可靠性设计在多桩型复合地基中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可靠度理论在结构工程中应用较为广泛,但是在岩土工程中可靠度理论的研究工作却开展得相对较少。这主要是因为岩土工程中不确定性因素很多。本文以多桩型复合地基为对象,对岩土工程可靠度理论及应用进行了研究。
     首先,本文对可靠度分析的基本理论做了研究。提出确定β分布各参数的经验公式简化迭代过程,有效处理了随机变量分布范围的估计问题,同时首次将β分布函数引入到模糊失效事件的隶属函数中,使得隶属函数在整个定义域上具有光滑、曲线中心对称性的特点。对于功能函数较简单的情况,本文推导出计算模糊事件失效概率的具体表达式。针对现有一次二阶矩法进行可靠性指标求解时其收敛性不能得到保证的缺点,本文提出一个等步长迭代法修正一次二阶矩法,并证明了其收敛性,从而增大了一次二阶矩法求解可靠性指标的应用范围。
     其次,本文给出了一个计算多桩型复合地基面积置换率的可靠性设计方法。应用概率、统计学理论,引入一个随机变量作为搅拌不均匀因子,定量分析搅拌不均匀性对水泥土无侧限强度以及深层搅拌桩桩身强度带来的影响,分别得出该因子在传统设计和可靠度分析中的应用。在土体选用双折线弹塑性本构模型、莫尔-库伦屈服准则、相适应流动法则的情况下,对多桩型复合地基分别进行了地基承载力和沉降可靠度分析。得出面积置换率与可靠性指标之间的关系,使得面积置换率的确定更为合理。
Due to the uncertainty of soil properties, reliability theory, which has been widely used in structural engineering, has been seldom applied in geotechnical engineering. In this thesis, some reliability-related problems in geotechnical engineering are studied with multi-pile composite foundation as main target.
     Firstly, the basic theory of reliability analysis is studied. An iteration process to determine the parameters for a beta probability density function and an empirical equation to simplify this iteration are presented. As a result, the estimation of the bounds of random variables is efficiently made. Furthermore, beta distribution function is introduced to determine the membership function of a fuzzy failure event for the first time. Therefore, the membership function is smooth within its domain, and is characterized by center symmetry. By utilizing the character of performance functions which are relatively simple in geotechnical problems, an explicit formula to estimate the fuzzy failure probability is derived. In order to overcome the disadvantage that the convergence of First Order-Second Moment (FOSM) method is not guaranteed, this thesis proposes an Equal Step Iteration Method (ESIM), of which the convergence is proved as well.
     Secondly, a Reliability-Based Design (RBD) methodology is presented to determine the replacement ratio (percent coverage) of piles in a multi-pile composite foundation. Based on the probabilistic and statistic theory, a random variable, denoted as the factor of deep soil mixing quality, is proposed to quantitatively assess the influences of mixing quality on the strengths of cemented soil and pile shaft. Furthermore, the applications of this random variable in conventional designs and RBD method are analysed. In this study, the reliability of bearing capacity and settlement of multi-pile composite foundation are analyzed when the characteristics of soil are adopted as Mohr-Coulomb’s shear yield criterion, associated flow rule and bilinear elasto-plastic model for stress-strain relationship. According to the relationship between the reliability index and the replacement ratio of piles, the replacement ratios of multi-pile composite foundation can be evaluated in a rational manner.
引文
[1]黄文熙.土的工程性质.北京:水利电力出版社,1983. 1-3
    [2]建筑结构设计统一标准(GBJ 68-84).北京:中国建筑工业出版社,1984. 11-31
    [3]包承纲.我国工程结构设计规范的“转轨”和地基可靠度设计方法在工程中的应用情况.土工基础,1999,13(1):7-10
    [4]高大钊.土力学可靠性原理.北京:中国建筑工业出版社,1989. 56-66
    [5] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Computers and Structures, 1978, 9(5): 489-494
    [6]港口工程可靠度设计统一标准(GB 50158-92).北京:中国计划出版社,1992. 5-7
    [7]水利水电工程结构可靠度设计统一标准(GB 50199-94).北京:中国计划出版社,1994. 15-20
    [8] Cornell C A. First-order uncertainty analysis of soils: deformation and stability. Proceeding of the First ICASP, Hong Kong. 1971, 129-144
    [9] Vanmarcke E H. Probabilistic modeling of soil profiles. Journal of Geotechnical Engineering, ASCE, 1977, 103(11): 1227-1246
    [10] Matsuo M, Asaoka A. Probability models of undrained strength of marine clay layer. Soil and Foundations, 1977, 17(3): 53-68
