朊蛋白病与白细胞介素-6、白细胞介素-8
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
朊蛋白病(Prion diseases)即可传播性海绵状脑病(Transmissible spongiform encephalopathies,TSEs),是一类侵袭人类及多种动物中枢神经系统的退行性脑病,潜伏期长,致死率100%。克雅氏病(Creutzfeldt-Jakob disease,CJD)是人类最常见的朊蛋白病之一。朊蛋白病的病因主要是在人或动物脑组织内有大量异常的朊蛋白(PrP)沉积而致神经细胞死亡。其发病机制尚不清楚,目前认为由于脑内异常PrP的沉积导致胶质细胞活化是神经细胞死亡的主要原因,其中活化的小胶质细胞释放的细胞因子在神经元变性、死亡的过程中起着重要作用。本文通过对CJD患者脑脊液及PrP105-132对体外小胶质细胞和体外大脑皮质细胞作用的研究发现:CJD患者脑脊液中白细胞介素-6(IL-6)、白细胞介素-8(IL-8)含量明显升高;并且PrP能够诱导体外小胶质细胞分泌IL-6、IL-8,且具有剂量依赖关系,PrP诱导体外小胶质细胞分泌IL-6可能通过NF-κB和NFAT途径,PrP诱导体外小胶质细胞分泌IL-8可能通过NF-κB途径;PrP对体外大脑皮质细胞有毒性作用、可引起神经细胞凋亡,当与IL-6、IL-8共同作用时,毒性作用增强、神经细胞凋亡增多。这些结果说明小胶质细胞分泌的IL-6和IL-8在朊蛋白病的致病过程中起着重要的作用。对小胶质细胞及细胞因子的深入研究将有利于揭示朊蛋白病的致病机制,有助于疾病的预防及治疗。
Prion diseases (Transmissible spongiform encephalopathies, TSEs) are invariably fatal neurodegenerative disorders involved in human and animals. Creutzfeldt-Jakob disease (CJD) is the most common form of human prion protein diseases. The neuropathology of prion disease is characterized by spongiform degeneration of the brain, neuronal loss, reactive increased number of glial and glial activitation. A key event in prion disease pathogenesis is the accumulation of conformationally changed prion protein (PrPSc) in the brain, resulting in neuronal loss. The mechanisms of neuronal loss during the prion disease are not fully understood. Studies show that gial activation precedes neuronal loss. And the cytokines secreted by activated microglia play an important role in the neurodegeneration and neuronal loss. This study investigated the effect of cytokines interleukin (IL) -6 and IL-8 in the prion disease used with CJD patients cerebrospinal fluid (CSF), rat microglia culture and primary cortical neuron culture exposed to PrP105-132 in vitro.
     Firstly, cytokines (IL-6, IL-8) levels in CSF were measured in commercial enzyme immunoassay (ELISA). The results showed that IL-6 level (37.11±6.86 pg/mL) in CJD patients CSF was significantly higher than it (26.27±3.83 pg/ mL) in normal people. But IL-6 level in CJD patients CSF was significantly lower than it (43.70±14.75 pg/mL) in encephalitis patients CSF. IL-8 level (174.13±80.99 pg/mL) in CJD patients CSF was significantly higher than it (62.80±38.34 pg/mL) in normal people. But IL-8 level in CJD patients CSF was significantly lower than it (264.79±126.24 pg/mL) in encephalitis patients CSF. These suggested that IL-6, IL-8 play important roles in the prion disease.
     Secondly, we used rat microglia culture exposed to PrP105-132 in vitro to investigate the resource of IL-6 and IL-8. The results showed that the microglia exposed to PrP105-132 in vitro had some changes: cell body became bigger, protoplasmic processes became shorter or disappeared, cell became round, rod and amebiform. A dose-dependent increase in IL-6 as well as IL-8 secretion by the PrP105-132 exposed rat microglia was obtained. At a concentration of 80 M the secretion of IL-6 (109.64±7.40 pg/mL), IL-8 (23.82±2.25 pg/mL) were the most. The NF-κB mRNA expression and NF-κB protein synthesis increased in the group treated with PrP105-132. At the same time the secretion of IL-6 and IL-8 increased. In the group treated with NF-κB inhibitor MG132 the NF-κB mRNA expression, NF-κB protein synthesis and the secretion of IL-6, IL-8 decreased. The NFAT mRNA expression and NFAT protein synthesis increased in the group treated with PrP105- 132. At the same time the secretion of IL-6 and IL-8 increased. In the group treated with NFAT inhibitor CsA the NFAT mRNA expression, NFAT protein synthesis and the secretion of IL-6 decreased, but the secretion of IL-8 didn’t decreased significantly. These suggest that PrP may induce microglia secret IL-6 and IL-8. The activation of NF-κB and NFAT pathway are involved in the IL-6 secretion, but the activation of NF-κB pathway is involved in the IL-8 secretion.
