵状脑病等。尽管淀粉样变相关蛋白质的氨基酸序列完全不同,但它们聚集所形成的淀粉样纤维却拥有相同的性质,即:均是高度有序的蛋白聚集体、呈现细丝状的形态、富含β折叠结构、具有抵抗蛋白酶K消化的能力、经刚果红(Congo red)染色后在偏振光显微镜下可见黄绿色双折色荧光。因此对淀粉样纤维过程的研究,不仅有助于阐明淀粉样病变的致病机理,而且有助于提出相关疾病的有效预防和治疗策略。虽然已对氨基酸序列和淀粉样蛋白形成能力之间的关系进行了大量研究,但目前淀粉样纤维的形成机制仍不清楚。
     1994年,Wickner等提出了酵母Prion这个概念,认为酿酒酵母(Saccharomyces cerevisiae)中两个非孟德尔遗传元件[URE3]和[PSI~+]分别是染色体编码蛋白Ure2p和Sup35p的朊病毒形式,其行为与哺乳动物PrP相似,因此为研究淀粉样纤维的形成及Prion构象转变提供了一个较为理想的模型。Sup35p是翻译终止因子的亚单位,类似于真核细胞释放因子3(eRF3),通过与Sup45p(eRF1)形成复合物识别终止密码子而使肽链在翻译末端释放,终止蛋白翻译。Sup35蛋白在酵母体内过表达时蛋白构象发生转变而导致聚集,丧失正常的生理功能而导致终止密码子通读,使酵母产生[PSI~+]表型。Sup35p由685个氨基酸组成,包括3个结构域:N端区(N,aa1-123)是诱导[PSI~+]产生所必需的,富含谷氨酰胺(Q)和天冬酰胺(N),为Prion形成结构域(PrD)。C区是翻译终止功能区。M区位于N与C之间,目前功能不清。为明确N区特殊的氨基酸组成及序列在淀粉样纤维形成中的作用,我们构建了Sup35NM的变异体,分析了它们淀粉样纤维形成的动力学过程,并进一步探讨了野生型Sup35NM及其变异体聚集物的细胞毒性作用,以期为阐明淀粉样纤维形成及其致病机制提供线索。
     1.酵母朊蛋白Sup35NM变异体体外淀粉样纤维形成的动态研究
     为了阐明氨基酸序列对纤维形成的影响,我们首先将Sup35NM片段的PrD的氨基酸序列重新随机排列同时保证氨基酸的组成及M段的氨基酸序列不变,构建了5个Sup35NM的变异体,分别称为Sup35NM-1、-2、-3、-4、-5。在E. coli中成功表达、纯化了野生型Sup35 NM及其5个变异体,进而研究了其在体外淀粉样纤维形成的动力学过程。结果显示:透射电子显微镜下观察可见Sup35NM及其5种变异体蛋白在PBS(pH7.4)缓冲液中均可发生聚集,2h时可见球形颗粒、寡聚体及少量短而细的纤维,18h时Sup35NM、Sup35NM-1、-2、-3蛋白溶液中出现大量的成熟纤维,球形颗粒消失,纤维长且边缘光滑,Sup35NM-4、-5除了长纤维以外,还可见蛋白寡聚体和球形颗粒。48h后,Sup35NM及5个变异体蛋白溶液中只有大量成熟纤维,直径约8~14 nm。用圆二色谱检测了其二级结构,显示在216nm附近出现一负峰,呈典型的β-折叠特征,提示该过程伴随蛋白结构由α-螺旋到β-折叠的转变。NM及变异体聚集所形成的纤维分别经1μg/ml和4μg/ml的蛋白酶K作用60min后仍可检测到蛋白的存在,说明纤维具有较强的抗蛋白酶K消化的特性。ThT结合试验显示,Sup35NM-1、-2、-3与Sup35NM荧光强度上升的速度相似,经历一个快速上升期后达到平台期,未见明显的潜伏期,而Sup35NM-4、-5则能观察到一个近5h的潜伏期,提示Sup35NM-4、-5蛋白聚集明显慢于Sup35NM及其它变异体蛋白。SDS-PAGE电泳和Western blotting也进一步证明,纤维形成过程中蛋白单体逐渐减少同时多聚体则逐渐增加。淀粉样纤维经沸水浴加热后发现纤维消失,代之以大量的球形颗粒、寡聚体及少量短棒状纤维,ThT结合试验显示纤维加热后荧光强度明显下降,SDS-PAGE电泳也证实加热后蛋白单体重新出现。这些数据说明PrD的氨基酸序列被随机打乱后并没用影响其最终形成淀粉样纤维的能力,并且变异体形成的纤维具有与野生型Sup35NM的纤维具有相同的形态和生化特征,但纤维形成的速率有所不同,提示形成纤维的能力是由氨基酸组成决定的,特定的氨基酸序列在一定程度上调节纤维形成的速率。
     2.野生型Sup35NM及其变异体蛋白纤维的构象诱导转变作用
     已有研究表明,在体内Rnq1p、polyQ等聚集体可诱导酵母菌株从[PSI~-]转变为[PSI~+],在体外异源性的Rnq1或polyQ“种子”可促进NM形成淀粉样纤维。我们构建的变异体N区同野生型NM一样富含Q/N,为了进一步阐明富含Q/N的异源性“种子”能促进蛋白的聚集,我们研究了野生型NM与变异体的相互诱导转变以及另一个酵母朊蛋白Ure2对NM和变异体纤维形成的影响。结果显示:野生型Sup35NM“种子”可加快变异体Sup35NM-1、-4、-5的纤维形成,反之亦然。此外,异源的Ure2“种子”也能轻度增加NM及变异体的转变速率,但总的来说异源性的“种子”比自体“种子”的诱导效率相对低一些。而没有Q/N结构域的α-synuclein“种子”则对蛋白聚集的速率无影响。这些结果提示富含Q/N结构域的异源性“种子”尽管其氨基酸序列不同,能够促进同样含有Q/N结构域的蛋白的聚集,而不含Q/N的异源“种子”则无此作用。
     3.野生型Sup35NM及其变异体对哺乳动物细胞的毒性
     目前已有大量研究证实,在多种蛋白聚集过程中形成的中间体有细胞毒性。Sup35p是酿酒酵母中的朊蛋白,可发生构象转变形成淀粉样纤维,与哺乳动物Prion蛋白不同,不会引起酵母死亡,与人类淀粉样疾病无关,Sup35的聚集中间体是否具有细胞毒性作用还没有得到证实。为证实Sup35NM聚集体的细胞毒性,我们将纯化的蛋白(64μmol/L)于室温下放置0.5~1h或于4℃放置2d~4d后,分别获得聚集中间体和成熟纤维,然后将不同形态的蛋白分别作用于Vero、NIH-3T3、SH-SY5Y细胞系。此外,我们还进一步研究了变异体的毒性作用。结果显示:Sup35NM及其变异体的聚集中间体对细胞具有毒性作用,可明显降低细胞存活率,这种毒性作用与剂量具有相关性,成熟纤维反而无害,与其它蛋白相似。这一结果提示蛋白聚集体的细胞毒性可能与其结构相关。不同细胞系对蛋白毒性的敏感性有差异,Vero和NIH-3T3细胞比较敏感,SH-SY5Y细胞则有一定的抵抗作用,提示蛋白聚集体的细胞毒性作用是通过特定机制实现的。成熟纤维经沸水浴加热20min后作用于细胞,也表现出与聚集中间体相似的毒性作用,提示纤维经加热后出现的蛋白结构与聚集中间体的结构相似。
Numerous human diseases are linked to the formation of amyloid fibrils, includingAlzheimer's disease, Parkinson's disease, and the transmissible spongiformencephalopathies (TSEs). Although the proteins associated with amyloid diseaseshave diverse amino acid sequences, the amyloid fibers that they form seem to share acommon structure. Amyloid fibers are highly organized protein aggregatescharacterized by filamentous morphology, highβ-sheet content, protease resistance,and yellow-green birefringence upon staining with Congo red. Investigations for themechanism by which amyloid forms will no doubt provide not only the clues for theunderstanding of amyloid diseases but also the development of strategies of prevetionand treatment to such diseases. Howerver, despite considerable studies had been done,much is still unknown about the relationship between amino acid sequence andpropensity to form amyloid.
