动态多尺度系统投影算子及非线形滤波器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,随着多尺度技术在信号处理领域的广泛应用,多尺度系统理论日趋成熟。目前,一般将多尺度系统分为两大类:SMS(统计多尺度系统,Statistical Multiscale System)和DMS(动态多尺度系统,Dynamic Multiscale System)。SMS主要研究的是统计信号的多尺度处理方法,DMS要解决的问题是动态多尺度系统状态的实时估计,其研究成果远不如SMS丰富,具体实现方法和系统结构也还很不完备,本文针对DMS中的尺度算子和非线性等问题展开研究,主要工作如下:
     1.对多尺度系统理论的应用背景和发展现状做了系统的概述,着重讨论了多尺度系统理论的两种基本类型:静态多尺度系统(SMS)和动态多尺度系统理论(DMS)的基本框架,对两种系统理论进行了分析和比较;
     2.针对动态多尺度系统理论中的核心——投影算子的实现问题,给出了一种基于最小二乘法的投影算子估计算法及其仿真,根据算法推导过程和仿真结果,得到一些有关算法实用性和原动态多尺度建模理论本身的一些结论,得出原理论框架中一个新的约束条件,进一步完善了原系统理论;
     3.将多尺度研究范畴扩展到非线性领域,建立非线性多尺度系统模型,讨论了非线性多尺度系统两种类型,提出了基于非线性Unscented Kalman Filter(UKF)的多尺度融合算法,该算法结合序贯式滤波对多个量测的分散处理,能有效降低计算量,同时具有UKF算法处理系统状态或量测方程强非线性情况的能力,并在二维非线性目标跟踪中显示了其比基于单一尺度的跟踪算法的优越性。
In the last two decades, multiscale system theory has been developed quickly with the broad application of multiscale techniques in signal processing. Multiscale systems can be divided into two categories: SMS (Statistical Multiscale System) and DMS (Dynamic Multiscale System). SMS theory is to discuss the multiscale processing techniques of stochastic signals. DMS theory is to get the real time estimation of the states of the dynamic systems. Now its research efforts can not be compared with that of SMS. The detailed implement method and its system frame are rather incomplete. This thesis is focused on these problems to do some extended research of dynamic multiscale system theory. The main contributions are as follows:
    1. It is introduced that what the main application background of multiscale system theory is and how it has developed recently. Next, the two frames of
    multiscale system--Static Multiscale System and dynamic multiscale system are
    presented detailedly and compared.
    2. A new approach is present to estimate the multiscale projection operator by using the Linear least square estimation (LLSE). For application, A recursive edition of this algorithm is also present. Computer simulation results are presented to show the effectiveness of the algorithm. According to the estimation procedure and the simulation result, we get an additional key restriction that is not included in the original theory. This nuclear restriction is that as long as the observation matrixes of all scales (expect the finest scale) are full column rank, the operator's estimation algorithm will always be efficient.
    3. We extend the multiscale research to a nonlinear field. Firstly, a nonlinear multiscale model is established. Secondly, we discussed two types of the nonlinear multiscale system, and a set of nonlinear multiscale fusion algorithms based on Unscented Kalman Filter (UKF) and sequential estimation method is presented. Simulation results show that this new algorithm is superior to single scale tracking algorithm.
引文
[1] M. Basseville, A. Benveniste, K. Chou, S. Golden, R. Nikoukhah, and A. Willsky, "Modeling and estimation of multiresolution stochastic processes," IEEE Trans. Information Theory, vol. 38, pp.766-784, March 1992.
    [2] M. Basseville, A. Benveniste, and A. Willsky, "Multiscale autoregressive processes, part Ⅰ: Schur-levinson parameterizations," IEEE Trans. Signal Processing, vol. 40, pp. 1915-1934, August 1992.
    [3] M. Basseville, A. Benveniste, and A. Willsky, "Multiscale autoregressive processes, part Ⅱ: lattice structures for whitening and modeling," IEEE Trans. Signal Processing, vol. 40, pp. 1935-1944, August 1992.