     Lastly, we used the rat primary cortical neuron culture exposed to PrP105-132 in vitro to investigate the effects of prion protein and IL-6, IL-8 on neuron. The cell viability or death was determined by using the MTT assay. Flow cytometry was used for detecting the apoptosis of cells. The results showed that the neuronal viability decreased 13.57% and the percent of apoptotic cell was 5.50±0.56% in the group treated with PrP105-132. The cell apoptosis rate (15.52±1.58%) and motality (20.70%) in the group treated with PrP105-132+IL-6, IL-8 were both significantly higher than them in the group treated with PrP105-132. But the cell apoptosis rate and mortality in the group treated with IL-6, IL-8 had no differences with the control group significantly. These suggest that PrP105-132 has the toxic effects on primary cortical neuron culture, can result in cell apoptosis. IL-6, IL-8 may enchance this neurotoxic effects of PrP105-132.
引文
[1] Prusiner, SB. Novel proteinaceous infectious particles cause scrapie. Science, 1982, 216(4542):136-144.
    [2] Alper T, Cramp WA, Haig D A, et al. Does the agent of scrapie replicate without nucleic acid? Nature, 1967,214(90):764-766.
    [3] Prusiner SB, Groth DF, Cochran SP, et al. Molecular properties, partial purification, and assay by incubation period measurements of the hamster scrapie agent. Biochemistry, 1980,19(21):4883-4891.
    [4] Prusiner SB. Prions. Proc Natl Acad Sci USA, 1998,95(23):13363-13383.
    [5] Aguzzi A, Polymenidou M. Mammalian prion biology: one century of evolving concepts. Cell, 2004,116(2):313-327.
    [6] Caughey BW, Dong A, Bhat KS, et al. Secondary structure analysis of the scrapie-associated protein PrP27-30 in water by infrared spectroscopy. Biochemistry, 1991,30:7672-7680.
    [7] Pan K, mBaldwin M, Nguyen J, et al. Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci USA, 1993,90:10962-10966.
    [8] Pan T, Li RL, Wong BS, et al. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms. J Neurochem, 2002,81:1092-1101.
    [9] Daude N, Lehmann S, Harris DA. Identification of intermediate steps in the conversion of a mutant prion protein to a scrapie-like form in cultured cells. J BiolChem, 1997,272:11604-11612.
    [10] 江新梅, 林世和, 北本哲之, 等. 国人Creutzfeldt-Jakob病PrP基因表达变化的研究. 中国神经免疫学和神经病学杂志, 1998,5(3):134-137.
    [11] Stewart RS, Drisaldi B, Harris DA. A transmembrane form of the prion protein contains an uncleaved signal peptide and is retained in the endoplasmic reticulum. Mol Biol Cell, 2001,12:881-889.
    [12] Low MG. The glycosyl-phosphatidyl anchor of membrane proteins. Biochim Biophys Acta, 1989,988:427-454.
    [13] Borchelt DR, Rogers M, Stahl N, et al. Release of the cellular prion protein from cultured cells after loss of its glycoinositol phospholipids anchor. Glycobiology, 1993,3:319-329.
    [14] Shyng SL, Huber MT, Harris DA. A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J Biol Chem, 1993,268:15922-15928.
    [15] Horiuchi M, Yamazaki N, Ikeda T, et al. A cellular form of prion potein (PrPC) exists in many non-neuronal tissues of sheep. J Gen Virol, 1995, 76:2583-2587.
    [16] Gauczynski S, Peyrin JM, Haik S, et al. The 37-kDa/67-kDa laminin recetpor acts as the cell-surface receptor for the cellular prion protein. EMBO J, 2001,20(21):5863-5875.
    [17] Chiarini LB, Freitas AR, Zanata SM. Cellular prion protein transduces neuroprotective Sigmals. EMBO J, 2001,21(13):3317-3326.
    [18] Spielhaupter C, Schatzl HM. PrPC directly interacts with proteins involved in signaling athways. J Biol Chem, 2001,276(48):44604-44612.
    [19] Lysck DA, Wuthrich K. Prion Protein Interaction with the C-Terminal SH3 Domain of Grb2 Studied Using NMR and Optical Spectroscopy. Biochemistry, 2004,43(32):10393-10399.