     In 1994, Wickner et al proposed that two non-Mendelian elements, [URE3] and[PSI~+], are prion forms of the Sacchromyces cerevisiae proteins, respectively. Since inboth PrP and yeast prions, prion formation is resulted from the conversion of nativeprotein into a self-propagating and infectious amyloid form, yeast prions provide auseful model for studying not only the mechanism of amyloid fibril formation but alsoprion-like transmission of the protein conformation. Sup35p is an essential subunit ofthe translation termination factor, which corresponds to eRF3 in mammals. It functions in termination in a complex by binding its partner Sup45p. Overexpressionof Sup35p induces protein aggregation and causes [PSI~-] cells to revert to [PSI~+].Sup35 is composed of three distinct sequence elements: N region, M region and Cregion. The N region (aa 1-123) is required for the maintenance of [PSI~+] and rich inQ/N (44%). The C region provides the termination function. The M region is highlycharged and its function is still unclear. In order to examine the role of unusual aminoacid composition and specific sequence in the prion domain and to provide clues forthe pathogenesis of amyloid diseases, in the present study, we constructed severalSup35NM variants and tested the ability and dynamics of amyloid fiber formation ofeach variant as well as their toxicity to mammalian cells.
     1. Dynamics of in vitro amyloid fiber formation of Sup35NM and its variants
     In order to prove the impacts of amino acid sequence on fiber formation, weprepared 5 variants of Sup35p prion domain (N) in which the order of the amino acid2-123 was randomized while without changing the amino acids composition. Thesescrambled variants were named as Sup35NM-1, -2, -3, -4, and -5, respectively. Thewild type (wt) Sup35NM and its variants which were expressed in E. coli and purifiedunder denaturing conditions respectively were subjected to the investigations on thedynamics of amyloid fibers formation. The morphological alteration of the wtSup35NM and variants in PBS (pH 7.4) during the protein aggregation was visualizedby transmission electron microscopy (TEM). The results revealed that at 2h after theinitiation of the assembly reaction, wt Sup35NM and its variants showed a mixture ofgranule, oligomer, and short filaments. After 18h, only fibers could be observed insamples of NM-1,-2, -3 and wt NM, while NM-4, -5 exhibited a mixture of structuresincluding fibers and oligomers. After 48h, all samples exhibited only fibers. Thecircular dichroism (CD) assay showed that the course of amyloid fiber formationunderwent a conformational shift fromα-helix toβ-sheet. The amyloid form wasdetectable when the fibers of either wt Sup35NM or its variants were treated with 1μg/ml or 4μg/ml (final concentration) protease K at 37℃for 60 min. The fibersshowed higher protease K resistance when compared with the native forms. ThTfluorescence assay displayed a rapid growth and a final equilibrium phase in wtSup35NM, Sup35NM-1, -2, and -3. However, the ThT fluorescence curve ofSup35NM-4, and -5 revealed a distinct decrease in conversion kinetics with aprolonged lag time of nearly 3~5 hours. The results showed that the aggregation rateof Sup35NM-4, -5 is much slower than the others. As monomeric form of wtSup35NM and its variants decreased, insoluble polymers increased gradually asmonitored by SDS-PAGE and Western blot. After the fibers were heated in boiledwater bath, ThT fluorescence intensity decreased significantly and monomers of allsamples reappeared in SDS-PAGE. The results indicated that the randomized priondomains polymerized into amyloid in vitro under native conditions, however, theaggregating speed of these variants is somewhat different. Moreover, the assembledand ordered filaments retain all the morphological, structural and biochemicalproperties reported for ex vivo Sup35p aggregate. In conclusion, the specific sequencefeatures can modulate the rate of conversion of Sup35p into amyloid in vitro, thoughit is dispensable to the ability of amyloid formation.
