菲在蚯蚓体内的分布及其对蚯蚓抗氧化防御体系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚯蚓在陆生生态系统中居于重要地位,是许多动物的食物来源。土壤中疏水性有机污染物,尤其是持久性有机污染物能蓄积在蚯蚓体内,并可能通过食物链的富集和放大作用影响整个土壤生态系统的平衡和健康。然而,对于疏水性有机污染物在蚯蚓体内的归趋并没有完全揭示清楚。本文第一部分(包括第二章和第三章)在评述蚯蚓蓄积疏水性有机污染物的相关研究现状的基础(第一章)上,以菲作为疏水性有机污染物的代表,较为系统地探讨了“污染物在蚯蚓体内如何分布和吸收潜力”等问题,完善了疏水性有机污染在蚯蚓体内归趋的相关知识。
     蚯蚓是土壤生态毒理测试标准的模式动物之一,蚯蚓生物标志物常用作土壤污染风险评价研究。然而,蚯蚓生物标志物理论并没有在实践中得到广泛应用。本文在第二部分(第四章),在评述蚯蚓蓄积疏水性有机污染物的相关研究现状的基础上(第一章第4节),以蚯蚓体抗氧化防御体系为代表,研究了抗氧化防御体系在蚯蚓生长过程中的变化,在成年蚯蚓亚机体水平上的分布,并进一步探讨了疏水性有机污染物菲对蚯蚓抗氧化防御体系分布的影响。
     研究显示:
     1)采用分层次的方法系统研究了菲在蚯蚓体不同分组水平上的分布,菲在蚯蚓体内的分布是异质性的。具体体现在,(a)在亚机体水平上,低浓度处理下,菲在不同组分中的浓度没有表现出显著性差异,但在高浓度水平上,菲浓度分布格局从后部>生殖环节>前部逐渐转变为后部≈生殖环节>前部,而菲在蚯蚓体内的分布比例在所有的处理中均呈现出后部(58~72%)>前部(18~24%)>生殖环节(12~19%)格局;(b)在组织水平上,菲浓度呈现出蚯蚓肠道>体腔液>表皮的规律,而分布比例则呈现出表皮和肠道(分别为38%-43%和34%-47%)>体腔液(15%-22%)的格局;(c)在亚细胞水平上,菲在胞外组分中的浓度是其是胞内组分中浓度的4.68到1.23倍,而分配比例则从胞外组分(51~61%)>胞内组分(39-48%)逐渐变为胞内组分(51-70%)>胞外组分(29~49%)的规律。基于这些结果,我们推测蚯蚓体内的循环系统和分泌系统是菲在亚机体水平上分布差异的原因,而在组织水平和亚细胞水平上,菲从体表到体腔液和从细胞外到细胞内的分配机制为被动扩散。
     2)蚯蚓对菲的吸附呈现显著线性关系,说明分配作用是土壤溶液中菲进入蚯蚓体的主要机制;推导出的蚯蚓对菲的最大吸收值(410.76和365.12mg kg-1)同Jager等构建机制模型(mechanistic model)预测值(346.08mg kg-1)相一致,支持了该模型所做的前提假设。
     3)为了解释菲在蚯蚓体内的分布格局,采用批量吸附试验研究了亚机体和组织水平组分对菲的吸附。研究结果表明,在亚机体水平上,蚯蚓各组分对菲的吸附均呈现显著线性关系,但吸附能力呈现后部>生殖环节>前部的格局,这同真实菲在蚯蚓体内的分布格局存在不同,说明了仅仅用分配作用难以解释这种现象,而蚯蚓生命活动如覆盖全身的循环系统能较好的解释;在组织水平上,蚯蚓各组分对菲的吸附亦呈现显著线性关系,且吸附能力呈现出肠道>表皮的格局,同真实的菲在二者间的分布现象一致,说明分配作用能较好的解释菲在蚯蚓组织水平上的分布。
     4)蚯蚓抗氧化酶系统随着生长过程的不同阶段是变化的,幼年蚯蚓显示出较高的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,而成年蚯蚓中过氧化氢酶(CAT)活性相对较高,丙二醛(MDA)含量在蚯蚓生长过程中保持相对稳定的含量。表明蚯蚓在成长的不同阶段,遭受不同的活性氧(ROS)胁迫并对活性氧胁迫并具有不同的应对策略,同时也说明,在理想条件下,蚯蚓抗氧化防御体系的功能是有效的,使MDA含量在一个较低的水平。
     5)抗氧化酶在蚯蚓体内的分布是异质性的,SOD活性分布为生殖环节>前部≈后部,CAT活性分布为后部>前部≈生殖环节,POD活性遵循前部>后部>生殖环节的规律。MDA主要分布在生殖环节处。说明在整个抗氧化防御系统维持低水平的ROS过程中,不同部位不同种类的抗氧化酶起的作用不同。这些结果表明,在蚯蚓生长过程中,蚯蚓的不同部位应对活性氧的策略不同的,这有助于我们全面认识蚯蚓的抗氧化防御体系和更好的应用于土壤污染的风险评价。
     6)本研究中,也观察到暴露时间是一种环境胁迫因子,因为它不但影响了成年蚯蚓抗氧化酶的活性,而且影响了其分布格局。基于此,我们提出了“胁迫强度(stress magnitude)"的概念,指暴露时间与暴露浓度的共同效应的函数,即胁迫强度=污染物浓度×暴露时间,可以更加全面地反映非生物因子对生物的综合作用。
     7)我们还通过接触滤纸试验研究了菲对成年蚯蚓抗氧化酶系统分布的影响,结果表明,生殖环节处的SOD酶和POD酶活性对菲的胁迫敏感,可能是一个较好反映菲污染胁迫的指标,而位于蚯蚓前部和后部的CAT活性则对菲的胁迫比其它两种酶敏感。这些结果有利于更好地应用蚯蚓生物标志物反映污染胁迫。
     本文的研究结果完善了蚯蚓同土壤中疏水性机污染物的相互作用的知识,为从整体上把握蚯蚓蓄积疏水性有机污染物过程及机理,进一步认识蚯蚓对疏水性有机污染物的解毒/致毒机制并保障食物链的安全提供了理论依据。本文蚯蚓生物标志物的研究,对于促进蚯蚓生物标志物的实际应用具有一定的启发作用。
Earthworm is an important food resource for many predators and plays a key role in terrestrial ecosystem. Hydrophobic organic contaminants (HOCs), especially persistent organic pollutants (POPs) can accumulate in earthworms and influence the balance and health of soil ecosystem via the enrichment and magnifying effects of food chains. Therefore, comprehensive and complete understanding the interaction between HOCs and earthworms is necessary to secure the food chain. Among the related issues, the fate of HOCs in earthworms especially needs to be further elucidated. In the first part of this paper, we reviewed the processes of earthworm accumulation of hydrophobic organic pollutants and their prediction models in Chapter1. Then we took the phenanthrene (PHE) as a typical representative for polycyclic aromatic hydrocarbons (PAHs) and Eisenia fetida for earthworm to explore "what the distribution of HOCs in earthworms is and how much HOC earthworms are able to accumulate"(Chapters2and3). The results might provide insight into enrich the knowledge of the fate of HOCs in earthworms and the mechanism of taking up and accumulating HOCs by earthworm.