    [20] Aronoff-Spencer E, Bruns CS, Acdiecich NI, et al. Identification of the Cu2+ binding sites in the N-terminal domain of the prion protein by EPR and CD spectroscopy. Biochemistry, 2000,39:13760-13771.
    [21] Srockel J, Safar J, Wallace AC, et al. Prion protein selectively binds copper (Ⅱ) ions. Biochemistry, 1998,37:7185-7193.
    [22] Bounhar Y, Zhang Y, Goodyer CG. Prion protein protects human neurons against Bax-mediated apoptosis. J Biol Chem, 2001,276(42):39145- 39149.
    [23] Roucou X, Guo Q, Zhang Y et al. Cytosolic prion protein is not toxic and protects against Bax-mediated cell death in human primary neurons. J Biol Chem, 2003,278(42):40877-40881.
    [24] Kin BH, Lee HG, Choi JK, et al. The cellular prion protein (PrPC) prevents apoptotic neuronal cell death and mitochondrial dysfunction induced by serum deprivation. Brain Res, 2004,124(1):40-50.
    [25] Solforosi L Criado JR, McGacem DB, et al. Cross-linking cellular prion protein triggers neuronal apoptosis in vivo. Science, 2004,303(5663): 1514-1516.
    [26] Paitel E, Fahraeus R, Checler F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-deendent caspase3-like activation. J Biol Chem, 2003,278(12):10061-10066.
    [27] Bamborough P, Wille H, Telling GC, et al. Prion protein structure and scrapie replication: theoretical, spectroscopic, and genetic investigations. Biol, 1996,61:495-509.
    [28] Hartl FU. Molecular chaperones in cellular protein folding. Nature, 1996, 381:571-580.
    [29] Kocisko DA, Come JH, Priola SA, et al. Cell-free formation of protease- resistant prion protein. Nature, 1994,370:471-474.
    [30] DedBurman SK, Raymond GJ, Caughey B, et al. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proc Natl Acad Sci USA, 1997,94:13938-13943.
    [31] Ben-Zaken O, Tzaban S, Tal Y, et al. Cellular heparin sulfate participates in the metabolism of prions. J Biol Chem, 2003,278:40041-40049.
    [32] Deleault NR, Lucassen RW, Supattapone. RNA molecules stimulate prion protein conversion. Nature, 2003,425:717-720.
    [33] Tobler I, Gaus SE, Deboer T, et al. Altered circadian activityrhythms and sleep in mice devoid of prion protein. Nature, 1996,380:639-642.
    [34] Welch W J, Gambetti P. Chaperoning brain diseases. Nature, 1998,392: 23-24.
    [35] Kaneko K, Zulianello L, Scott M, et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci USA, 1997,94:10069-10074.
    [36] Caramelli M, Ru G, Acutis P, et al. Prion Diseases: Current Understanding of Epidemiology and Pathogenesis, and Therapeutic Advances. CNS Drugs, 2006,20:15-28.
    [37] Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science, 2002,296:1991-1995.
    [38] Ivanova L, Barmada S, Kummer T, et al. Mutant prion proteins are partially retained in the endoplasmic reticulum. J Biol Chem, 2001,276: 42409-42421.
    [39] Lehmann S, Harris DA. Two mutant prion proteins expressed in culturedcells acquire biochemical properties reminiscent of the scrapie isoform. Proc Natl Acad Sci USA, 1996,93:5610-5614.
    [40] Edenhofer F, Rieger R, Famulok M et al. Prion protein PrPC interacts with molecular chaperones of the Hsp60 family. J Virol, 1996,70:4724- 4728.
    [41] Kenward N, Hope J, Landon M, et al. Expression of polyubiquitin and heat-shock protein 70 genes increases in the later stages of disease progression in scrapie-infected mouse brain. J Neurochem, 1994,62: 1870-1877.
    [42] Tatzelt J, Zuo J, Voellmy R, et al. Scrapie prions selectively modify the stress response in neuroblastoma cells. Proc Natl Acad Sci USA, 1995, 92:2944-2948.
    [43] Shyu WC, Chen CP, Saeki K, et al. Hypoglycemia enhances the expression of prion protein and heat-shock protein 70 in a mouse neuroblastoma cell line. J Neurosci Res, 2005,80:887-894.
    [44] Shyu WC, Harn HJ, Saeki K, et al. Molecular modulation of expression of prion protein by heat shock. Mol Neurobiol, 2002,26:1-12.