    [4] K. Chou, A. Willsky, and A. Benveniste, "Multiscale recursive estimation, data fusion, and regularization," IEEE Trans. Automatic Control, vol. 39, pp. 464-478, March 1994.
    [5] K. Chou, A. Willsky, and R. Nikoukhah, "Muitiscale systems, Kalman filters, and Riccati equations," IEEE Trans. on Automatic Control, vol. 39, pp. 479-492, March 1994.
    [6] B. Chen, C. Lin, and Y. Chen, "Optimal signal reconstruction in noisy filter bank systems: multirate Kalman synthesis filtering approach," IEEE Trans. Signal Processing, vol. 43, pp. 2496-2504, Nov. 1995.
    [7] Y. Cheng and B. Chen, "Nonuniform filter bank design with noises," IEEE Trans. Signal Processing, vol. 46, pp. 2326-2344, Sep. 1998.
    [8] M. Crouse, R. Nowak, and R. Baraniuk, "Wavelet-based statistical signal processing using hidden Markov models," IEEE Trans. Signal Processing, vol. 46, pp. 886-902, April 1998.
    [9] A. Delopoulos and S. Kollias, "Optimal filter banks for signal reconstruction from noisy subband components," IEEE Trans. Signal Processing, vol. 44, pp. 212-224, Feb. 1996.
    
    
    [10] E. Fabre, "New fast smoothers for multiscale systems," IEEE Trans. Signal Processing, vol. 44, pp. 1893-1911, Aug. 1996.
    [11] A. Frakt, W. Karl, and A. Willsky, "A multiscale hypothesis testing approach to anomaly detection and localization from noisy tomographic data," IEEE Trans. Image Processing, vol. 7, pp. 825-837, June 1998.
    [12] J. Ni, K. Ho, and K. Tse, "Model-based multirate Kalman filtering approach for optimal two-dimensional signal reconstruction from noisy subband systems," Optical Engineering, vol. 37, pp. 2376-2386, Aug. 1998.
    [13] G. Wornell, "Wavelet-based representations for the 1/f family of fractal processes," Proceedings of the IEEE, vol. 81, pp. 1428-1450, Oct. 1993.
    [14] G. Wornell and A. Oppenheim, "Estimation of fractal signals from noisy measurements using wavelets," IEEE Trans. Signal Processing, vol. 40, pp. 611-623, Mar. 1992.
    [15] Gregory W. Wornell, "A Karhunen-Loève-like Expansion for 1/f Processes via Wavelets," IEEE Trans. Information Theory, vol. 36, pp. 859-861, July 1990.
    [16] G. Wornell and A. Oppenheim, "Wavelet-based representations for a class of selfsimilar signals with application to fractal modulation," IEEE Trans. Information Theory, vol. 38, pp. 785-800, Mar. 1992.
    [17] M. Daniel and A. Willsky, "A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing," Proceedings of the IEEE, vol. 85, pp. 164-180, Jan. 1997.
    [18] M. Daniel and A. Willsky, "The modeling and estimation of statistically self-similar processes in a multiresolution framework," IEEE Trans. Information Theory, vol. 45, pp. 955-970, April 1999.
    [19] K. Daoudi, A. Frakt, and A. Wiilsky, "Multiscale autoregressive models and wavelets," IEEE Trans. Information Theory, vol. 45, pp. 828-845, April 1999.
    [20] P. Fieguth, "Application of multiscale estimation to large scale multidimensional imaging and remote sensing problems," PhD thesis, Massachusetts Institute of Technology, June 1995.
    
    
    [21] P. Fieguth, W. Karl, A. Willsky, and C. Wunsch, "Multiresolution optimal interpolation and statistical analysis of TOPEX/POSEIDON satellite altimetry," IEEE Trans. Geoscience and Remote Sensing, vol. 33, pp. 280-292, Mar. 1995.