     Earthworm is recommended test animals in soil ecotoxicological assay and earthworm biomarkers are often employed to assess the risk of soil pollution. However, although earthworm biomarkers studies have been carried on for almost30years, they can still not be used in the practical soil pollution risk assessment and there are several issues need to be elucidated. Therefore, in the second part of this paper, we reviewed the progress of earthworm biomarker study and its application in soil pollutant risk assessment in first chapter. Based on the current stastus, taking the anti-oxidant defense enzymes as the representive of biomarkers, we studied the basal levels of anti-oxidant system at different life stages (juvenile and adult) and the basal distribution in different regions of adult earthworms (pre-clitellum, clitellum and post-clitellum) was studied using filter contact tests. Furthermore, we also investigated effects of PHE at different exposure levels on anti-oxidant enzymes along the earthworm body (Chapter4).
     Results showed:
     1) To understand the behavior and fate of HOCs in earthworms, the distributions of phenanthrene (PHE) in Eisenia fetida were studied at sub-organism level (pre-clitellum, clitellum and post-clitellum), tissue level (bodywall, gut and body fluid) and subcellular level (intracellular fraction and extracellular fraction). Earthworms were incubated in soils spiked with PHE (lOmg kg-1, i.e., LC treatment and50mg kg-1, i.e., HC treatment) and sampled at different time intervals. Results showed concentration and relative distribution proportion (DP) of PHE in earthworms varied with the different treatments, overall, a) at sub-organism level, the concentration of PHE appeared no difference between sub-organism fractions at LC treatment, while existed significant difference (p<0.05) among the sub-organism fractions at HC treatment, following post-clitellum> clitellum>pre-clitellum (5days), and gradually reached post-clitellum≈clitellum>pre-clitellum (7and14days). DP followed post-clitellum (58~72%)> pre-clitellum (18~24%)> clitellum (12~19%) in all cases; b) At tissue level, the concentration of PHE followed gut> body fluid> bodywall, and DP of PHE followed bodywall and gut (38%-43%and34%-47%, respectively)> body fluid (15%-22%); c) at subcellular level, the concentrations of PHE in extracellular fraction were4.68to1.23times higher than in the intracellular fraction and DP of PHE followed from extracellular fraction (51~61%)> intracellular fraction (39~48%) to intracellular fraction (51~70%)> extracellular fraction (29~49%) gradually. Based on the results, the possible function of circulatory system at sub-organism level for PHE distribution was discussed and concluded. Partition way (passive diffusion) of PHE between body wall-body fluid-gut and processes of PHE entry inner cellular (passive diffusion) were supported by the results.