    [45] Hetz C, Russelakis-Carneiro M, Walchli S, et al. The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci, 2005, 25:2793-2802.
    [46] Huang Z, Gabriel JM, Baldwin MA, et al. Proposed three-dimensional structure for the cellular prion protein. Proc Natl Acad Sci USA, 1994, 91:7139-7143.
    [47] Kaneko K, Zulianello L, Scott M, et al. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapieprion propagation. Proc Natl Acad Sci USA, 1997,94:10069-10074.
    [48] Hachiya NS, Sakasegawa Y, Jozuka A, et al. Interaction of D-lactate dehydrogenase protein 2 (Dld2p) with F-actin: implication for an alternative function of Dld2p. Biochem Biophys Res Commun, 2004, 319:78-82.
    [49] Hachiya NS, Sakasegawa Y, Sasaki H, et al. Oligomeric Aip2p/Dld2p forms a novel grapple-like structure and has an ATP-dependent F-actin conformation modifying activity in vitro. Biochem Biophys Res Commun, 2004,320:1271-1276.
    [50] Hachiya NS, Sakasegawa Y, Sasaki H, et al. Oligomeric Aip2p/Dld2p modifies the protein conformation of both properly folded and misfolded substrates in vitro. Biochem Biophys Res Commun, 2004,323:339-344.
    [51] Brown DR. Microglia and prion disease. Microscopy Res Tech, 2001,54 (2):71-80.
    [52] Burwinkel M, Riemer C, Schwar A, et al. Role of cytokines and chemokines in prion infections of the central nervous system. Int J Dev Neurosci, 2004,22(7):497-505.
    [53] Williams A, van Dam AM, Ritchie D, et al. Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res, 1997,754(1-2):171-180.
    [54] Thackray AM, Mckenzie AN, Klein MA, et al. Accelerated prion disease in the absence of interlukin-10. J Virol, 2004,78(24):13697-13707.
    [55] Schultz J, Schwarz A, Neidhold S, et al. Role of interleukin-1 in prion disease-associated astrocyte activation. Am J Pathol, 2004,165(2):671-678.
    [56] Baker CA, Martin D, Manuelidis L. Microglia from Creutzfeldt-Jakob disease-infected brains are infectious and show specific mRNA activation profiles. J Virol, 2002,76(21):10905-10913.
    [57] van Everbroeck B, Dewulf E, Pals P, et al. The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging, 2002,23(1):59-64.
    [58] Bate C, Kempster S, Williams A. Prostaglandin D2 mediates neuronal damage by amyloid-beta or prios which activates microglial cells. Neuropharmacology, 2006,50(2):229-237.
    [59] Saas P, Boucraut J, Quiquerez AL, et al. CD95 (Fas/Apo-1) as a receptor governing astrocyte apoptotic or inflammatory responses: a key role in brain inflammation? J Immunol, 1999,162(4):2326-2333.
    [60] Gossner A, Hunter N, Hopkins J. Role of lymph-bone cells in the early stages of scrapie agent dissemination from the skin. Vet Immunol Immunopathol, 2006,109(3-4):267-278.
    [61] Wang P, Wu P, Siegel MI, et al. Interleukin (IL)-10 inhibits muclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. Biol Chem, 1995,270(16):9558-9563.
    [62] Sawada M, Suzumura A, Hosoya H, et al. Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem, 1999,72(4):1466-1471.
    [63] Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclearphagocytes. J Interferon Cytokine Res, 1999,19(6):563-573.
    [64] Bachis A, Colangelo AM, Vicini S, et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3- like activity. J Neurosci, 2001,21(9):3104-3112.
    [65] Fallon PG, Emson CL, Smith P, et al. IL-13 overexpression predisposes to anaphylaxis following antigen sensitization. J Immunol, 2001,166(4): 2712-2716.
    [66] 周伟, 栗超越, 张建国. 重组改构人 TNF-α 联合顺铂对人胶质瘤U251 细胞的生长抑制作用.郑州大学学报(医学版), 2006,41(5): 904-906.
    [67] Lu ZY, Baker CA, Manuelidis L. New molecular markers of early and progressive CJD brain infection. J Cell Biochem, 2004,93(4):644-652.
    [68] Mabbott NA, Williams A, Farquhar CF, et al. Tumor necrosis factor alpha-deficient, but not interleukin-6-deficient, mice resist peripheral infection with scrapie. J Virol, 2000,74(7):3338-3344.