     2. Cross-seeding of wt Sup35NM and its variants
     It has been reported that Rnql, polyQ aggregates facilitated [PSI] appearance invivo, and Rnql, polyQ fibers enhance the in vitro formation of fibers formed bySup35NM. To explore the role of the heterologous Q/N-rich aggregates in fiberformation, we studied the reciprocal effect of wt Sup35NM and its variants onconformation conversion. The results showed that the rates of Sup35NM-1, -4, and -5conversion were increased when sonicated wt Sup35NM fibers were added, and viceversa. In addition, the other Q/N-rich amyloid, Ure2p, weakly augmented fiberformation of wt Sup35NM and its variants. Heterologous amyloid is much lesssufficient than its own conversion. On the contrary, non-Q/N-rich amyloid, α-synuclein did not seed conversion of wt Sup35NM and its variants. The resultssuggested that heterologous Q/N-rich amyloids promote the conversion of similarQ/N-rich domain.
     3. Toxicity of the amyloid aggregates formed by wt Sup35NM and its variants tomammalian cells
     A number of data have confirmed that pre-fibrillar aggregates of proteins are toxicto cells. It has not been clarified whether the aggregates of Sup35p are still toxic tomammalian cells. In the initial of this study, incubation of wt Sup35NM and itsvariants (64μmol/L) for 0.5~1h at room temperature or 2d~4d at 4℃, led to theformation of early aggregates and mature fibers, respectively. Then, Vero, NIH-3T3,and SH-SY5Y cells were incubated in the aliquots of solutions containing differentmorphological types of aggregates with 5, 10, 15μmol/L final concentrations for 24h.The results revealed that cells exposed to early aggregates of wt Sup35NM and itsvariants displayed significantly reduced viability with the increase of aggregatesconcentrations, whereas mature fibrils are harmless. These results are similar to thatof other proteins reported previously, implying that the cytotoxicity isstructure-dependent. However, the cell types exposed to early aggregates alsodisplayed variable susceptibility to damage. Vero, NIH-3T3 cells are susceptible,while SH-SY5Y cells are resistant, indicating that the cytotoxicity is archived in aspecific way. Moreover, another phenomenon was notable that when Vero, NIH-3T3cells were incubated with wt Sup35NM and its variants fibers after heating in boiledwater bath for 20min, these cells expressed the similar damage just as the earlyaggregates, suggesting the structure similarity between the deaggregated maturefibrils after heating and the early aggregates.
引文
1 Koo EH, Lansbury PT Jr, Kelly JW. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A, 1999, 96: 9989-9990
    2 Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol, 1996,6: 11-17
    3 Kisilevsky R, and Fraser PE. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit Rev Biochem Mol Biol, 1997, 32: 361-404
    4 Sipe JD, and Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000, 130: 88-98
    5 Colon W, and Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry, 1992, 31: 8654-60
    6 Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A, 1998 Apr 14;95(8):4224-8
    7 Gross M, Wilkins DK, Pitkeathly MC, Chung EW, Higham C, Clark A, Dobson CM. Formation of amyloid fibrils by peptides derived from the bacterial cold shock protein CspB. Protein Sci, 1999,8:1350-1357
    8 Pertinhez TA, Bouchard M, Tomlinson EJ, Wain R, Ferguson SJ, Dobson CM, Smith LJ. Amyloid fibril formation by a helical cytochrome. FEBS Lett, 2001,495: 184-186
    9 Fandrich M, Fletcher MA, Dobson CM. Amyloid fibrils from muscle myoglobin. Nature, 2001,410: 165-166
    10 Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science, 1994, 264: 566-569
    11 Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J, 1995, 14:4365-4373
    12 Zhouravleva G, Frolova L, Le Goff X, Le Guellec R, Inge-Vechtomov S, Kisselev L, Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J, 1995, 14: 4065-4072
    13 Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J, 1996, 15: 3127-3134
    14 Serio TR, Lindquist SL. Protein-only inheritance in yeast: something to get [PSI+]-ched about. Trends Cell Biol, 2000, 10: 98-105
    15 Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol, 1993, 7: 683-692
    16 Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interaction between yeast Sup45p (eRFl) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation.Mol Cell Biol, 1997, 17: 2798-2805
    17 Doel SM, McCready SJ, Nierras CR, Cox BS. The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics, 1994, 137: 659-670
    18 Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics, 1994, 137: 671-6
    19 DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell, 1998, 93: 1241-1252
    20 Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of[PIN(+)]. Cell, 2001, 106: 171-82
    21 Sondheimer N, and Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell, 2000, 5: 163-172
    22 Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc Natl Acad Sci U S A, 2005, 102: 12825-12830
    23 Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell, 1997,89:811-819
    24 Spiess E, Zimmerman HP, and Lunsdorf H. (1987). In Electron Microscopy in Molecular Biology: A Practical Approach, J Sommerville and U Scheer, eds. (Oxford: IRL Press Ltd.), PP. 147-166
