大功率风力发电机组轮毂的结构强度分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境是当今人类生存和发展所要解决的紧迫问题。风力发电清洁无污染,施工周期短,投资灵活,占地少,具有较好的经济效益和社会效益。随着风力发电机装机容量日益增大,机组所受的载荷情况也越来越复杂,从而使得风力机及其零部件的安全问题变得尤为突出。为了要确保风力机在其设计寿命内能够正常地运行,首先必须对风力发电机组的关键零部件展开设计研究。
     轮毂是风力发电机组中的一个重要部件,它形状复杂,轮毂设计的好坏将直接影响到整个机组的正常运行和使用寿命,因此有必要在极限载荷条件下对轮毂进行静态分析和疲劳计算,以确定整个轮毂的应力分布情况,从中找出最危险的部位,为轮毂设计提供可靠的依据。另外根据轮毂强度计算的余量,必要时对轮毂进行优化设计分析,以达到减轻重量,降低成本的目的。
     本文基于有限元法的基本理论,对轮毂进行了以下研究:
     ①基于有限元法的建模理论,利用网格划分软件HyperMesh建立了两种轮毂有限元模型:一种是四面体单元模型,划分简单,可以使用有限元程序自动生成,故使用普遍;另一种是六面体单元模型,由于三维网格具有空间几何实体描述和三维网格的自动生成算法的复杂性,使得三维网格,尤其是六面体网格的划分,具有较大难度,一般只能靠工作人员手动生成。并对两种单元类型的模型进行了细致的分析比较。
     ②对某型轮毂有限元模型进行极限强度、疲劳及接触有限元建模及分析校核计算,并对结果进行了分析,提出了优化设计意见。分析计算所得数据与企业随后的实验数据进行过对比,结果基本一致。从而验证了本文所研究方法的正确性,确保了轮毂具有足够的强度和使用寿命。
     ③结合本文对某型轮毂的研究,采用相似原理和拓扑优化的方法,借助有限元软件Altair提供的OptiStruct模块开发出了新型轮毂的结构模型,本轮毂模型适用一般WM级大型风力发电机组。本文并对开发的轮毂进行了静应力校核,满足预期开发目标。
     因此,本论文对为大型风力发电机组轮毂的分析和自主设计提供科学可靠的依据,大大缩短了开发时间,节约了开发成本。对企业解决轮毂安全和寿命的问题具有重要的理论意义和工程实用价值,为开发具有自主知识产权的国产化风力发电机组奠定了坚实基础。
Energy and environment have become critical issues for the survival and development of human beings nowadays. Since bearing the advantages of non-pollution, time-saving, flexible-investment, room-saving, wind power has good economical and social benefits. With the wind turbine becoming larger and larger, and the load it endured is also very complicated, the problem of safety in the wind turbine of its components becomes more and more important. In order to maintain over its anticipated service life, must first launch the design research to wind turbine's essential spare part.
     Hub is an important component of Wind turbine for its complex shape. The design of hub has direct impact the operation of wind turbine in its anticipated service life. Therefore, it is necessary to calculate static and fatigue analysis under various ultimate loads, which can display the distribution of stress, and find out the most dangerous locations.
     Based on the theory of finite element method, the main contents are following:
     ①According to the modeling principle of finite element method, two finite element models have been established based on its geometric model through simplification processes. One model consists of tetrahedron elements, which has been set simply, and divided mesh grid by automeshing. The other is hexahedron element model. The three-dimensional grid is complicated, especially hexahedron, which has been generated by manual dividing. On the basis of this, two types of model have been carried out meticulous analysis and comparison.
     ②The ultimate strength, fatigue and contact analysis have been researched on finite element model of the hub. The result is consistent by contrast the obtained data and the test data, which has verified correctness of this method by the main body of paper. This hub has sufficient intensity and life time.
     ③With this paper, one hub of the study, using similar principles and topology optimization methods, provided the OptiStruct module with the aid of finite element software Altair to develop the new hub's structural model, this hub model was suitable the general WM level large-scale wind turbine. This article and has carried on the static stress examination to the development hub, satisfies the anticipated development goal.
     Therefore, the paper to provides the science reliable basis for the large-scale wind turbine hub's analysis and the independent design, reduced the development time greatly, saved the development cost. Solves the hub security and the life problem to the enterprise has the important theory significance and the engineering practical value, was the development has the independent intellectual property rights. Manufacture domestically wind turbine to lay the solid foundation.