     2) The sorption of phenanthrene by earthworms was investigated using a batch approach. The sorption of phenanthrene could be well described by a liner isotherm (r>0.98), indicating that the partition process is the main mechanism of PHE entry earthworms. The maximum PHE uptake by earthworms is consistent with the prediction of Jajer's mechanism model, which favored the hypothesis of the model.
     3) To explain the distribution pattern of PHI in earthworms at sub-organism and tissue level, the sorption of PHE onto different fractions of earthworms was investigated through a batch approach. At sub-organism level, the sorption of phenanthrene could be well described by a liner isotherm and the sorption capacity in different parts followed the post-clitellum> clitellum> pre-clitellum, which was different from the real distribution pattern of PHE in earthworms. The phenomenon indicated that partition theory is not good enough to explain it unless integrated the earthworm's life activity such as the circle system along the body of earthworms. At tissue level, the sorption isotherm are also linear and the sorption capacity was arranged as the gut> body wall, which is consistent with the real distribution of PHE at tissue level, indicating that partition theory can explain it well.
     4) Basal level and pattern of anti-oxidant system in different development stages in earthworm were different. Juvenile earthworms show significantly higher superoxide dismutase (SOD) and peroxidase (POD) activity while adult earthworms possess higher catalase (CAT) activity, meaning earthworms inflict different reactive oxidative species (ROS) stress and have different strategies coping with such ROS stress during the growth process. Malondialdehyde (MDA) content stays a relatively stable equal level in both groups and indicates a basal level of cellular lipid peroxide in healthy earthworms.
     5) Distribution of anti-oxidant system in different regions of adult earthworms is heterogeneous. SOD activity in these regions follows, in descending orders, clitellum> pre-clitellum-post-clitellum, CAT activity, follows, post-clitellum> pre-clitellum≈clitellum, and POD follows pre-clitellum> post-clitellum> clitellum. MDA mainly locates in clitellum region.
     6) We also concluded that time is an important environmental stress factor, which has been observed impacting not only the anti-oxidant enzyme activity but also their distribution patterns in earthworms. Based on the conclusion, the term "stress magnitude" was defined as a function of exposure concentration and time, i.e. stress magnitude exposure time×exposure concentrations, which might provide a new insight for understanding the stress ecology and ecotoxicology.
     7) Finally, effects of PHE on distribution of anti-oxidant system imply that SOD and POD activity in clitellum regions might be a good indicator for PHE stress while CAT activity in pre-clitellum and post-clitellum regions is more sensitive to PHE stress. Change of MDA content showed in our study, the stress magnitude threshold for earthworms is exposed to low PHE concentration for48h, and when earthworms suffer a higher PHE stress magnitude (48h exposure in high PHE, concentration condition), the substantial and irreversible damage occurred.
     To sum up, the paper covered several neglected issues in earthworm ecotoxicology. It provided a global impression for the fate of HOCs in earthworm and therefore enriched the knowledge of interaction between HOCs and earthworms. It is heuristic for promoting the application of earthworm biomarkers in real soil pollution risk assessment.
引文
卜春红,高大文,2006.蚯蚓回避反应在生态毒理研究中的应用进展.农业环境科学学报25,799-804.
    晁雷,2007.污染土壤修复基准建立的方法体系,案例研究与评价[D]:博士论文.
    晁雷,周启星,陈苏,2006.建立污染土壤修复标准的探讨.应用生态学报17,331-334.
    陈颖,王子健,2005.用彗星试验检测土壤污染对蚯蚓活体基因损伤.土壤学报42,577-583.
    高敏苓,戴树桂,2006.土壤中有机污染物生物可利用性研究进展.华中农业大学学报25,334-340.
    高彦征,凌婉婷,朱利中,沈其荣,2005a.黑麦草对多环芳烃污染土壤的修复作用及机制.农业环境科学学报24,498-502.
    高彦征,朱利中,凌婉婷,熊巍,2005b.土壤和植物样品的多环芳烃分析方法研究.农业环境科学学报24,1003-1006.
    胡淼,陈欢,田蕾,胡锋,魏正贵,李辉信,2008.蚯蚓对细菌降解土壤中菲的作用.应用生态学报19,218-222.
    孔繁翔,尹大强,严国安,2000.环境生物学.高等教育出版社.
    李健雄,郭明昉,廖崇惠,2007.蚯蚓生态毒理试验现状与发展趋势.生态学杂志26,1297-1302.
