渭河西安段水体及水系沉积物重金属环境地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类和自然的相互作用,城市河流是时刻处于变化中的水动力环境,尤其是接收了来自城市和工业大量人为污染物后,其水体和沉积物来源变得更为复杂。在众多的污染物中,重金属由于其在环境中的持久性、生物地球化学可循环性以及潜在的生态威胁而倍受关注。沉积物既是水环境中重金属的主要汇集场所,又是潜在的次生污染源。研究沉积物中重金属含量、分布特征及赋存形态对于探寻水环境重金属的来源、评价污染现状、预测对生态系统的影响及河流环境保护具有重要的现实意义。
     本文以渭河西安段为研究区域,把地表水和沉积物作为一个有机整体,经详细调查、采样和实验,首次系统地研究了渭河西安段地表水的理化特性(pH值、电导率、DO、COD、BOD_5、氟化物)和沉积物的理化性质(pH值、磁学性质、机械组成、烧失量、常量组分);用X-Ray荧光光谱仪分析了沉积物中重金属元素Cu、Mn、Pb、Zn、Co、Ni、Cr、Fe和As的全量及在不同粒径颗粒中的含量,探讨了重金属的分布特征;采用欧共体修正BCR四步连续提取法及原子吸收分光光度计火焰法分析测定了表层沉积物重金属Cu、Mn、Pb、Zn、Co、Ni、Cr和Fe的赋存形态;通过相关分析和聚类分析讨论了重金属之间的相互关系及影响重金属含量和形态的因素,以期为合理开发利用渭河水资源,制定污染防治措施以及流域治理规划等提供科学依据。
     本研究主要结论如下:
     (1)渭河西安段地表水属中性水质,各项理化指标的均值分别为:pH值7.129,电导率528μs/cm,DO 0.29mg/L,COD 85.1mg/L,BOD_5 22.6mg/L,氟化物0.4601mg/L。沉积物pH值为8.604,为碱性沉积物;粒径组成平均是黏粒10.050%,粉沙粒50.395%,沙粒39.555%,质地类型主要为粉沙粒:沉积物烧失量平均为3.563%;沉积物低频磁化率(χLF)、高频磁化率(χHF)和频率磁化率(χfd)均值分别为50.7×10~(-8)m~3/kg、46.2×10~(-8)m~3/kg和2.36%;常量元素K_2O、Na_2O、CaO、MgO、Al_2O_3、Fe_2O_3、SiO_2和Ti的平均含量分别为:2.26%、1.86%、6.64%、2.09%、11.20%、3.69%、58.52%和3593.3mg/kg。
     (2)渭河西安段表层沉积物中Co、Cr、Fe、Cu和Pb的平均含量高于环境背景值,As、Mn和Ni的平均含量低于环境背景值,Zn平均含量与环境背景值持平。各重金属元素水平呈波折多峰型分布,其中As、Cu、Mn、Pb、Zn、Ni和Fe具有相似的水平分布特征;各断面重金属累积叠加值由高到低依次为:断面4>断面6>断面3>断面2>断面5>断面1,大部分元素高值区均位于河流中下游河段。
     (3)筛分实验结果表明:渭河西安段表层沉积物不同粒径颗粒中重金属含量分布具有一定的差异,主要富集于粒径为150-250μm、250-450μm、450-900μm和>900μm的较大颗粒中,其余粒径颗粒中重金属含量相对略小。
     (4)渭河西安段柱状沉积物中各重金属元素在垂向上明显地呈波折多峰型分布,其中As、Cu、Mn、zn、Ni和Fe表现出非常相似的垂向变化趋势,表明它们具有同一物质来源或相同的沉积后再迁移行为。Pb、Co和Cr在垂直剖面上变化规律性不强。
     (5)渭河西安段地表水中Cu和Zn主要以溶解态存在,Mn、Pb、Co、Ni、Cr和Fe主要以颗粒态存在。表层沉积物中各重金属主要以残余态存在,其中Pb的“非稳态”(易迁移转化部分)含量大于“稳定态”,其余元素“稳定态”占优势。
     (6)统计分析表明:地表水中Cu、Mn、Fe的溶解态、颗粒态、全量两两之间均显著相关:Zn的溶解态、颗粒态均与全量显著相关:Co、Ni、Cr的颗粒态与全量显著相关:Pb的全量与DO显著相关,Zn的溶解态与COD、BOD_5、氟化物显著相关,Co的pH值分别与溶解态、全量显著相关。沉积物中大多数重金属的全量和形态与低频磁化率(χLF)、高频磁化率(χHF)、黏粒、粉沙粒含量、烧失量(LOI)及常量组分中的K_2O、Na_2O、MgO、Al_2O_3、Fe_2O_3、SiO_2、Ti之间相关性较好,反映了影响沉积物重金属富集及赋存形态的主要因素。As、Cu、Mn、Pb、Zn、Ni和Fe两两之间均显著相关,Co、Cr与上述元素相关性较弱。Cu的可氧化态、残余态、全量两两之间显著相关;Mn的弱酸提取态、可还原态、残余态、全量两两之间显著相关;Pb的弱酸提取态与残余态、可还原态与全量显著相关;Zn的可还原态与弱酸提取态、全量显著相关;Co和Cr的残余态均与其全量显著相关;Ni的全量分别与弱酸提取态、残余态显著相关;Fe的弱酸提取态、残余态、全量两两之间显著相关,可还原态与可氧化态显著相关。
     (7)重金属元素来源分析表明:渭河西安段沉积物中As、Cu、Mn、Pb、Zn、Co、Ni和Fe可能以自然来源为主,Cr可能以人为来源为主,重金属元素在时间跨度内的分布特征反映了其自然来源和人为来源的差异。
Urban river is a complex dynamic system interacted by human and natural environments, especially when receiving large amounts of anthropogenic contaminants from nearby urban areas and industrial sites. Among the various contaminants, heavy metals are of particular concern due to their environmental persistence and biogeochemical recycling and ecological risks. Sediments are not only main places of heavy metals accumulating but also potential pollution sources in water environment. Therefore, it is necessary to research the contents, distribution characteristics and chemical fractionations of heavy metals in sediments. The results would make a great contribution to understand the heavy metal resources, assessing pollution status and the affection to ecosystem, and have a great significance to environmental protection of urban river.
     Xi'an section of Wei River is regarded as the research area in this paper. Based on full field survey, collecting samples and experiments, the physio-chemical characteristics of surface water including pH value, conductivity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand in five days (BOD_5) and fluorides and sediments including pH value, magnetic susceptibility, particle size, loss on ignition and major elements are for the first time studied. The contents with different particle size and total contents of Cu, Mn, Pb, Zn, Ni, Cr, Fe and As are determined by X-ray fluorescence spectrometry (XFS) in sediments and the spatial distributions of all heavy metals are analysed. Chemical fractionations of Cu, Mn, Pb, Zn, Ni, Cr and Fe in surface sediments are studied by BCR sequential extraction method and determined by flame atomic absorption spectrometry (AAS). Factors influencing heavy metal elements concentration and chemical fractionations are discussed through the correlation and cluster analysis. These provided a scientific reference for reasonable development and utilization of water resources of Wei River, constituting the measures of pollution control and the watershed management planning.
     The main conclusions in this study are as follows:
     (1) The surface water is genera in Xi'an section of Wei River. The averages of pH value, conductivity, dissolved oxygen, chemical oxygen demand, biochemical oxygen demand in five days and fluorides are 7.129, 528μs/cm, 0.29mg/L, 85.1mg/L, 22.6mg/L, 0.4601mg/L, respectively. The average pH value of sediment is 8.604, so it is the alkaline sediment. The sediment texture type is silty sand. The average clay content is 10.050%, and the average silty sand content is 50.395%, and the average sand particle content is 39.555%. The average loss on ignition of sediments is 3.563%. Low-frequency magnetic susceptibility, high-frequency magnetic susceptibility and frequency magnetic susceptibility are 50.7×10~(-8)m~3/kg, 46.2×10~(-8)m~3/kg and 2.36%, respectively. The average contents of K_2O, Na_2O, CaO, MgO, Al_2O_3, Fe_2O,. SiO_2 and Ti are 2.26%, 1.86%, 6.64%, 2.09%, 11.20%, 3.69%, 58.52% and 3593.3mg/kg, respectively.