引文
[1]中华人民共和国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书[M].北京:中国计划出版社,2000.
    [2]尹炼,刘文洲.风力发电[M].北京:中国电力出版社,2002.5.
    [3]国家计委、国家科委、国家经贸委.《新能源和可再生能源发展纲要》[R].1995.
    [4]张焕芬等.先进国家的风力发电现状及其前景.甘肃科学学报[J].1998,(10):59-64.
    [5]中华人民共和国电力工业部,中国风电[M].1998.
    [6]张源,张承来.中国风电发展的现状与对策.风力发电[J]. 2001,(2):1-8.
    [7]李景涌.有限元法[M].北京邮电大学出版社. 1999.2.
    [8] J.H Argyris, S. Kelsey. Energy Theorems and Structural Analysis[M]. Butter-Worth,London. 1960.
    [9] M.J. Turner, R.W. Clough, H.C. Martin. Stiffness and Deflection Analysis of Complex Structures[M]. 1956,23(9):805-823.
    [10] R.J.Melosh. Basis for Derivation of Element Stiffness Matrices by Assumed Stress Distributions[M]. AiAA J.2. 1964,(9):1631-1637.
    [11] T.H.H. Pian. Derivation of Element Stiffness Matrices by Assumed Stress Distributions. AiAA J.2. 1964,9:1333-1336.
    [12] R.E. Jones. A Generlization of the Direct Stiffness Method of Structural Analysis[M]. AIAA, J.2. 1964,5:821-826.
    [13] Yamamoto. A Formulation of Matrix Displacement Method. Dept of Aero[M]. Astro M.J.T. 1966.
    [14] L.R Herrmann. A Bending Analysis for Plates. Proc 1st Conf on Matrix Meth in Struct Mech[M]. 1965.
    [15] O.C. Zienkiewicz. The Finite Element Method. 3d ed. McGraw-Hill Ltd.,Londonn[M]. 1977.
    [16] Y.K Cheung. Finite Strip Method in Structual Analysis. Pergamon Press[M]. 1976.
    [17]施鹏飞.风力发电在中国的现状和前景.水力发电学报[J]. 1998.3:1-14.
    [18]尹柏生.有限元分析系统的发展与展望.计算机世界[J]. 2000.3:1-2.
    [19] Daryl L.Logan.有限元方法基础教程[M].北京:电子工业出版社,2003.8.
    [20]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [21]俞铭华,吴剑国,王林.有限元法与C程序设计[M].北京:科学出版社,1998.3.
    [22]刘兵山,黄聪. Patran从入门到精通[M].中国水利水电出版社,2003.3.
    [23]孙长任,杜家政,卢绪智等. MSC.Nastran应用实例教程[M].北京:科学出版社,2005.6.
    [24] The MacNeal-Schwendler Corporation.MSC/PATRAN基础培训教程[S].2004.
    [25]张永昌. MSC.Nastran有限元分析理论基础与应用[M].北京:科学出版社,2004.
    [26]马爱军,周传月,王旭.Patran和Nastran有限元分析专业教程[M].北京:清华大学出版社,2005.1.
    [27]杜平安.有限元网格划分的基本原则.机械设计与制造[J],2000 .(1):34-36.
    [28] [美]J.E艾金.有限元法的应用与实现[M].1992.
    [29]库克R D.有限元分析的概念和应用[M].北京:北京科学出版社,1990.
    [30]宫靖远.风电场工程技术手册[S].北京:机械工业出版社,2004.
    [31]孙江洪,刘博.Pro/ENGINEER Wildfire高级应用详解[M].北京:中国水利水电出版社,2006.
    [32]周四新,和青芳.Pro/ENGINEER Wildfire曲面设计[M].北京:机械工业出版社,2004.4.
    [33]韩玉龙.Pro/ENGINEER Wildfire产品造型设计专业教程[M].北京:清华大学出版社,2004.11.
    [34] [美]David S.Kelley.Pro/ENGINEER Wildfire机械设计教程[M].北京:清华大学出版社,2005.10.
    [35]陈志平,施浒立.三维实体建模与有限元分析的关系.电子机械工程[J],2002.(3):12-16.