    25 King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci U S A, 1997,94:6618-6622
    26 Naiki H, Higuchi K, Matsushima K, Shimada A, Chen WH, Hosokawa M, Takeda T. Fluorometric examination of tissue amyloid fibrils in murine senile amyloidosis: use of the fluorescent indicator, thioflavine T. Lab Invest, 1990, 62: 768-773
    27 Nielsen L, Khurana R, Coats A, Frokjaer S, Brange J, Vyas S, Uversky VN, Fink AL. Effect of environmental factors on the kinetics of insulin fibril formation: elucidation of the molecular mechanism. Biochemistry, 2001, 40: 6036-6046
    28 Chen CY, Rojanatavorn K, Clark AC, Shih JC. Characterization and enzymatic degradation of Sup35NM, a yeast prion-like protein. Protein Sci, 2005, 14: 2228-2235
    29 Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science, 1995, 268: 880-884
    30 Dobson CM. Protein misfolding, evolution and disease. Trends Biochem Sci, 1999, 24: 329-332
    31 Perutz MF. Polar zippers: their role in human disease. Pharm Acta Helv, 1995, 69: 213-224
    32 Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci U S A, 1994, 91: 5355-5358
    33 Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ. Synthetic peptide homologous to beta protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci U S A, 1987, 84: 6953-6957
    34 Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science, 1995, 270: 93-95
    35 Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics, 1997, 147: 507-519
    36 Pierce MM, Baxa U, Steven AC, Bax A, Wickner RB. Is the prion domain of soluble Ure2p unstructured? Biochemistry, 2005, 44: 321-8
    37 Scheibel T, and Lindquist SL. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat Struct Biol, 2001, 8: 958-62
    38 Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics, 1996, 144: 1375-86
    39 Kochneva-Pervukhova NV, Paushkin SV, Kushnirov VV, Cox BS, Tuite MF, Ter-Avanesyan MD. Mechanism of inhibition of Psi+ prion determinant propagation by a mutation of the N-terminus of the yeast Sup35 protein. EMBO J, 1998, 17: 5805-5810
    40 Liu JJ, Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature, 1999,400:573-6
    41 Prusiner SB, and Scott MR. Genetics of prions. Annu Rev Genet, 1997, 31: 139-75
    42 Chiesa R, Piccardo P, Ghetti B, Harris DA. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron, 1998, 21: 1339-51
    43 Parham SN, Resende CG, Tuite MF. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J, 2001, 20: 2111-2119
    44 Perutz MF. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochem Sci, 1999,24:58-63
    45 Ross CA, Margolis RL, Becher MW, Wood JD, Engelender S, Cooper JK, Sharp AH. Pathogenesis of neurodegenerative diseases associated with expanded glutamine repeats: new answers, new questions. Prog Brain Res, 1998, 117: 397-419
    46 Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell, 2001, 106: 183-94
    47 Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, Taddei N, Ramponi G, Dobson CM, Stefani M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature, 2002,416: 507-511
    48 Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem, 2002, 277: 32046-32053
    49 Moussa CE, Wersinger C, Tomita Y, Sidhu A. Differential cytotoxicity of human wild type and mutant alpha-synuclein in human neuroblastoma SH-SY5Y cells in the presence of dopamine. Biochemistry, 2004, 43: 5539-5550
    50 Krishnan R, and Lindquist SL. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature, 2005, 435: 765-772
    51 Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW. Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro. Proc Natl Acad Sci U S A, 2004, 101: 12934-9
    52 McKeith IG, Perry EK, Perry RH. Report of the second dementia with Lewy body international workshop: diagnosis and treatment. Consortium on Dementia with Lewy Bodies. Neurology, 1999, 53: 902-905
    53 Schwimmer C, and Masison DC. Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssalp but not by Ssa2p. Mol Cell Biol, 2002, 22:3590-8
    54 Bradley ME, Edskes HK, Hong JY, Wickner RB, Liebman SW. Interactions among prions and prion "strains" in yeast. Proc Natl Acad Sci U S A, 2002, 99 Suppl 4: 16392-16399
    55 Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A, 2000, 97:571-576
    56 Bhatia R, Lin H, Lal R. Fresh and globular amyloid beta protein (1-42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. FASEB J, 2000, 14: 1233-1243
    57 Sousa MM, Cardoso I, Fernandes R, Guimaraes A, Saraiva MJ. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol, 2001, 159: 1993-2000
    58 Kagan BL, Azimov R, Azimova R. Amyloid peptide channels. J Membr Biol, 2004, 202: 1-10
    59 Orrenius S, Zhivotovsky B, and Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003, 4: 552-565
    60 Kawahara M, Kuroda Y, Arispe N, Rojas E. Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line. J Biol Chem, 2000, 275: 14077-14083
    61 Kanski J, Varadarajan S, Aksenova M, Butterfield DA. Role of glycine-33 and methionine-35 in Alzheimer's amyloid beta-peptide 1-42-associated oxidative stress and neurotoxicity. Biochim Biophys Acta, 2002, 1586: 190-8
    62 Milhavet O, and Lehmann S. Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res Brain Res Rev, 2002, 38: 328-339