     (2) The average contents of Co, Cr, Fe, Cu and Pb in surface sediments from Xi'an section of Wei River are higher than the environment background, respectively. The average contents of As, Mn and Ni are lower than the environment background, respectively. The average content of Zn is similar to the environment background. The horizontal distribution of all heavy metals in surface sediments is of twists and turns. As, Cu, Mn, Pb, Zn, Ni and Fe in surface sediments have the similar horizontal distribution characters. The cumulative values of sections are in the following order: section 4>section 6>section 3>section 2>section 5>section 1. The higher regions of most heavy metal elements in surface sediment are the middle and lower reaches of Wei River.
     (3) The experimental results of sieving indicate that content distributions of heavy metals in surface sediments with different particle size from Xi'an section of Wei River have some differences. The heavy metals mainly accumulate at 150~250μm, 250~450μm, 450~900μm and >900μm.. The rests are fairly little.
     (4) The vertical distribution of heavy metals in core sediments from Xi'an section of Wei River is of twists and turns, and do not form a certain feature because of the complex hydrological environment and the different human activity from the coasts. As, Cu, Mn, Zn, Ni and Fe in core sediments have the similar vertical distribution characters, which shows that these heavy metals are of the same material sources or the similar remigration behaviors after depositing. The vertical distribution characters of Pb, Co and Cr are unconspicuous.
     (5) In surface water from Xi'an section of Wei River, the main fractionations of Cu and Zn are soluble species, whereas the main fractionations of Mn, Pb, Co, Ni, Cr and Fe are particulate species. In surface sediments from Xi'an section of Wei River, the main fractionation of each heavy metal is residual form. The content of "labile" fractionation for Pb is more than "stable" fractionation. The "stable" fractionations of other heavy metals are in the ascendant.
     (6) The statistical data showed that there are significant correlations among soluble fractionations, particulate fractionations, total contents for Cu, Mn and Fe in surface water. Significant correlations also existe between total content and soluble fractionation, particulate fractionation, respectively for Zn in surface water. There are also significant correlations between particulate fractionations and total contents for Co, Ni and Cr in surface water. For Pb in surface water, there is a significant correlation between total content and DO. For Zn in surface water, there are significant correlations between soluble fractionation and COD, BOD_5, fluoride, respectively. For Co in surface water, there are significant correlations between pH value and soluble fractionation, total content, respectively. For most heavy metal elements in sediments, there are significant correlations between fractionations and low-frequency magnetic susceptibility, high-frequency magnetic susceptibility, clay, silty sand, loss on ignition, K_2O, Na_2O, MgO, Al_2O_3, Fe_2O_3, SiO_2, Ti, respectively, so are total contents. The above phenomenon reflects main factors of influencing tomitsumi and fractionations for heavy metals. There are significant correlations among As, Cu, Mn, Pb, Zn, Ni, Fe, but there is not significant correlation between Co and other heavy metal elements in sediments, so is Cr. For Cu in sediments, significant correlations existe among oxidable fractionation, residual fractionation, total content. For Mn in sediments, significant correlations also existe among acid extractable fractionation, reducible fractionation, residual fractionation, total content. For Pb in sediments, there are also significant correlations between acid extractable fractionation and residual fractionation, at the same time between reducible fractionation and total content. For Zn in sediments, significant correlations also existe between reducible fractionation and acid extractable fractionation, total content, respectively. For Co in sediments, there is significant correlation between residual fractionations and total contents, so is Cr. For Ni in sediments, significant correlations also existe between total content and acid extractable fractionation, residual fractionation, respectively. For Fe in sediments, there are also significant correlations among acid extractable fractionation, residual fractionation, total content, at the same time between reducible fractionation and oxidable fractionation.
     (7) The source analysis of heavy metal elements shows that As, Cu, Mn, Pb, Zn, Co, Ni and Fe in sediments from Xi'an section of Wei River may be mainly come from natural sources, however, Cr in sediments may be mainly come from pollution due to human activities, which is decided bydistribution characteristics of heavy metals in sediments in the time span.
引文
[1]戎秋涛,翁焕新.环境地球化学[M].北京:地质出版社,1990.
    