    [22] P. Fieguth and A. Willsky, "Fractal estimation using models on multiscale trees," IEEE Trans. Signal Processing, vol. 44, pp. 1297-1300, May 1996.
    [23] C. Fosgate, H. Krim, W. Irving, and A. Willsky, "Multiscale segmentation and anomaly enhancement of SAR imagery," IEEE Trans. Image Processing, vol. 6, pp. 7-20, Jan. 1997.
    [24] T. Ho, "Multiscale modeling and estimation of large-scale dynamic systems," PhD thesis, Massachusetts Institute of Technology, Sop. 1998.
    [25] W. Irving, P. Fieguth, and A. Willsky, "An overlapping tree approach to multiscale stochastic modeling and estimation," IEEE Trans. Image Processing, vol. 6, pp. 1517-1529, Nov. 1997.
    [26] W. Irving, W. Karl, and A. Willsky, "A theory for multiscale stochastic realization," In Proceedings of the 33rd IEEE Conference on Decision and Control, vol. 1, pp. 655-62, Lake Buena Vista, FL, Dec. 1994.
    [27] A. Kim and H. Krim, "Hierarchical stochastic modeling of SAR imagery for segmentation/compression," IEEE Trans. on Signal Processing, vol. 47, pp. 458-468, Feb. 1999.
    [28] M. Luettgen, "Image processing with muitiscale stochastic models," PhD thesis, Massachusetts Institute of Technology, May 1993.
    [29] M. Luettgen, W. Karl, and A. Willsky, "Efficient multiscale regularization with applications to the computation of optical flow," IEEE Trans. Image Processing, vol. 3, pp. 41-64, Jan. 1994.
    [30] M. Luettgen, W. Karl, A. Willsky, and R. Tenney, "Multiscale representations of Markov random fields," IEEE Trans. on Signal Processing, vol. 41, pp. 3377-3396, Dec. 1993.
    [31] M. Luettgen and A. Willsky, "Likelihood calculation for a class of multiscale stochastic models, with application to texture discrimination," IEEE Trans. Image Processing, vol. 4, pp. 194-207, Feb. 1995.
    
    
    [32] M. Luettgen and A. Willsky, "Multiscale smoothing error models," IEEE Trans. Automatic Control, vol. 40, pp. 173-175, Jan. 1995.
    [33] M. Schneider, "Multiseale methods for the segmentation of images," Master's thesis, Massachusetts Institute of Technology, June 1996.
    [34] A. Frakt, "Internal Multiscale Autoregressive Processes,Stochastic Realization, and Covariance Extension," PhD thesis, Massachusetts Institute of Technology, Aug. 1999.
    [35] Lang Hong, "Multiresolutionai distributed filtering," IEEE Trans. Automatic Control, vol. 39, pp. 853-856, April 1994
    [36] Lang Hong, G. Chen, and C. K. Chui, "A filter-bank-based Kalman filtering technique for wavelet estimation and decomposition of random signals,"IEEE Trans. Circuits Syst. Ⅱ, vol. 45, pp. 237-241, Feb. 1998.
    [37] 赵巍,潘泉,戴冠中,张洪才,“基于小波变换的多尺度建模和估计理论概述”,《信号处理》,Vol.17,No.5,2001,p477~p483.
    [38] Chenglin Wen, Quan Pan, Hongcai Zhang and Guanzhong Dai, " Multiscale Distributed Fusion Estimation in Multi-sensor Single Model Dynamic Systems",《控制理论与应用》,Vol. 17, No. 6, 2000, pp481~486.
    [39] 潘泉,张磊,崔培玲,张洪才,“一类动态多尺度系统的最优滤波”,《中国科学》(审稿编号:2003-117,修改后发表)。
    [40] 张磊,“一类动态多尺度系统的最优估计”,博士论文,西安市西北工业大学,2001。
    [41] Lei Zhang, Quan Pan, Paul Bao, and Hongcai Zhang, "The Discrete Kalman Filtering of a Class of Dynamic Multiscale Systems," IEEE Trans. ON CIRCUITS AND SYSTEMS--Ⅱ: Analog and Digital Signals Processing, Vol. 49, NO. 10, OCTOBER 2002.