    63 Squier TC. Oxidative stress and protein aggregation during biological aging. Exp Gerontol, 2001,36: 1539-1550
    64 Kourie JI. Mechanisms of amyloid beta protein-induced modification in ion transport systems: implications for neurodegenerative diseases. Cell Mol Neurobiol, 2001, 21: 173-213
    65 Guentchev M, Voigtlander T, Haberler C, Groschup MH, Budka H. Evidence for oxidative stress in experimental prion disease. Neurobiol Dis, 2000, 7: 270-3
    66 Bucciantini M, Calloni G, Chiti F, Formigli L, Nosi D, Dobson CM, Stefani M. Prefibrillar amyloid protein aggregates share common features of cytotoxicity. J Biol Chem. 2004, 279: 31374-31382
    67 Arispe N, Doh M. Plasma membrane cholesterol controls the cytotoxicity of Alzheimer's disease AbetaP( 1-40) and (1-42) peptides. FASEB J, 2002, 16: 1526-1536
    68 Cecchi C, Baglioni S, Fiorillo C, Pensalfini A, Liguri G, Nosi D, Rigacci S, Bucciantini M, Stefani M. Insights into the molecular basis of the differing susceptibility of varying cell types to the toxicity of amyloid aggregates. J Cell Sci, 2005, 118: 3459-3470
    69 Giasson BI, Lee VM, Trojanowski JQ. Interactions of amyloidogenic proteins. Neuromolecular Med, 2003, 4:49-58
    70 Kayed R, Head E, Thompson JL, Mclntire TM, Milton SC, Cotman CW, Glabe CG. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300:486-489
    71 Guijarro JI, Sunde M, Jones JA, Campbell ID, Dobson CM. Amyloid fibril formation by an SH3 domain. Proc Natl Acad Sci U S A, 1998, 95:4224-8
    72 Litvinovich SV, Brew SA, Aota S, Akiyama SK, Haudenschild C, Ingham KC. Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type Ⅲ module. J Mol Biol, 1998, 280:245-58
    73 Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging, 1995, 16:285-98
    74 Bychkova VE, Pain RH, Ptitsyn OB. The 'molten globule' state is involved in the translocation of proteins across membranes? FEBS Lett, 1988, 238:231-4
    75 Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol, 2003, 4:552-565
    76 Squier TC. Oxidative stress and protein aggregation during biological aging. Exp Gerontol, 2001, 36: 1539-1550
    77 Malisauskas M, Ostman J, Darinskas A, Zamotin V, Liutkevicius E, Lundgren E, Morozova-Roche LA. Does the cytotoxic effect of transient amyloid oligomers from common equine lysozyme in vitro imply innate amyloid toxicity? J Biol Chem, 2005, 280:6269-75
    78 魏海燕.酵母朊蛋白Sup35NM体外淀粉样纤维形成与解聚的动力学及其细胞毒性研究.博士学位论文.济南:山东大学医学院,2006
    1 Will RG, Ironside JW, Zeidler M, Cousens SN, Estibeiro K, Alperovitch A, Poser S, Pocchiari M, Hofman A, Smith PG. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet, 1996, 347: 921-925
    2 Gajdusek DC. Genetic control of nucleation and polymerization of host precursors to infectious amyloids in the transmissible amyloidoses of brain. Br Med Bull, 1993, 49: 913-31
    3 Prusiner SB. Prions. Proc Natl Acad Sci U S A, 1998, 95: 13363-83
    4 Griffith JS. Self-replication and scrapie. Nature, 1967, 215: 1043-1044
    5 Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science. 1982, 216:136-44
    6 Prusiner SB. The prion diseases. Brain Pathol, 1998, 8: 499-513
    7 Legname G, Baskakov IV, Nguyen HO, Riesner D, Cohen FE, DeArmond SJ, Prusiner SB. Synthetic mammalian prions. Science, 2004, 305: 673-6
    8 Castilla J, Saa P, Hetz C, Soto C. In vitro generation of infectious scrapie prions. Cell, 2005, 121: 195-206
    9 Riesner D. Biochemistry and structure of PrP(C) and PrP(Sc). Br Med Bull, 2003, 66: 21-33
    10 Tobler I, Gaus SE, Deboer T, Achermann P, Fischer M, Rulicke T, Moser M, Oesch B, McBride PA, Manson JC. Altered circadian activity rhythms and sleep in mice devoid of prion protein. Nature, 1996,380:639-642
    11 Collinge J, Whittington MA, Sidle KC, Smith CJ, Palmer MS, Clarke AR, Jefferys JG. Prion protein is necessary for normal synaptic function. Nature, 1994, 370: 295-297
    12 Mallucci GR, Ratte S, Asante EA, Linehan J, Gowland I, Jefferys JG, Collinge J. Post-natal knockout of prion protein alters hippocampal CA1 properties, but does not result in neurodegeneration. EMBO J, 2002, 21: 202-210
    13 Kretzschmar HA, Tings T, Madlung A, Giese A, Herms J. Function of PrP(C) as a copper-binding protein at the synapse. Arch Virol Suppl, 2000, 16: 239-249
    14 Pauly PC, Harris DA. Copper stimulates endocytosis of the prion protein. J Biol Chem, 1998, 273:33107-10
    15 Brown DR, Besinger A. Prion protein expression and superoxide dismutase activity. Biochem J, 1998,334:423-9
    16 Meggio F, Negro A, Sarno S, Ruzzene M, Bertoli A, Sorgato MC, Pinna LA. Bovine prion protein as a modulator of protein kinase CK2. Biochem J, 2000, 352 : 191-6
    17 Kurschner C, Morgan JI. The cellular prion protein (PrP) selectively binds to Bcl-2 in the yeast two-hybrid system. Brain Res Mol Brain Res, 1995, 30: 165-8
    18 Kurschner C, Morgan JI. Analysis of interaction sites in homo- and heteromeric complexes containing Bcl-2 family members and the cellular prion protein. Brain Res Mol Brain Res, 1996, 37:249-58
    19 Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR. Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J, 2002, 21: 3307-16