    [2]杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社,1999.
    
    [3]牟保垒.元素地球化学[M].北京:北京大学出版社,1999.
    
    [4]王云,魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社,1995.
    
    [5]王晓蓉.环境化学[M].南京:南京大学出版社,1993.
    
    [6] B. P. Lanphear, K. J. Roghmann. Pathways of Lead Exposure in Urban Children[J]. Environmental Research, 1997, 74(1): 67-73.
    
    [7]宋书巧,吴欢,黄胜勇.重金属在土壤-农作物系统中的迁移转化规律研究[J]. 广西师院学报(自然科学版),1999,16(4):87-92.
    
    [8]陈静生.沉积物重金属污染研究中的若干问题[J].环境科学丛刊,1983,4(8): 1-2.
    
    [9]陈静尘.环境地球化学[M].北京:海洋出版社,1992.
    
    [10]陈静生.水环境化学[M].北京:高等教育出版社,1987.
    
    [11] G. T. Ankley, D. M. Ditoro, D. J. Hansen, et al. Technical Basis and Proposal for Deriving Sediment Quality Criteria for Metals: Metal Bioavailability in Sediments[J]. Environmental Toxicology and Chemistry, 1996, 15 (12): 2056-2066.
    
    [12] J. K. Cochran, D. J. Hirschberg, J. Wang, et al. Atmospheric Deposition of Metals to Waters (Long Island Sound, New York USA): Evidence from Salt Marsh Deposit [J]. Estuarine Coastal Shelf Science, 1998,46(4): 503-522.
    
    [13]许世远,陶静.上海潮滩沉积物重金属的动力学累积特征[J].海洋与湖沼, 1997,28(5):509-515.
    
    [14] B. L. Vallee, D. D. Ulmer. Biochemical Effects of Mercury, Cadmium and Lead[J].Annual Review of Biochemistry, 1972,41(10): 91-128.
    
    [15] H. Akcay, A. Oguz, C. Karapire. Study of Heavy Metal Pollution and Speciation inBuyak Menderes and Gediz River Sediments[J]. Water Research, 2003, 37(4):813-822.
    
    [16]范成新,朱育新,吉志军,等.太湖宜僳河水系沉积物的重金属污染特征[J]. 湖泊科学,2002,14(3):234-241.
    
    [17]王焕校.污染生态学[M].北京:高等教育出版社,2000.
    