    李洁明,孙红文,李阳,王翠苹,张彦峰,张清敏,2008.蚯蚓辅助微生物修复芘污染土壤.环境科学学报28,1854-1860.
    李培军,熊先哲,杨桂芬,刘宛,许华夏,台培东,2003.动物生物标志物在土壤污染生态学研究中的应用.应用生态学报14,2347-2350.
    李晓军,李培军,蔺昕,2007.土壤中难降解有机污染物锁定机理研究进展.应用生态学报18,1624-1630.
    刘振宇,杨凤林,全燮,张晓红,2006.河流环境持久性有机污染物归宿的动态逸度模型.环境科学27,121-125.
    马丽丽,2012.土壤中多环芳烃(PAHs)的形态分布及其与蚯蚓相互作用的研究[M].南京农业大学,南京.
    宋广宇,2010.邻苯二甲酸酯在土壤—植物系统中的生物有效性研究.南京农业大学.
    孙铁珩,污染生态学,周启星,李培军,2001.污染生态学.北京:科学出版社.
    田蕾,陈小云,胡淼,杨淑莉,李辉信,胡锋,2008.蚯蚓及蚓粪对白腐真菌降解土壤中菲的动态影响.农业环境科学学报27,221-225.
    王磊,宋玉芳,张薇,陈朗,2009.蚯蚓(Eisenia fetida)细胞色素P450及抗氧化酶系对环境浓度苯并(a)芘的响应.农业环境科学学报28,337-342.
    吴尔苗,王军良,赵士良,李辉龙,吴石金,2011.菲和芘单一及复合污染对蚯蚓抗氧化酶活性和 丙二醛含量的影响.环境科学学报31,1077-1085.
    徐池,陈剑东,徐莉,胡锋,李辉信,2012.利用彗星试验检测Cu2+对驯化蚯蚓的基因损伤.生态学杂志31,1791-1797.
    薛银刚,王晓蓉,顾雪元,孙成,2009.四溴双酚A对赤子爱胜蚓的急性毒性及抗氧化防御系统酶的影响.生态毒理学报4,93-100.
    颜增光,何巧力,李发生,2007.蚯蚓生态毒理试验在土壤污染风险评价中的应用.环境科学研究20,134-142.
    袁馨,潘声旺,陈勇,何秋霖,2011.蚯蚓对土壤-植物系统中菲,芘降解的强化效应研究.农业环境科学学报30,904-911.
    张静,马丽丽,焦加国,刘满强,胡锋,李辉信,2010.菲,芘在单一和复合污染条件下不同老化阶段的提取率及其生物有效性.土壤42,32985-32389.
    张丽,戴树桂,2005.多介质环境逸度模型研究进展.环境科学与技术28,97-99.
    张薇,宋玉芳,孙铁珩,刘淼,2007a.土壤低剂量芘污染对蚯蚓若干生化指标的影响.应用生态学报18,2097-2103.
    张薇,宋玉芳,孙铁珩,宋雪英,周启星,郑森林,2007b.菲和芘对蚯蚓(Eisenia fetida)细胞色素P450和抗氧化酶系的影响.环境化学26,202-206.
    周启星,王美娥,2006.土壤生态毒理学研究进展与展望.生态毒理学报1,1-11.
    朱淑贞,祝凌燕,刘慢,常春,2010.五溴联苯醚-镉胁迫下蚯蚓抗氧化防御反应.环境科学与技术11,005.
    邹德勋,骆永明,徐凤花,滕应,李振高,2007.土壤环境中多环芳烃的微生物降解及联合生物修复.土壤39,334-340.
    Alexander, M.,2000. Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science & Technology 34,4259-4265.
    Alkorta, I., Garbisu, C.,2001. Phytoremediation of organic contaminants in soils. Bioresource Technology 79,273-276.
    Arnaud, C., Saint-Denis, M., Narbonne, J., Soler, P., Ribera, D.,2000. Influences of different standardised test methods on biochemical responses in the earthworm Eisenia fetida andrei. Soil Biology and Biochemistry 32,67-73.
    Arnold, R., Hodson, M.,2007. Effect of time and mode of depuration on tissue copper concentrations of the earthworms Eisenia andrei, Lumbricus rubellus and Lumbricus terrestris. Environmental Pollution 148,21-30.
    Arrnitage, J.M.,2004. Development and Evaluation of a Terrestrial Food Web Bioaccumulation Model. Simon Fraser University.
    Baas, J., Jager, T., Kooijman, B.,2010. Understanding toxicity as processes in time. Science Of The Total Environment 408,3735-3739.
    Bamforth, S.M., Singleton, I.,2005. Bioremediation of polycyclic aromatic hydrocarbons:current knowledge and future directions. Journal of Chemical Technology & Biotechnology 80,723-736.