    [69] Stoeck K, Bodemer M, Zerr I. Pro- and anti-inflammatory cytokines in the CSF of patients with Creutzfeldt-Jakob disease. J Neuroimmunol, 2006,172(1-2):175-181.
    [70] Nauta AJ, Bottazzi B, Mantovani A, et al. Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol, 2003,33(2):465-473.
    [71] Cuningham C, Boche D, Perry VH. Transforming growth factor betal, the dominant cytokine in murine prion disease: influence on inflammatory cytokine synthesis and alteration of vascular extracellular matrix. Neuropathol Appl Neurobiol, 2002,28(2):107-119.
    [72] Felton LM, Cunningham C, Rankine EL, et al. MCP-1 and murine prion disease: separation of early behavioural dysfunction from overt clinical disease. Neurobiol Dis, 2005,20(2):283-295.
    [73] Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci, 2001,2(10):734-744.
    [1] 洪涛. 朊毒病—传染性慢白颗粒. 精编现代医学微生物学, 上海: 复旦大学出版社, 2002:227-237.
    [2] Chakraborty C, Nandi S, Jana S. Prion disease: a deadly disease for protein misfolding. CurrPharm Biotechno, 2005,6(2):167-177.
    [3] 中国疾病预防控制中心, 全国克雅氏病 (CJD) 检测网络培训讲义 (北京), 2006:3-4.
    [4] Brown DR, Schmidt B, Kretzschmar HA. Role of microglia and host prion protein neurotoxicity of a prion protein fragment. Nature, 1996, 380:345-347.
    [5] Moresco RM, Messa C, Tagliavini F, et al. Creutzfeldt-Jakob disease: Activated microglia detected in vivo by molecular imaging. Neuropathol Appl Neurobiol, 2004,30:415-416.
    [6] Iwasaki Y, Iijima M, Kimura S, et al. Autopsy case of sporadic Creutzfeldt-Jakob disease presenting with signs suggestive of brainstem and spinal cord involvement. Neuropathology, 2006,26(6):550-556.
    [7] Bugiani O, Puoti G, Awan T, et al. Distinct types of PrP induce different microglia reaction in sporadic Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol, 2001,60:535.
    [8] van Eitzen U, Egensperger R, Kosel S, et al. Microglia and thedevelopment of spongiform change in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol, 1998,57(3):246-256.
    [9] 林世和. Creutzfeldt-Jakob 病的病理与临床. 神经疾病与精神卫生, 2001,1(2):1-2.
    [10] 张笋, 邢红艳, 冯连元. 人类朊蛋白疾病. 医学综述, 2005,11(11): 986-988.
    [11] 林世和, 宋晓南, 南善姬, 等. 家族性 Creutzfeldt-Jakob 病. 临床神经病学杂志, 2007,20(4):262-264.
    [12] Bieschke J, Giese A, Schurlz-schaeffer W, et al. Ultrasensitive detection of pathological prion protein aggregates by dual-color scanning for intensely fluorescent targets. Pro Nat Acad Sci, 2000,97:5468-5473.
    [13] van Everbroeck B, BoonsJ, De Leenheir E, et al. Molecular diagnostic tools in Creutzfeldt-Jakob disease and other prion disorders. Expert Rev Mol Diagn, 2004,4(3):351-359.
    [14] 崔 俐 , 林 世 和 , 赵节 绪 , 等 . 神 经 元特 异 性 烯 醇 化 酶 及 S-100 Creutzfeldt-Jakob病的诊断价值的研究. 临床神经病学杂志, 2003,16(4): 193-195.
    [15] 孙 瑞 红 , 林 世和 , 于 雪 凡 , 等 . 脑 脊液 和 血 清 tau 蛋 白检测 对Creutzfeldt-Jakob病诊断价值. 中华神经科杂志, 2006, 39(2):129-130.
    [16] Kropp S, Zerr I, Schulz-Schaeffer WJ, et al. Increase of neuronspecific enolase in patients with Creutzfeldt-Jakob disease. Neurosci Lett, 1999, 261(1-2):124-126.
    [17] 左秀美, 王东升, 赵节绪, 等. 散发性CJD患者新的潜在标志物H-FABP的检测. 中风与神经疾病杂志, 2006,24(2):181-182.
    [18] Shaked GM, Shaked Y, Kariv-Inbal Z, et al. A protease-resistant prionprotein isoform is present in urine of animals and humans affected with prion diseases. J BiolChem, 2001,276:3147.
    [19] 段晓宇, 林世和, 赵节绪, 等. Creutzfeldt-Jakob病患者尿蛋白酶抵抗性朊蛋白同工型的检测. 临床神经病学杂志, 2005,18(2):135-136.