    [18] H. F. Massey, R. I. Barnhisek. Copper, Nickel, and Zinc Released from Acid CoalMine Spoil Materials of Eastern Kentucky[J]. Soil Science, 1972, 113(3): 207-212.
    
    [19] P. Colbourn, I. Thornton. Lead Pollution in Agricultural Soils[J]. European Journalof Soil Science, 1978,29(4):513-526.
    
    [20] J. Cotter-Howells, I. Thronton. Sources and Pathways of Environmental Lead toChildren in a Derbyshire Mining Village [J]. Environmental Geochemistry andHealth, 1991,13(2): 127-135.
    
    [21] P. Adamo, S. Dudka, M. J. Wilson, et al. Chemical and Mineralogical Forms of Cuand Ni in Contaminated Soils from the Sudbury Mining and Smelting Region,Canada [J]. Environmental Pollution, 1996,91(1): 11-19.
    
    [22] I. F. Walder, W. X. Chavez Jr. Mineralogical and Geochemical Behavior of MillTailing Material Produced from Lead-Zinc Skarn Mineraliztion, Hanover, GrantCounty, New Mexico, USA[J]. Environmental Geology, 1995, 26(1):1-18.
    
    [23] M. Piotrowska, S. Dudka, R. Ponce-Hernandez, et al. The Spatial Distribution ofLead Concentrations in the Agricultural Soils and Main Crop Plants in Poland[J].Science of the Total Environment, 1994,158(1-3): 147-155.
    
    [24]党志,N.Fowler,S.Watts,等.煤矸石自然风化过程中微量重金属元素的地球 化学行为[J].自然科学进展,1998,8(3):314-318.
    
    [25] H. E. Allen, D. J. Hansen. The Importance of Trace Metal Speciation to WaterQuality Criteria[J]. Water Environment Research, 1996,68(1): 42-54.
    
    [26] D. Zhu, A. P. Schwab, M. K. Banks. Heavy Metal Leaching from Mine Tailings asAffected by Plants[J]. Journal of Environmental Quality, 1999, 28(6): 1727-1732.
    
    [27] H. N. Hyun, A. C. Chang, D. R. Parker, et al. Cadmiun Solubility andPhytoavailability in Sludge-Treated Soils: Effects of Soil Organic Carbon[J].Journal of Environmental Quality, 1998, 27(2): 329-334.
    
    [28] J. M. Azcue, A. J. Zeman, A. Mudroch, et al. Assessment of Sediment andPorewater after One Year of Subaqueous Capping of Contaminated Sediments inHamilton Harbour, Canada[J]. Water Science and Technology, 1998, 37(6-7):323-329.
    
    [29] L. E. Bilali, P. E. Rasmussen, G E. M. Hall, et al. Role of Sediment Composition inTrace Metal Distribution in Lake Sediments[J]. Applied Geochemistry, 2002, 17(9):1171-1181.
    
    [30] J. V. Rios-Arana, E. J. Walsh, J. L. Gardea-Torresdey. Assessment of Arsenic and??Heavy Metal Concentrations in Water and Sediments of the Rio Grande at El Paso-Juarez Metroplex Region[J]. Environment International, 2004, 29(7): 957-971.
    
    [31]张辉.污染生态学[M].呼和浩特:内蒙古大学出版社,2001.
    
    [32]金相灿.中国湖泊水库环境调查研究[M].北京:中国环境科学出版社,1990.
    
    [33]邬建中,黄爱珠.浈水水体的重金属迁移与吸附特征[J].人民珠江,1996,1: 45-48.
    
    [34]陈双雅.中国水环境重金属污染的研究现状与防治对策[J].漳州职业大学学 报,2002(3):54-58.
    
    [35] K. S. Dexter, N. I. Ward. Mobility of Heavy Metals within Freshwater Sediments Affected by Motorway Stormwater[J]. Science of the Total Environment, 2004, 334-335(1): 271-277.
    
    [36]白晓慧,杨万东,陈华林,等.城市内河沉积物对水体污染修复的影响研究[J]. 环境科学学报,2002,22(5):562-565.
    
    [37]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992.
    
    [38]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社, 1992.
    
    [39]陈静生.铜在沉积物各相中分配的实验模拟与数值模拟研究-以鄱阳湖为例[J]. 环境科学学报,1987,7(2):140-149.
    
    [40]陈静生,王飞越,宋吉杰,等.中国东部河流沉积物中重金属含量与沉积物主 要性质的关系[J].环境化学,1996,15(1):8-14.
    
    [41]陈静生,刘玉机.水体金属污染潜在危害:应用沉积学方法评价[J].环境科技, 1989,9(1):16-25.
    
    [42]陈静生,王飞越,程成旗,等.中国东部主要河流颗粒物的元素组成[J].北京 大学学报(自然科学版),1996,32(2):206-214.
    
    [43]陈静生,王飞越,陈江麟.论小于63μm粒级作为水体颗粒物重金属研究介质 的合理性及有关粒级转换模型研究[J].环境科学学报,1994,14(4):419-425.
    