    Barbour, J.P., Smith, J.A., Chiou, C.T.,2005. Sorption of aromatic organic pollutants to grasses from water. Environmental Science & Technology 39,8369-8373.
    Bartlett, M.D., Briones, M.J.I., Neilson, R., Schmidt, O., Spurgeon, D., Creamer, R.E.,2010. A critical review of current methods in earthworm ecology:From individuals to populations. European Journal of Soil Biology 46,67-73.
    Belfroid, A.C., Scinen, W., van Gestel, K.C.A.M., Hermens, J.L.M., van Leeuwen, K.J.,1995. Modelling the accumulation of hydrophobic organic chemicals in earthworms. Environmental Science and Pollution Research 2,5-15.
    Bengtsson, G, Nordstrom, S., Rundgren, S.,1983. Population density and tissue metal concentration of lumbricids in forest soils near a brass mill. Environmental Pollution Series A, Ecological and Biological 30,87-108.
    Booth, L., Palasz, F., Darling, C., Lanno, R., Wickstrom, M.,2003. The effect of lead-contaminated soil from canadian prairie skeet ranges on the neutral red retention assay and fecundity in the earthworm Eisenia fetida. Environmental toxicology and chemistry 22,2446-2453.
    Booth, L.H., Hodge, S., O'Halloran, K.,2001. Use of Biomarkers in Earthworms to Detect Use and Abuse of Field Applications of a Model Organophosphate Pesticide. Bulletin of Environmental Contamination and Toxicology 67,0633-0640.
    Booth, L.H., O'Halloran, K.,2009. A comparison of biomarker responses in the earthworm Aporrectodea caliginosa to the organophosphorus insecticides diazinon and chlorpyrifos. Environmental toxicology and chemistry 20,2494-2502.
    Boyle, T.P., Fairchild, J.F.,1997. The role of mesocosm studies in ecological risk analysis. Ecological Applications 7,1099-1102.
    Breus, I., Mishchenko, A.,2006. Sorption of volatile organic contaminants by soils (a review). Eurasian Soil Science 39,1271-1283.
    Brown, P.J., Long, S.M., Spurgeon, D.J., Svendsen, C., Hankard, P.K.,2004. Toxicological and biochemical responses of the earthworm Lumbricus rubellus to pyrene, a non-carcinogenic polycyclic aromatic hydrocarbon. Chemosphere 57,1675-1681.
    Button, M., Koch, I., Reimer, K.J.,2012. Arsenic resistance and cycling in earthworms residing at a former gold mine in Canada. Environmental Pollution 169C,74-80.
    Calisi, A., Lionetto, M., Schettino, T.,2011. Biomarker response in the earthworm Lumbricus terrestris exposed to chemical pollutants. Science of The Total Environment 409,4456-4464.
    Capowiez, Y., Rault, M., Mazzia, C., Belzunces, L.,2003. Earthworm behaviour as a biomarker-a case study using imidacloprid. Pedobiologia 47,542-547.
    Cavalcante, R.M., Sousa, F.W., Nascimento, R.F., Silveira, E.R., Viana, R.B.,2012. Influence of urban activities on polycyclic aromatic hydrocarbons in precipitation:Distribution, sources and depositional flux in a developing metropolis, Fortaleza, Brazil. Science of The Total Environment 414,287-292.
    Chakra Reddy, N., Venkateswara Rao, J.,2008. Biological response of earthworm, Eisenia foetida (Savigny) to an organophosphorous pesticide, profenofos. Ecotoxicology And Environmental Safety 71,574-582.
    Cheema, S.A., Imran Khan, M., Shen, C., Tang, X., Farooq, M., Chen, L., Zhang, C., Chen, Y.,2010. Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal Of Hazardous Materials 177,384-389.
    Chen, C., Zhou, Q., Liu, S., Xiu, Z.,2011a. Acute toxicity, biochemical and gene expression responses of the earthworm(Eisenia fetida) exposed to polycyclic musks. Chemosphere 83,1147-1154.
    Chen, C, Zhou, Q., Liu, S., Xiu, Z.,2011b. Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere 83,1147-1154.
    Chiou, C.T., Sheng, G., Manes, M.,2001. A partition-limited model for the plant uptake of organic contaminants from soil and water. Environmental Science & Technology 35,1437-1444.
    Cikutovic, M., Fitzpatrick, L., Goven, A., Venables, B., Giggleman, M., Cooper, E.,1999. Wound healing in earthworms Lumbricus terrestris:a cellular-based biomarker for assessing sublethal chemical toxicity. Bulletin of Environmental Contamination and Toxicology 62,508-514.
    Conte, P., Zena, A., Pilidis, G., Piccolo, A.,2001. Increased retention of polycyclic aromatic hydrocarbons in soils induced by soil treatment with humic substances. Environmental Pollution 112,27-31.
