工程船结构强度直接计算及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海运事业的不断发展、港口功能的日益增强,起重船成为中国船舶市场发展的热点。特别是中大型起重船舶的需求量更是日益增涨。市场的需要和利益的驱使,使用旧船型改装成为新船型也成为一种趋势。
     作为工程船舶的起重船有着特殊的作业方式,所以在船体结构和所受载荷方面更为复杂。对于这种复杂的结构形式和载荷分布,传统的结构强度计算方法的弊端已经显现出来。随着计算机硬件技术的发展,使得将整船划分为有限元来进行分析成为可能,船体结构强度分析有了革命性的突破。世界各国的船级社都在不断寻求更科学可靠的设计方法,因此船舶结构强度有限元直接计算方法成为当今船舶设计业的领头羊。有限元直接计算方法是通过有限元软件对整船建立有限元模型。为了真实的表达构件的受力状况,分别以杆、板、壳和梁等单元来模拟不同受力状态的构件。并通过有限元软件分析求解,得到各个构件的实际变形和应力结果。
     本文利用有限元软件MSC.Patran和MSC.Nastran对某驳船改装成500t浮吊的改装方案进行研究和优化。吊机吊重采用独立建模计算方法,计算机座处支座反力,再使用多点约束的方法加载到船体甲板相应位置。舷外水压力采用等效设计波的概念处理波浪中垂和波浪中拱工况。调整船体平均吃水来调整船体平衡。并使用“惯性释放”功能使船体模型处于“完全自由”状态。
     对于衡量船体结构的安全性而言,对甲板、底板进行屈曲强度分析是十分必要且必须的。按照《钢质内河船船体结构直接计算指南》对该起重船的甲板、底板进行屈曲强度分析,并对强度不足构件进行加强。在船体板格屈曲强度校核方面,CCS中国船级社以Patran为平台开发了板格屈曲强度计算插件。本文利用该插件对船体部分板格再次进行屈曲强度校核,并对两次校核的不同计算结果进行了对比分析。
     由于改装船方案直接影响到整个工程的成本和施工方案,所以对船体结构优化也是非常必要的。基于原船体部分不进行大的改动的前提下,本文对新增构件板厚进行了优化。并使整个设计方案更加经济和可行。
With the continuous development of shipping, ports functions of the growing, Floating crane become one focus of China shipbuilding, especially the demand for medium and large tonnage floating crane. Markets driven by the needs and interests have leaded the way to a new trend, the use of the old ship conversions.
     As floating cranes are intended for special operations, its hull structure, due to specific loads, are more complicated. For such a complex structure and load distributions, traditional structural strength calculation method has given the way to a new once. With the development of computer hardware and software technology, it's now possible to make a model of whole ship and apply the finite element analysis on such model. Strength analyses of the hull structure have a revolutionary breakthrough. Classification societies around the world are constantly looking for a more scientific and reliable method of design. The direct calculating method of ship structural strength becomes necessary in today's shipbuilding industry. Entire hull finite element model rests on the FEM software. In order to express their real components of the inter-force conditions, respectively, bar, plate, beam, shell, and other units to simulate the different components of the state by force. And calculate through finite element analysis software, among all components of the actual results of the stress deformation.
     In this examination, advantage of finite element software MSC.Patran and MSC.Nastran has been taken on the study, and optimization for conversion program of a 500t floating crane barge. The crane hoists have independent models, computer support anti-Block Office, and then use Multi-Point Constraint to load the deck corresponding to the location of the hull. Outboard water pressure equivalent to the concept design waves in the sag and hog conditions. Adjust the average draft of the hull to balance of the hull. The use of "Inertia Relief feature, the structure of the hull can be in a "completely free" status.
     On the study of the hull structure security, buckling strength analysis of deck and floor are essential and necessary. In accordance with the FEM model, analyze the buckling intensity of the floating crane's deck and floor and strengthen the weak parts. In the frame of the hull plating buckling strength aspects of verification, CCS (China Classification Society) developed the grid plate buckling strength calculation plug-in based on Patran. In this examination, we use this plug-in for partial plates buckling strength checking of the hull and verification of the two different calculation results were analyzed.
     As the ship conversion programs have a direct impact on the entire project cost and construction program, the structural optimization of the hull is very necessary. Based on the inconvertibility of the original parts of the hull, added component thickness have been optimized. It makes the whole design more economic and feasible.