    [44]汤鸿宵.试论重金属的水环境容量[J].中国环境科学,1985,5(5):38-43.
    
    [45]王晓蓉,章惠珠,周爱和,等.金沙江重金属在颗粒物中的分布及其基本特征 [J].环境化学,1982,1(2):140-146.
    
    [46]王晓蓉,陆季鸿,彭峰.金沙江水系稀土元素环境背景值和地球化学特征[J]. 环境科学学报,1994,14(2):168-171.
    
    [47]王晓蓉,华兆哲,田笠卿,等.会沙江水系鱼体中稀土元素环境背景值研究[J].??南京大学学报(自然科学版),1993,29(3):414-421.
    
    [48]金相灿.黄河中游悬浮物对铜、铅、锌的吸附与释放研究[J].中国环境科学, 1983,3(4):10-17.
    
    [49]金相灿.黄河中游悬浮物对铜、铅、锌的吸附[J].见:黄河水资源保护文集[M]. 北京:北京大学出版社,1990,104-113.
    
    [50] K. Gruiz, A. Muranyi, M. Molnar, et al. Risk Assessment of Heavy Metal Contamination in Danube Sediments from Hungary[J]. Water Science and Technology, 1998, 37(6): 273-281.
    
    [51] A. Mudroch, J. M. Azcue. Manual of Aquatic Sediment Sampling[M]. Boca Raton: Lewis pubilication, 1995.
    
    [52] A. Landajo, G Arana, A. D. Diego, et al. Analysis of Heavy Metal Distribution in Superficial Estuarine Sediments (Estuary of Bilbao, Basque Country) by OpenFocusedMicrowave-Assisted Extraction and ICP-OES [J]. Chemosphere, 2004, 56(11): 1033-1041.
    
    [53] S. Olivares-Rieumont, D. De La Rosa, L. Lima, et al. Assessment of Heavy Metal Levels in Almendares River Sediments-Havana City, Cuba[J]. Water Research, 2005, 39(16): 3945-3953.
    
    [54]张朝生,王立军,章申.长江中下游河流沉积物和悬浮物中金属元素的形态特 征[J].中国环境科学,1995,15(5):342-347.
    
    [55] C. S. Zhang, L. J. Wang, S. Zhang. Speciation of Metal in Sediments and Suspended Matter in the Lower and Middle Reaches of the Changjiang River[J]. Journal of Basic Science and Engineering, 1994,2(4): 320-332.
    
    [56]张朝生,章申,王立军,等.长江与黄河沉积物金属元素地球化学特征及其比 较[J].地理学报,1998,53(4):314-322.
    
    [57]张朝生,章申,王立军,等.若干典型岩性区域沉积物金属元素地球化学特征 比较研究[J].环境科学学报,1998,18(2):172-176.
    
    [58]张朝生,章申,张立成,等.长江水系河流沉积物重金属元素含量的计算方法 研究[J].环境科学学报,1995,15(3):257-264.
    
    [59]贾振邦,梁涛,林健枝,等.酸可挥发硫对香港河流沉积物中重金属的毒性作 用[J].北京大学学报(自然科学版),1998,34(2):379-385.
    
    [60]贾振邦,梁涛,林健枝,等.香港河流重金属污染及潜在生态危害评价研究[J]. 北京大学学报(自然科学版),1997,33(4):485-492.
    
    [61]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].??地理科学,1997,17(1):81-86.
    
    [62]张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究 [J].环境化学,1997,16(5):429-434.
    
    [63]王立军,张朝生.珠江广州段水体沉积物和悬浮物中27种元素的含量与形态 分布特征[J].应用基础与工程科学学报,1997,7(1):12-17.
    
    [64]吕殿隶,吕兴娜,贾振邦,等.柴河水库沉积物中Pb、Zn对水库水质的影响分 析[J].辽宁城乡环境科技,1998,18(6):45-48.
    
    [65]文湘华.水体沉积物重金属质量基准研究[J].环境化学,1993,12(5):334-341.
    
    [66]张晓军,胡明安.大冶铁山地区河流水体及水系沉积物中重金属元素分布特 征[J].地质科技情报,2006,25(2):89-92.
    
    [67]王连生,郁亚娟,黄宏,等.淮河沉积物中重金属的测定和污染评价[J].环境 科学研究,2003,16(2):26-28.
    
    [68]何江,王新伟,李朝生,等.黄河包头段水-沉积物系统中重金属的污染特征 [J].环境科学学报,2003,23(1):53-57.
    
    [69]何江,王新伟,李朝生.黄河包头段沉积物中生物可给态重金属分布研究[J]. 环境科学研究,2002,15(1):20-23.
    
    [70]何江,李朝生,王新伟,等.黄河沉积物中重金属离子的形态转化及释放研究 [J].南京大学学报(自然科学版),2003,39(6):739-744.
    
    [71]何江,米娜,匡运臣,等.黄河包头段柱状沉积物中稀土元素的分布特征[J]. 农业环境科学学报,2004,23(2):250-254.
    