    Contreras-Ramos, S.M., Alvarez-Bernal, D., Dendooven, L.,2006. Eisenia fetida increased removal of polycyclic aromatic hydrocarbons from soil. Environmental Pollution 141,396-401.
    Contreras-Ramos, S.M., Alvarez-Bernal, D., Dendooven, L.,2008. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biology and Biochemistry 40,1954-1959.
    Contreras-Ramos, S.M., Alvarez-Bernal, D., Dendooven, L.,2009. Characteristics of earthworms (Eisenia fetida) in PAHs contaminated soil amended with sewage sludge or vennicompost. Applied Soil Ecology 41,269-276.
    Coutino-Gonzalez, E., Hernandez-Carlos, B., Gutierrez-Ortiz, R., Dendooven, L.,2010. The earthworm Eisenia fetida accelerates the removal of anthracene and 9,10-anthraquinone, the most abundant degradation product, in soil. International Biodeterioration & Biodegradation 64,525-529.
    Da Luz, T.N., Ribeiro, R., Sousa, J.P.,2009. Avoidance tests with collembola and earthworms as early screening tools for site-specific assessment of polluted soils. Environmental toxicology and chemistry 23,2188-2193.
    da Rosa, C.E., Iurman, M.G., Abreu, P.C., Geracitano, L.A., Monserrat, J.M.,2005. Antioxidant mechanisms of the Nereidid Laeonereis acuta (Anelida:Polychaeta) to cope with environmental hydrogen peroxide. Physiological and Biochemical Zoology 78,641-649.
    Davies, N.A., Hodson, M.E., Black, S.,2003. The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test. Environmental Pollution 121, 55-61.
    Denoyelle, R., Rault, M., Mazzia, C., Mascle, O., Capowiez, Y.,2009. Cholinesterase activity as a biomarker of pesticide exposure in Allolobophora chlorotica earthworms living in apple orchards under different management strategies. Environmental toxicology and chemistry 26,2644-2649.
    Dong, L., Gao, J., Xie, X., Zhou, Q.,2012. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 89,44-51.
    Edwards, C.A.,2004. Earthworm ecology. CRC.
    Edwards, C.A., Bohlen, P.J.,1996. Biology and ecology of earthworms. Springer.
    Eijsackers, H., Van Gestel, C., De Jonge, S., Muijs, B., Slijkerman, D.,2001. Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms:a mutual interference. Ecotoxicology 10,35-50.
    Engelmann, P., Cooper, E.L., Opper, B., Nemeth, P.,2011. Earthworm Innate Immune System
    Biology of Earthworms, In:Karaca, A. (Ed.). Springer Berlin Heidelberg, pp.229-245.
    Escher, B.I., Ashauer, R., Dyer, S., Hermens, J.L.M., Lee, J.-H., Leslie, H.A., Mayer, P., Meador, J.P., Warne, M.S.J.,2011. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. Integrated Environmental Assessment and Management 7,28-49.
    Escher, B.I., Hermens, J.L.M.,2002. Modes of Action in Ecotoxicology:(?) Their Role in Body Burdens, Species Sensitivity, QSARs, and Mixture Effects. Environmental Science & Technology 36, 4201-4217.
    Escher, B.I., Hermens, J.L.M.,2004. Peer reviewed:internal exposure:linking bioavailability to effects. Environmental Science & Technology 38,455-462.
    Felten, D., Emmerling, C.,2009. Earthworm burrowing behaviour in 2D terraria with single-and multi-species assemblages. Biology and Fertility of Soils 45,789-797.
    Fernandez, B., Campillo, J.A., Martinez-Gomez, C., Benedicto, J.,2012. Assessment of the mechanisms of detoxification of chemical compounds and antioxidant enzymes in the digestive gland of mussels, Mytilus galloprovincialis, from Mediterranean coastal sites. Chemosphere 87,1235-1245.
    Ferreira-Cravo, M., Ventura-Lima, J., Sandrini, J.Z., Amado, L.L., Geracitano, L.A., Rebelo, M., Bianchini, A., Monserrat, J.M.,2009. Antioxidant responses in different body regions of the polychaeta Laeonereis acuta (Nereididae) exposed to copper. Ecotoxicology and Environmental Safety 72,388-393.
    Fossati, P., Prencipe, L., Berti, G.,1980. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clinical Chemistry 26,227-231.
    Fuchs, J., Piola, L., Gonzalez, E.P., Oneto, M.L., Basack, S., Kesten, E., Casabe, N.,2011. Coelomocyte biomarkers in the earthworm Eisenia fetida exposed to 2,4,6-trinitrotoluene (TNT). Environmental Monitoring and Assessment 175,127-137.
    Gambi, N., Pasteris, A., Fabbri, E.,2007. Acetylcholinesterase activity in the earthworm Eisenia andrei at different conditions of carbaryl exposure. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 145,678-685.