    [36] Sellgren U, Colfsson U. Application of a constitutive model for microslip in finite element analysis[J]. Comput Mech Appl Mesh Engng,1999,170:65-77.
    [37] Jefferry M.Steele. Applide Finite Element Modeling[M]. New York: Eastman Kodak Company Rochester,1989.
    [38]黄祖瑗,耿长青.有限元动力分析非线性分析应注意的问题.机械强度[J].2000,(6):159-160.
    [39]张汝清,詹先义.非线性有限元分析[M].重庆:重庆大学出版社,1990.
    [40]陈晓霞,祝芳浩,叶旭桢,胡建琴.塔机有限元分析结构模型图的参数化生成.甘肃工业大学学报,2000,26(3):84-88
    [41]于开平,周传月,谭惠丰.HyperMesh从入门到精通[M].科学出版社,2005,(5).
    [42]王章奇,安利强等.有限元分析结果的可视化处理方法.工程图学学报[J].2002,(1):72-77.
    [43]朱渝春,蹇开林.工程机械底架结构有限元分析的技术处理.工程机械[J].2002,(1):13-15
    [44]尹柏生.有限元分析系统的发展现状与展望.计算机世界[J].2000,(3):12-16.
    [45] PETER J.HEYES.基于有限元的疲劳设计分析系统[M].林晓斌译. MSN/FATIGUE,中国机械工程,1998,(11).
    [46]苏志霄,李鹏飞等.随机应力循环下结构疲劳寿命和可靠性的计算.机械强度[J] .1999,(6):137~140.
    [47]周传月,郑红霞等.MSC.Fatigue疲劳分析应用与实例[M].北京:科学出版社,2005.
    [48]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [49]杨兴海.金属结构中螺栓连接的疲劳设计.水利水电施工机械[J].1997,(1):15-18.
    [50]赵少汴.等幅载荷下的有限寿命疲劳设计方法.机械设计[M].1999,(12):3-5.
    [51] Vasilis A. Riziotis, Spyros G. Voutsinas. Fatigue loads on wind turbines of di!erent control strate- gies operating in complex terrain. Journal of Wind Engineeringand Industrial Aerodynamics[C]. 2000 ,(85 ):211-240.
    [52] Kenneth Thomsen, Poul Strensen. Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineeringand Industrial Aerodynamics[C].1999 ,(80) :121-136.
    [53]江见鲸,何放龙等.有限元法及其应用[M].北京:机械工业出版社,2006.
    [54]孙靖民,米成秋.机械结构优化设计[M].哈尔滨:哈尔滨工业大学出版社,1985.
    [55]邵鹏礼,魏来生.传动箱有限元计算与优化.车辆与动力技术[J]. 2002,(3):31~35.
    [56]梁尚明,殷国富.现代机械优化设计方法[M].北京:化学工业出版社,2005.
    [57]孙靖民.机械优化设计(第3版)[M].北京:机械工业出版社,2003.6.
    [58]张济川.机械最优化设计及应用实例[M].北京:新时代出版社,1990.
    [59] Rekaitis,G. V., Ravindran A., and Ragesdell, K.M. Engineering Optimization-Method and Applications[M]. New York, John iley and Sons, 1983.
    [60] P.P.Friesman. Application of the Element Method to Rotary-Wing Aeroelasticity Journal[M].May 1982,(5):716-723.
    [61] P. Fuglsang*, H.A. Madsen. Optimization method for wind turbine rotors . Journal of Wind Engineering and Industrial Aerodynamics[M]. 1999 ,(80) :191-206.
    [62]叶康生,袁驷.壳体的有限元线法分析.工程力学[J].2002,(3):16-23.
    [63] American Wind Energy Association. Global Wind Energy Market Report[C].2004, (3):13-16.
    [64] Erich Hau.Guidelines for Design of Wind Turbines[S].DNV/Riso, 2000.
    [65] M. A. Mikitarenko, A. V. Perelmuter Safe Fatigue Life of Steel Towers under the Action of Wind Vibiration Journal if Wind Engineering and Industrial Aerodynamics[M].1998.
    [66] Hani M. Negma, Karam Y. Maalawib, Structural design optimization of wind turbine towers. Computers and Structures [M].2000 ,(74) :649-666.