    [20] Picard-Hagen N, Gayrard V, Laroute V, et al. Discriminant calue of blood and urinary corticoids for the diagnosis of scrapie in live sheep. Vet Rec. 2002,150(2):680-684.
    [21] Lasch P. Ante-mortem identification of bovine spongiform encephalopathy from serum using infrared spectroscopy. Anal Chem, 2003,75:6673-6678.
    [22] Aguzzi A. Prion and the immune system: a journry through gut, spleen, and nerves. Adv Immunol, 2003,81:123-171.
    [23] Bird SM. Attributable testing for abnormal prion protein, database linkage, and blood-borne vCJD risks. Lancet, 2004,364(9442):1362- 1364.
    [24] Bosque PJ, Ryou C, Telling G, et al. Prion in sleletal muscle. PNAS, 2002,99:3812-3817.
    [25] Hamir AN, Miller JM, Cutlip RC. Failure to detect prion protein (PrPres) by immunohistochemistry in striated muscle tissues of animals experimentally inoculated with agents of transmissible spongiform encephalopathy. Vet Pathol, 2004,41(1):78-81.
    [26] Knight R. The diagnosis of prion disease. Parasitology, 1998,117(Suppl): 3.
    [27] Cossu G, Melis M, Molari A, et al. CJD associated with high liter antithyroid autoantibodies: case report and literature review. Neurol Sci,2003,24:138-140.
    [28] Murata T, Shiga Y, Higano S, et al. Conspicuity and evlution of lesious in Cretafeldt-Jakob disease at diffusion-weight imaging. AJNR AmJ Neuroradiol, 2002,23:1164-1172.
    [29] Zerr I, Poser S. Clinical diagnosis and differential diagnosis of CJD and vCJD with special emphasis on laboratory tests. APMIS, 2002,110:88-98.
    [30] Henry C, Knight R. Clinical features of variant Cretafeldt-Jakob disease. Rev Med Virol, 2002,12:143-150.
    [31] Henkel K, Zerr I, Hertel A, et al. Positron emission tomography with [(18)F] FDG in the diagnosis of Cretafeldt-Jakob disease (CJD). Neurol, 2002,249:699-705.
    [32] WHO Report ofthe WHO consultation on the global surveillance, diagnosis and therapy of human transmissible spongiform encephalopathies. WHO, Geneva, 1998.
    [33] 马文丽, 郑文岭. 疯牛病的分子基础与临床, 北京: 科学出版社, 2005:70-73.
    [1] Zerr I, Poser S. Clinical diagnosis and differential diagnosis of CJD and vCJD with special emphasis on laboratory tests. APMIS, 2002,110(1): 88-98.
    [2] Brown DR. Microglia and prion disease. Microscopy Research & Technique, 2001,54(2):71-80.
    [3] Burwinkel M, Riemer C, Schwar A, et al. Role of cytokines and chemokines in prion infections of the central nervous system. Int J Dev Neurosci, 2004,22(7):497-505.
    [4] Williams A, Van Dam AM, Ritchie D, et al. Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res, 1997,754(1-2):171-180.
    [5] Thackray AM, Mckenzie AN, Klein MA, et al. Accelerated prion disease in the absence of interlukin-10. J Virol, 2004,78(24):13697-13707.
    [6] Popovic M, Glavac D, Smerkolj S, et al. Creutzfeldt-Jakob disease in Slovenia from 1985 to 2003. Wien Klin Wochensch 2004,116(15-16): 524-529.
    [7] Ladogana A, Puopolo M, Croes EA, et al. Mortality from Creu-tzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology, 2005,64(9):1586-1591.
    [8] Puoti G, Giaccone G, Mangieri M, et al. Sporadic Creutzfeldt-Jakob disease: the extent of microglia activation is dependent on the biochemical type of PrPSc. J Neuropathol Exp Neurol, 2005,64(10): 902-909.
    [9] van Everbroeck B, Dewulf E, Pals P, et al. The role of cytokines, astrocytes, microglia and apoptosis in Creutzfeldt-Jakob disease. Neurobiol Aging, 2002,23(1):59-64.
    [10] Thackray AM, McKenzie AN, Klein MA,et al. Accelerated prion disease in the absence of interleukin-10. J Virol, 2004,78(24):13697-13707.
    [11] 张玉华, 庞国象, 汤斌, 等. 中枢神经系统感染患儿脑脊液中 IL-6 测定及其意义. 中华儿科杂志, 2000,38(9):576-577.