    20 Gauczynski S, Peyrin JM, Haik S, Leucht C, Hundt C, Rieger R, Krasemann S, Deslys JP, Dormont D, Lasmezas CI, Weiss S. The 37-kDa/67-kDa laminin receptor acts as the cell-surface receptor for the cellular prion protein. EMBO J, 2001, 20: 5863-75
    21 Kristensson K, Feuerstein B, Taraboulos A, Hyun WC, Prusiner SB, DeArmond SJ. Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology, 1993, 43: 2335-41
    22 Cohen FE, Prusiner SB. Pathologic conformations of prion proteins. Annu Rev Biochem, 1998; 67:793-819
    23 Come JH, Fraser PE, Lansbury PT Jr. A kinetic model for amyloid formation in the prion diseases: importance of seeding. Proc Natl Acad Sci U S A, 1993, 90: 5959-63
    24 McBride PA, Eikelenboom P, Kraal G, Fraser H, Bruce ME. PrP protein is associated with follicular dendritic cells of spleens and lymph nodes in uninfected and scrapie-infected mice. J Pathol, 1992, 168:413-8
    25 Wadsworth JD, Joiner S, Hill AF, Campbell TA, Desbruslais M, Luthert PJ, Collinge J. Tissue distribution of protease resistant prion protein in variant Creutzfeldt-Jakob disease using a highly sensitive immunoblotting assay. Lancet, 2001, 358: 171-80
    26 Bencsik A, Lezmi S, Baron T. Autonomic nervous system innervation of lymphoid territories in spleen: a possible involvement of noradrenergic neurons for prion neuroinvasion in natural scrapie. J Neurovirol, 2001,7:447-53
    27 Glatzel M, Heppner FL, Albers KM, Aguzzi A. Sympathetic innervation of lymphoreticular organs is rate limiting for prion neuroinvasion. Neuron, 2001, 31: 25-34
    28 Beekes M, Baldauf E, Diringer H. Sequential appearance and accumulation of pathognomonic markers in the central nervous system of hamsters orally infected with scrapie. J Gen Virol, 1996, 77: 1925-34
    29 Houston F, Foster JD, Chong A, Hunter N, Bostock CJ. Transmission of BSE by blood transfusion in sheep. Lancet, 2000, 356: 999-1000
    30 Hunter N, Foster J, Chong A, McCutcheon S, Parnham D, Eaton S, MacKenzie C, Houston F. Transmission of prion diseases by blood transfusion. J Gen Virol, 2002, 83: 2897-905
    31 Llewelyn CA, Hewitt PE, Knight RS, Amar K, Cousens S, Mackenzie J, Will RG. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet, 2004, 363: 417-21
    32 Wicker RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science, 1994, 566-569
    33 Wickner RB, Edskes HK, Ross ED, Pierce MM, Baxa U, Brachmann A, Shewmaker F. Prion genetics: new rules for a new kind of gene. Annu Rev Genet, 2004, 38: 681-707
    34 Lacroute F. Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol, 1971, 106:519-522
    35 Cooper TG. (1982) Nitrogen metabolism in Saccharomyces cerevisiae, in Strathern, J. N., Jones, E. W., and Broach, J. R. (Eds.). The Molecular Biology of the yeast Saccharomyces: Metabolism and gene expression, Vol. 2, pp. 39-99, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
    36 Wickner RB, Taylor KL, Edskes HK, Maddelein ML, Moriyama H, Roberts BT. Prions of yeast as heritable amyloidoses. J Struct Biol, 2000, 130: 310-322
    37 Drillien R, Lacrote F. Ureidosuccinic acid uptake in yeast and some aspects of its regulation. J Bacteriol, 1972, 109: 203-208
    38 Coschigano PW, Magasanik B. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases. Mol Cell Biol, 1991, 11: 822-832
    39 Masison DC, Maddelein ML, Wickner RB. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc Natl Acad Sci U S A, 1997, 94: 12503-12508
    40 Masison DC, and Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science, 1995, 270: 93-95
    41 Maddelein ML, and Wickner RB. Two prion-inducing regions of Ure2p are nonoverlapping. Mol Cell Biol, 1999, 19: 4516-4524
    42 Taylor KL, Cheng N, Williams RW, Steven AC, Wickner RB. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science, 1999, 283: 1339-1343
    43 Baxa U, Taylor KL, Wall JS, Simon MN, Cheng N, Wickner RB, Steven AC. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J Biol Chem, 2003, 278: 43717-43727
    44 Bousset L, Thomson NH, Radford SE, Melki R. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J, 2002, 21: 2903-2911
    45 Zhu L, Zhang XJ, Wang LY, Zhou JM, Perrett S. Relationship between stability of folding intermediates and amyloid formation for the yeast prion Ure2p: a quantitative analysis of the effects of pH and buffer system. J Mol Biol, 2003, 328: 235-254
    46 Thual C, Komar AA, Bousset L, Fernandez-Bellot E, Cullin C, Melki R. Structural characterization of Saccharomyces cerevisiae prion-like protein Ure2. J Biol Chem, 1999, 274: 13666-13674
    47 Jarrett JT, and Lansbury PT Jr. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell, 1993, 73: 1055-1058
    48 Kelly JW. Mechanisms of amyloidogenesis. Nat Struct Biol, 2000, 7: 824-826
    49 Cox B. [PS1], a cytoplasmic suppressor of super-suppression in yeast. Heredity, 1965, 20: 505-521
    50 Waldron C, Cox BS, Wills N, Gesteland RF, Piper PW, Colby D, Guthrie C. Yeast ochre suppressor SUQ5-ol is an altered tRNA Ser UCA. Nucleic Acids Res, 1981, 9: 3077-3088
    51 Crouzet M, and Tuite MR Genetic control of translational fidelity in yeast: molecular cloning and analysis of the allosuppressor gene SAL3. Mol Gen Genet, 1987, 210: 581-583