    [42] 崔培玲,潘泉,张磊,张洪才,基于Haar小波的一类动态多尺度系统可控可测性及滤波稳定性证明,控制理论与应用(审稿编号2003-153)
    [43] R. Kalman, "A new approach to linear filtering and prediction problems," The American Society of Mechanical Engineers: Basic Engineering, series D, vol. 82, pp. 35-45, Mar. 1960.
    [44] R. Kalman and R. Bucy, "New results in linear filtering and prediction
    
    theory," The American Society of Mechanical Engineers: Basic Engineering, series D, vol. 83, pp. 95-108, Mar. 1961.
    [45] H. Rauch, F. Tung, and C. Striebel, "Maximum likelihood estimates of linear dynamic systems," AIAA Journal, vol. 3, pp. 1445-1450, Aug. 1965.
    [46] S.J.Julier, J.K.Uhlmann and D.Durrant-Whyte. "A new approach for filtering nonlinear systems". In Proceedings of the American Control Conference. Pp1628-1632, 1995.
    [47] S.J.Julier, J.K.Uhlmann, "A New Extension of the Kalman Filter to Nonlinear Systems." In Proc of AeroSense: The 11th Int. Symp. On Aerospace/Defense Sensing, Simulation and Controls.,1997.
    [48] S.J. Julier, "A new method for the nonlinear transformation of means and covariance in filters and estimators," IEEE Trans. on Automatic Control, pp. 477-482, Mar. 2000.
    [49] Eric A. Wan and Rudolph van der Merwe, "The Unscented Kalman Filter for Nonlinear Estimation", in Proceedings of Symposium 2000 on Adaptive Systems for Signal Processing, Communication and Control (AS-SPCC), IEEE, Lake Louise, Alberta, Canada, Oct, 2000.
    [50] E. A. Wan and R. van der Merwe, "Kalman Filtering and Neural Networks", chap. Chapter 7 : The Unscented Kalman Filter, (50 pages), Wiley Publishing, Eds. S. Haykin, 2001.
    [51] R. van dcr Merwe and E. A. Wan, "The Square-Root Unscented Kalman Filter for State and Parameter-Estimation", in International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, Utah, May, 2001.
    [52] B. Stenger, P. R. S. Mendonca, and R. Cipolla "Model-Based Hand Tracking Using an Unscented Kalman Filter" In Proc. British Machine Vision Conference (BMVC 2001), Volume Ⅰ, pages 63-72, Manchester, UK, September 2001.
    [53] Rudolph der Merwe, A. Doucet, N. de Freitas and E. Wan, "The Unscented Particle Filter", in Advances in Neural Information Processing Systems (NIPS13), MIT Press, Eds. T. K. Leen, T. G. Dietterich and V.
    
    Tresp, Dec, 2000.
    [54] Yong Rui, Yunqiang Chen, "Better Proposal Distributions: Object Tracking Using Unscented Particle Filter" , in Proc. IEEE Int'l Conf. on Computer Vision and Pattern Recognition (CVPR'01), Kauai, Hawaii, 2001.
    [55] Yunqiang Chen, Yong Rui, Thomas S. Huang, "Parametric Contour Tracking Using Unscented Kalman Filter", in Proc. Int'l Conf. on Image Processing (ICIP02 Oral), Rochester, New York, September, 2002
    [56] James R. Van Zandt, "Boost Phase Tracking with an Unscented Filter", Signal and Data Processing of Small Targets 2002, Proceedings of SPIE Vol. #4728.
    [57] 秦永元、张洪钺、江叔华编著,《卡尔曼滤波与组合导航原理》,西北工业大学出版社,1998.11。