    [11] Asaoka A, Grivas D A. Spatial variability of the undrained strength of clays. Journal of Geotechnical Engineering, ASCE, 1982, 108(5): 743-756
    [12] Ronold K O. Random field modeling of foundation failure modes. Journal of Geotechnical Engineering, ASCE, 1990, 116(4): 554-570
    [13] Soulie M, Montes P, Silvertri V. Modeling spatial variability of soil parameters. Canadian Geotechnical Journal, 1990, 27(5): 617-630
    [14] DeGroot D J, Baecher G B. Estimating autocovariance of in-situ soil property. Journal of Geotechnical Engineering, ASCE, 1993, 119(1): 147-146
    [15] Phoon K K, Kulhawy F H. Characterization of geotechnical variability. Canadian Geotechnical Journal, 1999a, 36(5): 612-624
    [16] Phoon K K, Kulhawy F H. Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 1999b, 36(5): 625-639
    [17] Phoon K K, Kulhawy F H, Grigoriu M D. Reliability-based design for transmission line structure foundations. Computers and Geotechnics, 2000, 26(2): 169-185
    [18] Phoon K K, Kulhawy F H, Grigoriu M D. Multiple resistance factor design for shallow transmission line structure foundations. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(6): 807-818
    [19]郑俊杰,郭秋菊,郭嘉.土性空间变异性统计模型的改进.华中科技大学学报(自然科学版),2007,35(2):4-7
    [20] Ditlevson O. Model uncertainty in structural reliability. Structural Safety, 1982, 1(1): 73-86
    [21] Tang W H. Uncertainty in offshore axial pile capacity. Structural Safety, 1989, 8(1): 102-115
    [22] Kiureghian A. Bayesian analysis of model uncertainty in structural reliability. Proceeding of the Third Working Conference on Reliability an Optimization of Structural System, Springer-Verlag, New York. 1990, 105-120
    [23] Ronold K O, Bjerager P. Model uncertainty representation in geotechnical reliability analyses. Journal of geotechnical engineering, ASCE, 1992, 118(3): 363-376
    [24] Liu Y, Zheng J J, Guo J. Reliability-based design methodology of multi-pile composite foundation. Proceeding of the First International Symposium on Geotechnical Safety and Risk, Shanghai. 2007, 2: 461-469
    [25] Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematics and Statistics, 1952, 23(3): 470-472
    [26] ISO/DIS2394. General Principle on Reliability for Structures. 1998. 24-26
    [27]中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-92).北京:中国计划出版社,1992. 56-60
    [28]贡金鑫.工程结构可靠度计算方法.大连:大连理工大学出版社,2003
    [29]贡金鑫,仲伟秋,赵国藩.结构可靠度指标计算的通用方法.计算力学学报,2003,20(1):12-18
    [30]马克生.柔性桩复合地基沉降可靠度分析[博士学位论文].杭州:浙江大学,2000
    [31]祝学玉.边坡可靠性分析.北京:冶金工业出版社,1994. 156-161
    [32]郑俊杰,郭嘉,李福豪.基于免疫算法的岩土工程可靠度分析.岩土工程学报,2007,29(5):785-788
    [33]郑俊杰,郭嘉,鲁燕儿.基于免疫算法的单桩极限承载力预测.华中科技大学学报(城市科学版),2006,22(2):5-8
    [34]郑俊杰,郭嘉,刘勇.多元复合地基承载力可靠度计算.华中科技大学学报(自然科学版),2007,35(10):15-18
    [35] Low B K, Tang W H. Reliability analysis using object-oriented constrained optimization. Structure Safety, 2004, 26(1): 69-89
    [36] Low B K. Reliability analysis of rock slopes involving correlated nonnormals. International Journal of Rock Mechanics and Mining Science, 2007, 44(5): 922-935
    [37]中华人民共和国行业标准.建筑桩基技术规范(JGJ 94-49).北京:中国建筑工业出版社,1995. 12-15
    [38] Low B K. Reliability-based design applied to retaining walls. Geotechnique, 2005,55(1): 63-75
    [39] Yang L, Liang R. Incorporating set-up into reliability-based design of driven piles in clay. Canadian Geotechnical Journal, 2006, 43(5): 946-955
    [40]肖溟,龚晓南,黄广龙.深层搅拌桩复合地基承载力的可靠度分析.浙江大学学报,2000,34(4):351-354
    [41]张小敏,郑俊杰. CFG桩复合地基承载力可靠度分析.岩土力学,2002,23(6):810-812
    [42]洪昌华,龚晓南.基于稳定分析法的碎石桩复合地基承载力的可靠度.水利水运科学研究,2000,(1):30-35
    [43]郑俊杰,区剑华,袁内镇等.多元复合地基压缩模量参变量变分原理解析解.岩土工程学报,2003,25(3):317-320
    [44]郑俊杰,区剑华,邢泰高.参变量变分原理求解土的变形模量与压缩模量间的关系.固体力学学报,2004,25(1):53-57
    [45]区剑华.参变量变分原理在复合地基中的应用研究[硕士学位论文].武汉:华中科技大学,2003
    [46]彭宏.预应力混凝土管桩及其沉桩挤土效应研究[硕士学位论文].武汉:华中科技大学,2004