    [12] Bate C, Kempster S, Williams A. Prostaglandin D2 mediates neuronal damage by amyloid-beta or prios which activates microglial cells. Neuropharmacology, 2006,50(2):229-237.
    [13] FreiK, PianiD, Pfister HW, et al. Immune-mediated injury in bacterialmeningitis. IntRev Exp Pathol, 1993,34(ptB):183-192.
    [14] 刘长海. Fas-FasL 和 TNF-α介导的细胞凋亡及 IL-8 在老年慢性阻塞性 肺 疾 病 发 病 机 理 中 的 作 用 . 中 华 医 院 感 染 学 杂 志 , 2006,16(5):493-495.
    [15] Gossner A, Hunter N, Hopkins J. Role of lymph-bone cells in the early stages of scrapie agent dissemination from the skin. Vet Immunol Immunopathol, 2006,109(3-4):267-278.
    [16] Wynn TA. IL-13 effector functions. Annu Rev Immunol, 2003,21: 425-456.
    [17] Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nat Rev Neurosci, 2001,2(10):734-744.
    [18] 樊丽超, 赵节绪, 王东升. 散发性克-雅氏病患者脑脊液中抗炎性细胞因子 IL-4 水平的检测. 中风与神经疾病杂志, 2006,23(6):722-724.
    [1] Iwasaki Y, Iijima M, Kimura S, et al. Autopsy case of sporadic Creutzfeldt-Jakob disease presenting with signs suggestive of brainstem and spinal cord involvement. Neuropathology, 2006,26(6):550-556.
    [2] Webster SD, Park M, Fonseca MI, et al. Structral and functional evidence for microglial expression of C1q receptor that enhances phagocytosis. J Leukoc Biol, 2000,67(1):109-116.
    [3] Prusiner SB. Prions. Proc Natl Acad Sci USA, 1998,95:13363-13383.
    [4] Tatzelt J, Schatzl HM. Molecular basis of cerebral neurodegeneration in prion diseases. FEBS Journal. 2007,274:606-611.
    [5] Saguzzi A, Weissmann C. Prion research: the next frontiers. Nature, 1997, 389:795-798.
    [6] Wiliams AE, Van AM, Man WHK, et al. Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infectd mice. Brain Res, 1994,654:200-206.
    [7] Giese A, Brown DR, Groschup MH, et al. Role of microglia in neuronalcell death in prion disease. Brain Pathol, 1998,8:449-457.
    [8] Williams A, Lucassen PJ, Ritchie D, et al. PrP deposition, microglia activation, and neuronal apoptosis in murine scrapie. Exp Neurol, 1997, 144:433-438.
    [9] Brown DR, Schmidt B, Kretzschmar HA. Role of microglia and host prion protein I neurotoxicity of a prion protein fragment. Nature, 1996,380: 345-347.
    [10] Forloni G, Angeretti N, Chiesa R, et al. Neurotoxicity of a prion protein fragment. Nature, 1993,362:543-546.
    [11] Peyrin JM, Lasmezas CI, Haik S, et al. Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. NeuroReport, 1999,10:723-729.
    [12] Haik S, Peyrin JM, Lins L, et al. Neurotoxicity of the putative transmembrane domain of the prion protein. Neurobiol Dis. 2000,7: 644-656.
    [13] Thellung S, Florio T, Corsaro A, et al. Intracellular mechanisms mediating the neuronal death and astrogliosis induced by the prion protein fragment 106-126. Int J Dev Neurosci, 2000,18:481-492.
    [14] Streit WJ, Sparks DL.Activation of microglia in the brains of human with heart disease and hypercholesterohemic rabbits. J Mol Med, 1997,75: 130-138.
    [15] Le WD, Rowe D, Xie W, et al. Microglia activation and dopaminergic cellinjury: an in vitro model relevant to Parkinson’s disease. J Neurosci, 2001,21:8447-8455.
    [16] Moresco RM, Messa C, Tagliavini F, et al. Creutzfeldt-Jakob disease:Activated microglia detected in vivo by molecular imaging. Neuropathol Appl Neurobiol, 2004,30:415-416.
    [17] Miyazono M, Iwaki T, Kitamoto T, et al. A comparative immunohistochemical study of Kuru and senile plaques with a special reference to glial reactions at various stages of amyloid plaque formation. Am J Pathol, 1991,139:589-598.
    [18] Walsh DT, Perry VH, Minghetti L. Cyclooxygenase-2 is highly expressed in microglial-like cells in a murine model for prion disease. Glia, 2000,29: 392-396.