引文
[1]魏莉洁.船舶结构与制图.人民交通出版社,2007年2月
    [2]龚益华.船舶概论[M].北京:中国国防工业出版社,1999
    [3]熊士涛.船舶概论[M].中国标准出版社,1996
    [4]朱连宇.700t起重船的改造工艺.中国港湾建设,2007,(4)
    [5]张志明,徐丹铮等.大型起重船船型开发的若干技术问题初探.船舶,2005,(1)
    [6]徐向东,崔维成.加筋板格屈曲及极限强度分析.中国造船,1999年2月第一期,总第144期
    [7]崔维成,徐向东.加筋板格屈曲及极限强度计算程序ULTSTIF说明.无锡:中国船舶科学研究中心,1998
    [8]Hughes O F.Ship structural design.SNAME,Jersey City,N.J.,2nd ed.,1988
    [9]何福志,万正权.船体结构总纵强度的简化逐步破坏分析.船舶力学,2001,(05)
    [10]韩强,张善元、杨桂通.结构静动力屈曲问题研究进展.力学进展,1998,(03)
    [11]Willians,D.G.(1976).The influence of the torsional rigidity of plate stiffeners on plate effectiveness,International Shipbuilding Progress,Vol.23,NO.268,355-360
    [12]Monsour,A.E.(1976).Charts for the buckling and post-bulckling analyses of stiffened plates under combined loading,Technical and Research Bulletin,NO.3-22,SNAME,july
    [13]Steen,E.and Valsgard.S(1984).Simplified buckling strength criteria for plates subjected to biaxial compression and lateral pressure,Proc.of the Ship Structure Symposium,SNAME,Arlington,October,257-272
    [14]Paik,J.K.,Ham.J.H.and Kim,U.N.(1992a).A new plate buckling design formula,J.of the Society of Naval Architects of Japan,Vol.171,559-556
    [15]Ueda,Y.,Rashed,S.M.H and Paik,J.K.(1995).Buckling and ultimate strength interaction in plates and stiffened panels under combined inplane biaxial and shearing forces,Marine Structures,Vol.8,1-36
    [16]Yao,T.,Fujikubo,M.,Yanagihara,D.,Varghese,B.and Niho.O.(1998).Influence of welding imperfections on buckling/ultimate strength of ship bottom plating subjected to combined biaxial thrust and lateral pressure,Thin-Walled Structures,Research and Development,2nd International Conference on Thin-Walled Structures,425-432
    [17]Paik,J.k.,Thayamballi,A.K.,Wang,G and Kim,B,J(2000).Buckling strength of steel plating with elastically restrained edges,Thin-Walled Structures,Vol.37,Issue 1,27-57
    [18]徐向东,崔维生.船体梁与加强筋板极限强度可靠性设计(英文).船舶力学.2001,(03)
    [19]章向明,施华明,王安稳,偏心加筋板几何非线性有限元分析.武汉交通科技大学学报.1999,(04)
    [20]洪英,詹志鹄,王鹤.CCS船体板格屈曲强度直接计算评估方法.中国船级社上海规范研究所
    [21]中国船级社.钢质内河船入级与建造规范.2006
    [22]张延辉.船体结构强度直接计算中的载荷平衡法研究.[硕士学位论文].武汉,武汉理工大学,2006,11
    [23]王焕定,焦兆平.有限单元法基础[M].北京:高等教育出版社,2002
    [24]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003
    [25]刘兵山,黄聪.PATRAN从入门到精通.北京.中国水利水电出版社.2003:2-3
    [26]Huang Hai、Tao Qian、Ke Wen.Pre and post processor development based on MSCPATRAN and applications of structural optimization system[J].Journal of Beijing University of aeronautics and Astuonautics.1999,25(6):639-642
    [27]MSC.Patran User's Manual.MSC 公司,1998
    [28]MSC.Patran PCL and Customization.MSC 公司,1998
    [29]胡丰梁.潜艇结构的疲劳分析.[硕士学位论文].武汉,武汉理工大学,2007.11
    [30]魏东,张圣坤等.加筋板极限压缩强度的对传神经网络计算.中国造船,1999,8(3)
    [31]马志敏.船体梁极限强度分析.[硕士学位论文].武汉,武汉理工大学,2003.3
    [32]李雪良.船体板的屈曲和极限强度分析.[硕士学位论文].武汉,武汉理工大学,2004.5
    [33]张少雄,杨永谦.惯性释放在油船结构强度直接计算中的应用.船海工程,2004,(04)
    [34]王杰德,杨永谦.船体强度与结构设计.北京:国防工业出版社,1995
    [35]张少雄、杨永谦.船体结构强度直接计算中惯性释放的应用.中国舰船研究,2006,1(1)
    [36]张少雄,陈华南、张伟.8000t级江海直达驳船的全船结构强度直接计算.船海工程,2005,05
    [37]张少雄,李雪良.船舶结构强度直接计算种板单元应力的取法.船舶工程,2004,3
    [38]关宝新.散货船结构强度直接结算及强度标准研究.[硕士学位论文].武汉,武汉理工大学,2003.3
    [39]向林浩.基于等强度板格稳定的船体结构优化设计研究.[硕士学位论文].武汉,武汉理工大学,2007.11
    [40]黄海,陶骞,柯文.基于MSC/Patran的结构优化系统前后置开发与应用.北京航空航天大学学报.1999,25(6)
    [41]中国船级社.散货船结构强度直接计算分析指南.2003
    [42]中国船级社.钢质海船入级与建造规范.2006