    52 Stansfield I, Jones KM, Kushnirov VV, Dagkesamanskaya AR, Poznyakovski AI, Paushkin SV, Nierras CR, Cox BS, Ter-Avanesyan MD, Tuite MF. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J, 1995, 14: 4365-4373
    53 Paushkin SV, Kushnirov VV, Smirnov VN, and Ter-Avanesyan MD. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J, 1996, 15: 3127-3134
    54 Cox BS, Tuite MR and McLaughlin CS. The psi factor of yeast: a problem in inheritance. Yeast, 1988,4: 159-178
    55 Lund PM, and Cox BS. Reversion analysis of [psi-] mutations in Saccharomyces cerevisiae. Genet Res, 1981,37: 173-182
    56 Singh A, Helms C, Sherman R Mutation of the non-Mendelian suppressor, Psi, in yeast by hypertonic media. Proc Natl Acad Sci U S A , 1979, 76: 1952-1956
    57 Tuite MF, Mundy CR, Cox BS. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics, 1981, 98: 691-711
    58 Chernoff YO, Derkach IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr Genet, 1993, 24: 268-270
    59 Chernoff Y, Derkatch I, Dagkesamanskaya A, Tikhomironva V, Ter-Avanesyan M, Inge-Vechtomov S. 1988, Nonsense-suppression by amplification of translational protein factor gene. Dokl Akad SSSR, 301: 1227-1229
    60 Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of [psi] prion factors in Saccharomyces cerevisiae. Genetics, 1996, 144: 1375-1386
    61 Doel SM, McCready SJ, Nierras CR, Cox BS. The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics, 1994, 137: 659-670
    62 Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics, 1994, 137: 671-676
    63 Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol, 1997, 17: 2798-2805
    64 Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol, 1993, 7: 683-692
    65 DePace AH, Santoso A, Hillner P, Weissman JS. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell, 1998, 93: 1241-1252
    66 Liu JJ, Lindquist S. Oligopeptide-repeat expansions modulate 'protein-only' inheritance in yeast. Nature, 1999, 400: 573-576
    67 King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wuthrich K. Prion-inducing domain 2-114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci U S A, 1997,94:6618-6622
    68 Glover JR, Kowal AS, Schirmer EC, Patino MM, Liu JJ, Lindquist S. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell, 1997,89:811-819
    69 Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics, 1997,147:507-519
    70 Derkatch IL, Bradley ME, Masse SV, Zadorsky SP, Polozkov GV, Inge-Vechtomov SG, Liebman SW. Dependence and independence of [PSI(+)] and [PIN(+)]: a two-prion system in yeast? EMBO J, 2000, 19: 1942-1952
    71 Sondheimer N, Lindquist S. Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell, 2000,5: 163-172
    72 Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of[PIN(+)]. Cell, 2001, 106: 171-182
    73 Saupe SJ, Clave C, Begueret J. Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol, 2000, 3: 608-612
    74 Beisson J, Sonneborn TM. Cytoplasmic inheritance the organization of the cell cortex in Paramecium aurelia. Proc Natl Acad Sci U S A, 1965, 53: 275-82
    75 Turcq B, Denayrolles M, Begueret J. Isolation of two alleles incompatibility genes s and S of the fungus Podospora anserine. Curr Genet, 1990, 17: 297-303
    76 RIZET G. Impossibility of obtaining uninterrupted and unlimited multiplication of the ascomycete Podospora anserina. C R Hebd Seances Acad Sci, 1953, 237: 838-40
    77 Coustou V, Deleu C, Saupe S, Begueret J. The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proc Natl Acad Sci U S A, 1997, 94: 9773-9778
    78 Coustou-Linares V, Maddelein ML, Begueret J, Saupe SJ. In vivo aggregation of the HET-s prion protein of the fungus Podospora anserina. Mol Microbiol, 2001, 42: 1325-1335
    79 Dos Reis S, Coulary-Salin B, Forge V, Lascu I, Begueret J, Saupe SJ. The HET-s prion protein of the filamentous fungus Podospora anserina aggregates in vitro into amyloid-like fibrils. J Biol Chem, 2002, 277: 5703-5706
    80 Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Coulary-Salin B, Forge V, Bathany K, Lascu I, Schmitter JM, Riek R, Saupe SJ. Domain organization and structure-function relationship of the HET-s prion protein of Podospora anserina. EMBO J, 2003, 22: 2071-2081
    81 Maddelein ML, Dos Reis S, Duvezin-Caubet S, Coulary-Salin B, Saupe SJ. Amyloid aggregates of the HET-s prion protein are infectious. Proc Natl Acad Sci U S A, 2002, 99: 7402-7407
    82 Deleu C, Clave C, Begueret J. A single amino acid difference is sufficient to elicit vegetative incompatibility in the fungus Podospora anserina. Genetics, 1993, 135: 45-52
    83 Coustou V, Deleu C, Saupe SJ, Begueret J. Mutational analysis of the [Het-s] prion analog of Podospora anserina. A short N-terminal peptide allows prion propagation. Genetics, 1999, 153: 1629-1640
    84 Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science, 1995, 268: 880-884
    85 Chernoff YO, Ono B-I. Dosage-dependent modifiers of PSI-dependent omnipotent suppression in yeast. In protein Synthesis and Targeting in yeast, ed. AJP Brown, MF Tuite, JEG McMcarthy, pp. 101-7. Berlin: Springer-Verlag
    86 Lindquist S, Schirmer EC. The role of Hsp104 in stress tolerance and prion maintenance. In Molecular chaperones and Folding Catalysts. Regulation, Cellular Function and Mechanisms, ed. B Bukau, pp. 347-80. Amsterdam: Harwood Acad.