    [19] Sen R, Baltimore D, Multiple nuclear factor internet With the immunoglubin enhancer sequences. Cell, 1986,46:705-716.
    [20] Siebenlist U, Franzoso G, Brown K, el al. Structure, regulation and function of NF-κB. Annu Rev Cell Biol. 1994,10:405–455.
    [21] Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev lmmunol. 2000,18:621-623
    [22] 平野史論 牧野どう. アポトーシスの転写因子, 特に NF-κB について. 肝胆膵. 2003,46:7-17.
    [23] Adori C, Kocacs GG, Low P, et al. The ubiquitin-proteasome system in Creutzfeldt-Jakob and Alzheimer disease: intracellular redistribution of components correlates with neuronal vulnerability. Neurobiol Dis, 2005, 19(3):427-435.
    [24] Luo C, Brugeon E, Rao A. Mechanisms of transactivation by nuclear factor of activated T cells-1. J Exp Med, 1996,184(1):141-147.
    [25] Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Anna Rev Immunol, 1997,15:707-747.
    [26] Hodge MR, Chun HJ, Rengarajan J, et al. NFAT driven interleukin-4 trascription potentiated by NIP45. Science, 1996,274(5294):1903-1905.
    [27] Tagliavini F, Forloni G, Colombo L, et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP (Sc) in vitro. J Mol Biol. 2000, 300(5):1309-1322.
    [28] Salmona M, Forloni G, Diomede L, et al. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis, 1997,4(1):47-57.
    [29] Lu ZY, Baker CA, Manuelidis L. New molecular markers of early and progressive CJD brain infection. J Cell Biochem, 2004,93(4):644-652.
    [1] 杨艳萍, 于志杰, 张宏. 疯牛病与人类克雅氏病的研究进展.预防医学情报杂志, 2002,18(2):123-124.
    [2] Stahl N, MA Baldwin, A L Burlingame, et al. Identification of glycoinositol phospholipid linked and truncated forms of the scrapie prion protein. Biochemistry, 1990,29:8879-8884.
    [3] Chen S G, D B Teplow, P Parchi, et al. Truncated forms of the human prion protein in normal brain and in prion diseases. J. Biol. Chem. 1995,270: 19173-19180.
    [4] Eikelenboom P, Bate C, van Gool WA, et al. Neuroinflammation in Alzheimer’a disease and prion disease. Glia, 2002,40:232-239.
    [5] 章静波, 张世馥, 黄东阳, 等. 组织和细胞培养技术. 北京: 人民卫生出版社, 2002:102-103.
    [6] Liberski PP, Sikorska B, Bratosiewicz-Wasik J, et al. Neuronal cell death in transmissible spongiformencephalopathies (prion diseases) revisited: from apoptosisto autophagy. Int J Biochem Cell Biol, 2004,36:2473-2490.
    [7] Sikorska B, Liberski P P, Giraud P, et al. Autophagy is a part of ultrastructural synaptic pathology in47Creutzfeldt-Jakob disease: a brain biopsy study. Int J Biochem Cell Biol, 2004,36:2563-2573.
    [8] Muller W E, Ushijima H, Schroder H C, et al. Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat corticalcell cultures. Eur J Pharmacol, 1993,246(3):261-267.
    [9] Salmona M, Forloni G, Diomede L, et al. A neurotoxic and gliotrophic fragment of the prion protein increases plasma membrane microviscosity. Neurobiol Dis, 1997,4(1):47-57.
    [10] Kourie J I, Farrelly P V, Henry C L. Channel activity of deamidated isoforms of prion protein fragment 106-126 in planar lipid bilayers. J Neurosci Res. 2001,66(2):214-20.
    [11] Ciesielski-Treska J, Grant NJ, Ulrich G, et al. Fibrillar prion peptide (106-126) and scrapie prion protein hamper phagocytosis in microglia. Glia, 2004,46(2): 101-115.
    [12] Kaneider NC, Kaser A, Dunzendorfer S, et al. Neurokinin-1 receptor interacts with PrP (106-126) –induced dendritic cell migration and maturation. J Neuroimmunol, 2005,158(1-2):153-158.
    [13] 孙汭, 田志刚等. 原代培养的人胎脑胶质细胞可自发分泌 IL-6. 中华微生物免疫学杂志. 1991,11(4):225.
    [14] 刘长海. Fas-FasL 和 TNF-α介导的细胞凋亡及 IL-8 在老年慢性阻塞性肺疾病发病机理中的作用. 中华医院感染学杂志, 2006,16(5):493-495.