    Gao, Y., Cao, X., Kang, F., Cheng, Z.,2011. PAHs pass through the cell wall and partition into organelles of arbuscular mycorrhizal roots of ryegrass. Journal of Environment Quality 40, 653-656.
    Gao, Y., Xiong, W., Ling, W., Wang, X., Li, Q.,2007. Impact of exotic and inherent dissolved organic matter on sorption of phenanthrene by soils. Journal of Hazardous Materials 140,138-144.
    Gao, Y, Zeng, Y., Shen, Q., Ling, W., Han, J.,2009. Fractionation of polycyclic aromatic hydrocarbon residues in soils. Journal of Hazardous Materials 172,897-903.
    Gao, Y., Zhu, L.,2003. Phytoremediation and its models for organic contaminated soils. Journal of Environmental Sciences-Amsterdam 15,302-310.
    Gestel, C.A.M., Ma, W.C.,1993. Development of QSAR's in soil ecotoxicology:Earthworm toxicity and soil sorption of chlorophenols, chlorobenzenes and chloroanilines. Water, Air, & Soil Pollution 69, 265-276.
    Giannopolitis, C.N., Ries, S.K.,1977. Superoxide Dismutases:I. Occurrence in Higher Plants 1,2. Plant Physiology 59,309.
    Golding, C.J., Gobas, F.A., Birch, GF.,2008. A fugacity approach for assessing the bioaccumulation of hydrophobic organic compounds from estuarine sediment. Environmental toxicology and chemistry 27,1047-1054.
    Gomez-Eyles, J.L., Sizmur, T., Collins, C.D., Hodson, M.E.,2011. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution 159,616-622.
    Guo, Z., Sheng, L., Feng, J., Fang, M.,2003. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China. Atmospheric Environment 37,1825-1834.
    Hackenberger, B.K., Jaric-Perkusic, D., Stepic, S.,2008. Effect of temephos on cholinesterase activity in the earthworm Eisenia fetida (Oligochaeta, Lumbricidae). Ecotoxicol Environ Saf 71,583-589.
    Hackenberger, B.K., Velki, M., Stepid, S., Hackenberger, D.K., First evidence for the presence of efflux pump in the earthworm Eisenia andrei. Ecotoxicology and Environmental Safety,40-45.
    Hankard, P.K., Svendsen, C., Wright, J., Wienberg, C., Fishwick, S.K., Spurgeon, D.J., Weeks, J.M., 2004. Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Science of The Total Environment 330,9-20.
    Heckmann, L.H., Baas, J., Jager, T.,2010. Time is of the essence. Environmental toxicology and chemistry 29,1396-1398.
    Heredia, R.B., Duenas, S., Castillo, L., Ventura, J.J., Silva Briano, M., Posadas del Rio, F., Rodriguez, M.G.,2008. Autofluorescence as a tool to study mucus secretion in Eisenia foetida Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology 151,407-414.
    Hickman, Z.A., Reid, B.J.,2008. Earthworm assisted bioremediation of organic contaminants. Environment International 34,1072-1081.
    Hoensi, T.G., Stubberud, H.E., Andersen, S., Stenersen, J.,2003. Lysosomal fragility in earthworms (Eisenia veneta) exposed to heavy metal contaminated soils from two abandoned pyrite ore mines in Southern Norway. Water, Air, & Soil Pollution 142,27-37.
    Holmstrup, M., Sorensen, J.G, Overgaard, J., Bayley, M., Bindesbol, A.M., Slotsbo, S., Fisker, K.V., Maraldo, K., Waagner, D., Labouriau, R., Asmund, G.,2011. Body metal concentrations and glycogen reserves in earthworms (Dendrobaena octaedra) from contaminated and uncontaminated forest soil. Environmental Pollution 159,190-197.
    Honeycutt, M.E., Roberts, B.L., Roane, D.S.,1995. Cadmium disposition in the earthworm Eisenia fetida. Ecotoxicology and Environmental Safety 30,143-150.
    Hund-Rinke, K., Wiechering, H.,2001. Earthworm avoidance test for soil assessments. Journal of Soils and Sediments 1,15-20.
    Hwang, S., Cutright, T.,2002. Biodegradability of aged pyrene and phenanthrene in a natural soil. Chemosphere 47,891-899.
    ISO,2004. Draft:Soil quality-avoidance test for evaluation the quality of soils and the toxicity of chemicals. Test with earthworms (Eisenia fetida/andrei). ISO, Geneva, Switzerland.
    Jager, T.,1998. Mechanistic approach for estimating bioconcentration of organic chemicals in earthworms (Oligochaeta). Environmental toxicology and chemistry 17,2080-2090.
    Jager, T.,2004. Modeling ingestion as an exposure route for organic chemicals in earthworms (Oligochaeta). Ecotoxicol Environ Saf 57,30-38.