    87 Patino MM, Liu JJ, Glover JR, Lindquist S. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science, 1996, 273: 622-626
    88 Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 2000, 289: 1317-1321
    89 Kushnirov VV, Ter-Avanesyan MD. Structure and replication of yeast prions. Cell, 1998, 94: 13-6
    90 Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol Microbiol, 2001, 40: 1357-1369
    91 Jung G, Masison DC. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol, 2001, 43: 7-10
    92 Jung G, Jones G, Masison DC. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc Natl Acad Sci U S A, 2002,99:9936-99341
    93 Craig EA, and Jacobsen K. Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell, 1984, 38: 841-9
    94 Stone DE, and Craig EA. Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol, 1990, 10: 1622-1632
    95 Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol Cell Biol, 1999, 19: 1325-1333
    96 Schwimmer C, Masison DC. Antagonistic interactions between yeast [PSI(+)] and [URE3] prions and curing of [URE3] by Hsp70 protein chaperone Ssalp but not by Ssa2p. Mol Cell Biol, 2002, 22: 3590-8
    97 Nelson RJ, Ziegelhoffer T, Nicolet C, Werner-Washburne M, Craig EA. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell, 1992, 71: 97-105
    98 Pfund C, Lopez-Hoyo N, Ziegelhoffer T, Schilke BA, Lopez-Buesa P, Walter WA, Wiedmann M, Craig EA. The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome-nascent chain complex. EMBO J, 1998, 17: 3981-9
    99 Ohba M. Modulation of intracellular protein degradation by SSB1-SIS1 chaperon system in yeast S. cerevisiae. FEBS Lett, 1997, 409: 307-11
    100 Chernoff YO, Newnam GP, Kumar J, Allen K, Zink AD. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone ssb in formation, stability, and toxicity of the [PSI] prion. Mol Cell Biol, 1999, 19: 8103-8112
    101 Fernandez-Bellot E, and Cullin C. The protein-only theory and the yeast Saccharomyces cerevisiae: the prions and the propagons. Cell Mol Life Sci, 2001, 58: 1857-1878
    102 Talloczy Z, Mazar R, Georgopoulos DE, Ramos F, Leibowitz MJ. The [KIL-d] element specifically regulates viral gene expression in yeast. Genetics, 2000, 155: 601-609
    103 Talloczy Z, Menon S, Neigeborn L, Leibowitz MJ. The [KIL-d] cytoplasmic genetic element of yeast results in epigenetic regulation of viral M double-stranded RNA gene expression. Genetics, 1998, 150:21-30
    104 Wickner RB. Mutants of the killer plasmid of Saccharomyces cerevisiae dependent on chromosomal diploidy for expression and maintenance. Genetics, 1976, 82: 273-85
    105 Silar P, Haedens V, Rossignol M, Lalucque H. Propagation of a novel cytoplasmic, infectious and deleterious determinant is controlled by translational accuracy in Podospora anserina. Genetics, 1999, 151:87-95
    106 Belcour L. Cytoplasmic mutations isolated from protoplasts of Podospora anserina. Genet Res, 1975,25:155-61
    107 Tuite MF, Mundy CR, Cox BS. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics, 1981, 98: 691-711
    108 Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN. Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics, 2002, 160: 25-36
    109 Ball AJ, Wong DK, Elliott JJ. Glucosamine resistance in yeast. I. A preliminary genetic analysis. Genetics, 1976, 84: 311-7
    110 Elliot JJ, Ball AJ. A new mitochondrial mutation in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 1975, 64: 277-81
    111 Kunz BA, Ball AJ. Glucosamine resistance in yeast. II. Cytoplasmic determinants conferring resistance. Mol Gen Genet, 1977, 153: 169-77
    112 Sondheimer N. 2000. The identification of novel prion elements in Saccharomyces cerevisiae. PhD thesis. Univ. Chicago. 138 pp.
    113 Li FN, Johnston M. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J, 1997, 16: 5629-5638
    114 Yao B, Sollitti P, Zhang X, Marmur J. Shared control of maltose induction and catabolite repression of the MAL structural genes in Saccharomyces. Mol Gen Genet, 1994, 243: 622-630
    115 Santoso A, Chien P, Osherovich LZ, Weissman JS. Molecular basis of a yeast prion species barrier. Cell, 2000, 100: 277-288
    116 Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell, 2001, 106: 183-194
    117 Osherovich LZ, Weissman JS. The utility of prions. Dev Cell, 2002, 2: 143-151
    118 Michelitsch MD, Weissman JS. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci U S A, 2000, 97: 11910-11915