    [47]郭秋菊.碎石桩复合地基承载力可靠性研究[硕士学位论文].武汉:华中科技大学,2005
    [48]郑俊杰,何春,鲁燕儿.武汉地区预应力混凝土管桩模糊随机可靠性分析.岩土工程技术,2006,20(4):193-196
    [49] Guo J, Zheng J J, Liu Y. Immune algorithm for reliability analysis of PC pipe pile. Proceeding of the Fourth Cross-Strait Conference on Structural and Geotechnical Engineering, Hangzhou. 2007, 2: 1123-1129
    [50]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000. 8-9
    [51] Leandro N, Fernando J. Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems, 2002, 6: 239-251
    [52] Burnet F M. The Clonal Selection Theory of Aacquired Immunity. London: Cambridge University Press, 1959. 26-28
    [53]陈传璋,金福临,朱学炎.数学分析.北京:高等教育出版社,1983. 78-80
    [54] Ang A H, Tang W H. Probability Concepts in Engineering Planning and Design. New York: Plenum Press, 1984. 111-118
    [55]谭忠剩,高波,关宝树.隧道围岩抗剪强度指标c、tanφ的概率特征.岩土工程学报,1999,21(6):760-762
    [56]陈立宏,陈祖煜,刘金梅.土体抗剪强度指标的概率分布类型研究.岩土工程力学,2005,26(1):37-40
    [57]罗书学.桩基概率极限状态法研究及其工程应用[博士学位论文].成都:西南交通大学,2004
    [58] Lumb P. Safety factors and the probability distribution of soil strength. Canadian Geotechnical Journal, 1970, 7(3): 225-241
    [59] He J R. Estimating the distribution of manufactured dimensions with the beta probability density function. Machine Tools and Manufacture, 1991, 31(3): 383-396
    [60]李镜培,舒翔.竖向承载桩的模糊随机可靠度计算方法.岩土力学,2002,23(6):754-756
    [61]贾厚华,贺怀建.边坡稳定模糊随机可靠度分析.岩土力学,2003,24(4):657-660
    [62]龚文惠,姜友生,王元汉.膨胀土路基陈降的模糊可靠度.岩土力学,2004,25(8):1340-1342
    [63]李胡生,叶黔元.陡峭岩石边坡随机-模糊可靠度算法.岩土工程学报,2006,28(8):1019-1022
    [64]贺仲雄.模糊数学及其应用.天津:天津科学出版社,1983. 112-115
    [65]刘勇,郑俊杰,郭嘉.β分布的参数确定及其在岩土工程中的应用.岩土工程技术,2006,20(5):240-244
    [66]方开泰,许建伦.统计分布.北京:科学出版社,1987. 154-157
    [67] Pearson K. Tables of the Incomplete Beta Function, 2nd Edition. London: Cambridge University Press, 1968. 42-47
    [68] Cooke P. Statistical inference for bounds of random variables. Biometrika, 1979, 66(2): 367-374
    [69]张博庭.用有限比较法进行拟合优度检验.岩土工程学报,1991,13(6):84-91
    [70]李小勇,白晓红,谢康和.岩土参数概率分布统计意义上的优化分析.岩土工程技术,2000,14(3):130-133
    [71] Horpibulsuk S, Miura N, Bergado D T. Undrained shear behavior of cemented mixed clay at high water content. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 84-91
    [72] Lorenzo G A, Bergadao D T. Fundamental parameters of cemented mixed clay new approach. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(10): 92-110
    [73]储城富,洪振舜,刘松玉.用似水灰比对水泥土无侧限抗压强度的预测.岩土力学,2005,26(4):110-113
    [74]史佩栋.深层搅拌桩技术讲座.西部探矿工程,1993,5(2):75-79
    [75]郝玉龙,王立忠,陈云敏.深厚软土水泥搅拌桩复合地基沉降分析及控制.岩土工程学报,2001,23(3):345-349
    [76] Gallavresi F. Grouting improvement of foundation soils. Proceeding of Grouting, SoilImprovement and Geosynthetics, ASCE, New York. 1992, 1: 1-38
    [77] Lee F H, Lee Y, Chew S H. Strength and modulus of marine clay-cement mixes. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 178-186
    [78] Horpibulsuk S, Miura N, Nagaraj T S. Clay-water/cement ratio identity for cement admixed soft clays. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 187-192
    [79] Larsson S. Binder distribution in lime-cement columns. Ground Improvement, 2001, 5(3): 110-122
    [80] Probaha A. State of the art in quality assessment of deep mixing technology. Ground Improvement, 2002, 6(3): 95-120
    [81] Larsson S, Dahlstrom M, Nilsson B A. Uniformity of lime-cement columns for deep mixing: a field study. Ground Improvement, 2005a, 9(1): 1-15
    [82] Larsson S, Dahlstrom M, Nilsson B A. A complementary field study on the uniformity of lime-cement columns for deep mixing. Ground Improvement, 2005b, 9(2): 67-77
    [83]张小蒂.应用回归分析.杭州:浙江大学出版社,1991. 201-205
    [84] Ravi V. Statistical modeling of spatial variability of undrained strength. Canadian Geotechnical Journal, 1992, 29(6): 721-729
    [85]郑俊杰.地基处理技术.武汉:华中科技大学出版社,2004. 115-119