    [72]吕兰军.鄱阳湖重金属污染现状调查与分析[J].人民长江,1994,25(4):32-38.
    
    [73]韩伟民,胡水景,金卫,等.千岛湖水环境质量调查与保护对策[J].湖泊科学, 1996,8(4):337-344.
    
    [74]袁旭音.中国湖泊污染状况的基本评价[J].火山地质与矿山,2000,21(2): 128-136.
    
    [75]李金城,宋进喜,王晓蓉,等.太湖五里湖区表层沉积物中酸挥发性硫化物和 同步提取金属[J].湖泊科学,2004,16(1):77-88.
    
    [76]陈瑞生.河流重金属污染研究[M].北京:中国环境科学出版社,1988.
    
    [77]《环境中重金属研究文集》编辑组编.环境中重金属研究文集[C].北京:科学 出版社,1988.
    
    [78]弗斯特纳,维特曼主编(王忠玉,姚重华译).水环境的重金属污染[M].北京: 海洋出版社,1987.
    
    [79]单孝全,王仲文.形态分析与生物可给性[J].分析试验室,2001,20(6):??103-108.
    
    [80]慈云祥,周天泽.分析化学中的配位化合物[M].北京:北京大学出版社,1986.
    
    [81]蔡绪贻,林黎虹.重金属在水环境中形态分布的随机模拟[J].中国地质灾害与 防治学报,1997,8(2):40-47.
    
    [82]薛含斌.水环境重金属的化学稳定性及其吸附模式[J].环境化学,1985,4(3): 9-20.
    
    [83]王学军,陈静生.土壤、沉积物中微量重金属形态分配预测初步研究[J].环境 化学,1993,1 2(4):245-250.
    
    [84]李文霞,朋子荣,郭博书.天然水中重金属化学形态的研究[J].内蒙古师大学 报(自然科学汉文版),1994,1:42-47.
    
    [85]刘清,王子健,汤鸿宵.重金属形态与生物毒性及生物有效性关系的研究进展 [J].环境科学,1996,17(1):89-92.
    
    [86]李然,李嘉,赵文谦.水环境中重金属污染研究概述[J].四川环境,1997,16(1): 18-22.
    
    [87]刘演兵,韩恒斌.砷的形态分析方法研究进展[J].环境科学进展,1994,2(4): 1-14.
    
    [88]江桂斌.有机金属化合物形态分析[J].环境科学进展,1999,7(2):7-12.
    
    [89] C. M. Davidson, A. L. Duncan, D. Littlejohn, et al. A Critical Evalution of theThree-Stage BCR Sequential Extraction Procedure to Assess the Potential Mobilityand Toxicity of Heavy Metals in Industrially-Contaminated Land[J]. AnalyticaChimica Acta, 1998,363(1): 45-55.
    
    [90] T. T. Chao. Use of Partial Dissolution Techniques in Geochemical Exploration[J].Journal of Geochemical Exploration, 1984,20(2): 101-135.
    
    [91] K. Mesuere, R. E. Martin, W. Fish. Identification of Copper Contamination inSediments by a Microscale Partial Extraction Technique[J]. Journal ofEnvironmental Quality, 1991,20(1): 114-118.
    
    [92] A. Tessier, P. G C. Campbell, M. Bisson. Sequential Extraction Procedure for theSpeciation of Particulate Trace Metals[J]. Analytical Chemistry, 1979, 51(7):844-851.
    
    [93] G Rauret, R. Rubio, J. F. Lopez-Sanchez, et al. Specific Procedure for Metal SolidSpeciation in Heavily Polluted River Sediments[J]. International Journal ofEnvironmental Analytical Chemistry, 1989, 35(2): 89-100.
    
    [94] Y. M. Luo, P. Christie. Bioavailabilty of Copper and Zinc in Soils Treated with??Alkaline Stabilized Sewage Sludges[J]. Journal of Environmental Quality, 1998, 27(2): 335-342.
    
    [95] J. L. Gomez-Ariza, I. Giraldez, D. Sanchez-Rodas, et al. Metal Readsorption and Redistribution During the Analytical Fractionation of Trace Elemants in Oxic Estuarine Sediments[J]. Analytica Chimica Acta, 1999, 399(3): 295-307.
    
    [96]王亚平.城近郊土壤柱状剖面中重金属元素分布特征研究[J].矿物岩石地球 化学通报,2003,22(2):144-148.
    
    [97]冯素萍.河流底泥沉积物的形态分析[J].山东大学学报(理学版),2004,39(6): 101-105.
    
    [98]冯素萍,鞠莉,沈永,等.沉积物中重金属形态分析方法研究进展[J].化学分 析计量,2006,15(4):72-74.
    
    [99]王亚平,黄毅.土壤和沉积物中元素的化学形态及顺序提取法[J].地质通报, 2005,24(8):728-734.
    
    [100]王新伟,何江,李朝生.水体中重金属的形态分析方法[J].内蒙古大学学报 (自然科学版),2002,33(5):587-591.
    
    [101] J. L. Gomez-Ariza, I. Giraldez, D. Sanchez-Rodas, et al. Metal Sequential Extration Procedure Optimized for Heavily Polluted and Iron Oxide Rich Sediments[J]. Analytica Chimica Acta, 2000,414(1): 151-164.
    
    [102] G Rauret, R. Rubio, J. F. Lopez-Sanchez. Optimization of Tessier Procedure for Metal Solid Speciation in River Sediments[J]. International Journal of Environmental Analytical Chemistry, 1989,36(2): 69-83.
    
    [103] P. Quevauviller, A. Ure, H. Muntau, et al. Improvement of Analytical Measurements within the BCR-programme: Single and Sequential Extration Procedures Applied to Soil and Sediment analysis[J]. International Journal of Environmental Analytical Chemistry, 1993, 51(2): 129-134.
    
    [104] G Rauret, J. F. Lopez-Sanchez, A. Sahuquillo, et al. Improvement of the BCR Three-Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials[J]. Journal of Environmental Monitoring, 1999,1:57-61.
    
    [105] C. M. Davidson, R. P. Thomas, S. E. Mcvey, et al. Evaluation of Sequential Extraction Procedure for the Speciation of Heavy Metals In Sediments[J]. Analytica Chimica Acta, 1994, 291(3): 277-286.
    
    [106] J. Arunachalam, H. Emons, B. Krasnodebska, et al. Sequential Extraction Studies??on Homogenized Forest Soil Samples[J]. Science of the Total Environment, 1996,181(2): 147-159.
    
    [107] J. Pempkowiak, A. Sikora, E. Biernacka. Speciation of Heavy Metal in MarineSediments vs Their Bioaccumulation by Mussels[J]. Chemosphere, 1999, 39(2):313-321.
    
    [108] J. R. Bacon, I. J. Hewitt, P. Cooper. Reproducibility of the BCR SequentialExtraction Procedure in a Long-Term Study of the Association of Heavy Metalswith Soil Components in an Upland Catchment in Scotland[J]. Science of theTotal Environment, 2005,337(1-3): 191-205.
    
    [109]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境 监测,2005,21(4):21-27.
    
    [110] I. Maiz, M. V. Esnaola, E. Millan. Evaluation of Heavy Metal Availability in Contaminated Soils by a Short Sequential Extraction Procedure[J]. Science of the Total Environment, 1997,206(2-3): 107-115.
    
    [111]赵景波,蔡晓薇,王长燕.西安高陵渭河近120年来的洪水演变[J].地理科学, 2007,27(2):225-230.
    
    [112]赵景波,李胜利.西安高陵马坊滩渭河洪水变化研究[J].沉积学报,2006, 24(6):854-863.
    
    [113]王长燕,赵景波.50年来渭河中下游水环境演变[J].干旱区资源与环境,2006, 20(5):61-65.
    
    [114]王晓娟,钱会,康锦辉.渭河水中有机物在几种土壤中的吸附特性[J].生态 环境,2005,14(3):361-364.
    
    [115]李金荣,吴耀国,李云峰,等.硝态氮和苯胺在渭河渗滤系统中的迁移转化 特征[J].水资源研究,2005,26(2):35-38.
    
    [116]刘秀花,黄兴国,周春华.渭河陕西段水环境污染历时分析研究[J].水资源 保护,2005,21(5):70-72.
    
    [117]王雁林,王文科,杨泽元,等.渭河流域陕西段水资源与生态环境保护[J].地 球科学与环境学报,2004,26(1):79-84.
    
    [118]陈亚萍,康永祥.渭河干流陕西段水体中COD_(Mn),NH_3-N的时空变化特征[J]. 水土保持通报,2006,26(4):48-51.
    
    [119]王西琴,周孝德.渭河(陕西段)水环境质量的现状评价[J].西北大学学报(自 然科学版),1999,29(6):620-624.
    
    [120]奚旦立,孙裕生,刘秀英.环境监测[M].第三版.北京:高等教育出版社,??2004.
    
    [121]张敏,王德淑.长江铜陵段表层水中重金属含量及存在形态分布研究[J].安 全与环境学报,2003,3(6):61-64.
    
    [122] R. Salminen, V. Gregorauskiene. Considerations Regarding the Definition of aGeochemical Baseline of Elements in the Surfical Materials in Areas Differing inBasic Geology[J]. Applied Geochemistry, 2000,15(5): 647-653.
    
    [123] B. P. L. Goh, L. M. Chou. Heavy Metal Levels in Marine Sediments ofSingapore[J]. Environmental Monitoring and Assessment, 1997,44(1-3): 67-80.
    
    [124] R. Salmirren, T. Tarvainen. The Problem of Defining Geochemical Baseline. ACase Study of Selected Elements and Geological Materials in Finland[J]. Journalof Geochemical Exploration, 1997,60(1): 91-98.
    
    [125] S. P. Singh, F. M. Tack, M. G Verloo. Heavy Metal Fractionation andExtractability in Dredged Sediment Derived Surface Soils[J]. Water, Air, and SoilPollution, 1998,102(3-4): 313-328.
    
    [126] X. S. Wang, Y. Qin, Y. K. Chen. Heavy Metals in Urban Roadside Soils, Part 1:Effect of Particle Size Fractions on Heavy Metals Partitioning[J]. EnvironmentalGeology, 2006, 50(7): 1061-1066.
    
    [127]王学松.城市道路不同粒径沉积物中Pb的污染特征[J].淮海工学院学报(自 然科学版),2005,14(1):62-65.
    
    [128]国家环境保护总局,国家质量监督检验检疫总局.中华人民共和国国家标准 -地表水环境质量标准(GB3838-2002)[S].2002.
    
    [129] C. Luczak, M. A. Janquin, A. Kupka. Simple Standard Procedure for the Routine Determination of Organic Matter in Marine Sediment[J]. Hydrobiologia, 1997, 345(1): 87-94.
    
    [130] J. I. Santisteban, R. Mediavilla, E. Lopez-Pamo, et al. Loss On Ignition: a Qualitative or Quantitative Method for Organic Matter and Carbonate Mineral Content in Sediments[J]. Journal of Paleolimnology, 2004, 32(3): 287-299.
    
    [131] A. Beaudoin. A Comparison of Two Methods for Estimating the Organic Content of Sediments[J]. Journal of Paleolimnology, 2003,29(3): 387-390.
    
    [132]袁旭音,陈骏,季峻峰,等.太湖现代沉积物的物质组成和形成条件分析[J]. 南京大学学报(自然科学版),2002,38(6):756-765.
    
    [133]朱广伟,秦伯强,高光,等.灼烧对沉积物烧失量及铁、磷测定的影响[J].分 析试验室,2004,23(8):72-76.
    
    [134]刘子亭,余俊清,张保华,等.烧失量分析在湖泊沉积与坏境变化研究中的 应用[J].盐湖研究,2006,14(2):67-72.
    
    [135]徐争启,倪师军,张成江,等.金沙江攀枝花段水系沉积物中重金属的分布 特征及污染评价[J].物探化探计算技术,2004,26(3):252-255.
    
    [136]国家环境保护总局.环境背景值和环境容量研究[M].北京:科学出版社, 1993.
    
    [137]齐凤霞,郑丙辉,万峻,等.渤海湾(天津段)柱样沉积物重金属污染研究[J]. 海洋技术,2004,23(3):85-91.
    
    [138]中国环境监测总站,北京大学,中国科学院沈阳应用生态研究所,等.中国 土壤元素背景值[M].北京:中国环境科学出版社,1990.
    
    [139]王贵,张丽洁.海湾河口沉积物重金属分布特征及形态研究[J].海洋地质动 态,2002,18(12):1-5.
    
    [140]康勤书,吴莹,张经,等.崇明东滩湿地重金属分布特征及其污染状况[J].海 洋学报,2003,25(增刊2):1-7.
    
    [141]陈振楼,许世远,柳林,等.上海滨岸潮滩沉积物重金属元素的空间分布与 积累[J].地理学报,2000,55(6):641-651.
    
    [142] A. B. Cundy, I. W. Croudace, A. Cearreta, et al. Reconstructing Historical Trends in Metal Input in Heavily-Disturbed, Contaminated Estuaries: Studies from Bilbao, Southampton Water and Sicily[J]. Applied Geochemistry, 2003, 18(2): 311-325.
    
    [143]李京玲,陈乃尧.潭江下游和黄茅海沉积物理化性质与重金属含量的关系研 究[J].太原理工大学学报,2007,38(2):122-124.
    
    [144]方圣琼,胡雪峰,徐巍,等.长江口潮滩沉积物的性状对重金属累积的影响 [J].环境化学,2005,24(5):586-589.
    
    [145]邢光熹,朱建国.土壤微量元素和稀土元素化学[M].北京:科学出版社, 2003.
    
    [146]郑习健.珠江广州河段底泥中汞铜铅的污染及其与有机质硫化物积累的关系 [J].热带亚热带土壤科学,1994,3(3):132-137.
    
    [147]乔胜英,李望成,何方,等.漳州城市土壤重金属含量特征及控制因素[J]. 地球化学,2005,34(6):635-642.
    
    [148]柴之芳,祝汉民.微量元素化学概论[M].北京:原子能出版社,1994.
    
    [149]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.
    
    [150]王学军,陈静生.我国东部平原微量元素共生组合特征及含量预测[J].地球??化学,1994,23(增刊):124-133.
    
    [151]刘伟,陈振楼,许世远,等.上海市小城镇河流沉积物重金属污染特征研究[J]. 环境科学,2006,27(3):538-543.
    
    [152]乔永民.粤东近岸海域沉积物重金属环境地球化学研究[D].广州:暨南大学, 2004.