    Jager, T., Fleuren, R.H.L.J., Hogendoorn, E.A., De Korte, G.,2003. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environmental Science & Technology 37,3399-3404.
    Jager, T., S(?)nchez, F.A.A., Muijs, B., van der Velde, E.G, Posthuma, L.,2000. Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) using spiked soil. Environmental toxicology and chemistry 19,953-961.
    Juhasz, A.L., Naidu, R.,2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo [a] pyrene. International Biodeterioration & Biodegradation 45,57-88.
    Katayama, A., Bhula, R., Burns, G.R., Carazo, E., Felsot, A., Hamilton, D., Harris, C., Kim, Y.H., Kleter, G., Koedel, W., Linders, J., Peijnenburg, J.G., Sabljic, A., Stephenson, R.G., Racke, D.K., Rubin, B., Tanaka, K., Unsworth, J., Wauchope, R.D.,2010. Bioavailability of xenobiotics in the soil environment. Reviews of Environmental Contamination and Toxicology 203,1-86.
    Khan, M., Cheema, S., Shen, C., Zhang, C., Tang, X., Shi, J., Chen, X., Park, J., Chen, Y.,2012. Assessment of phenanthrene bioavailability in aged and unaged soils by mild extraction. Environment Monitoring and Assessement 184,549-559.
    Kihc, G.A.,2011. Histopathological and biochemical alterations of the earthworm (Lumbricus Terrestris) as biomarker of soil pollution along Porsuk River Basin (Turkey). Chemosphere 83,1175-1180.
    Kochba, J., Lavee, S., Spiegel-Roy, P.,1977. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic'Shamouti'orange ovular callus lines. Plant and Cell Physiology 18,463-467.
    Krauss, M., Wilcke, W., Zech, W.,2000. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soils. Environmental Science & Technology 34,4335-4340.
    Lanno, R., Wells, J., Conder, J., Bradham, K., Basta, N.,2004. The bioavailability of chemicals in soil for earthworms. Ecotoxicology and Environmental Safety 57,39-47.
    Lee, B.T., Kim, K.W.,2009. Lysosomal membrane response of earthworm, Eisenia fetida, to arsenic contamination in soils. Environmental Toxicology 24,369-376.
    Lee, B.T., Shin, K.H., Kim, J.Y., Kim, K.W.,2008. Progress in earthworm ecotoxicology. Advanced Environmental Monitoring,248-258.
    Li, H., Sheng, G., Chiou, C.T., Xu, O.,2005. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants. Environmental Science & Technology 39,4864-4870.
    Li, L., Zhou, D., Wang, P., Peijnenburg, W.J.,2009. Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil. Archives of Environmental Contamination and Toxicology 57,718-724.
    Lin, D., Zhou, Q., Xie, X., Liu, Y.,2010. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms(Eisenia fetida). Chemosphere 81,1328-1333.
    Lin, D., Zhou, Q., Xu, Y., Chen, C., Li, Y.,2012. Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. Environmental Pollution 171, 46-51.
    Ling, W., Ren, L., Gao, Y, Zhu, X., Sun, B.,2009. Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biology and Biochemistry 41,2187-2195.
    Ling, W., Zeng, Y, Gao, Y, Dang, H., Zhu, X.,2010. Availability of polycyclic aromatic hydrocarbons in aging soils. Journal of Soils and Sediments 10,799-807.
    Liste, H.H., Alexander, M.,2000. Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40,11-14.
    Liste, H.H., Alexander, M.,2002. Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere 46,1011-1017.
    Liu, M., Cheng, S., Ou, D., Hou, L., Gao, L., Wang, L., Xie, Y, Yang, Y, Xu, S.,2007. Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment 41, 8785-8795.
    Liu, S., Zhou, Q., Chen, C.,2010. Antioxidant enzyme activities and lipid peroxidation in earthworm Eisenia fetida exposed to 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-y-2-benzopyran. Environmental Toxicology,472-279.
    Liu, S., Zhou, Q., Chen, C.,2012. Antioxidant enzyme activities and lipid peroxidation in earthworm Eisenia fetida exposed to 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethyl-cyclopenta-γ-2-benzopyran. Environmental Toxicology 27,472-479.
    Liu, S., Zhou, Q., Wang, Y.,2011. Ecotoxicological responses of the earthworm Eisenia fetida exposed to soil contaminated with HHCB. Chemosphere 83,1080-1086.
    Livingstone, D.R.,1993. Biotechnology and pollution monitoring:use of molecular biomarkers in the aquatic environment. Journal of Chemical Technology and Biotechnology 57,195-211.
    Lodish, H.F.,2008. Molecular cell biology. W.H. Freeman.
    Lukkari, T., Taavitsainen, M., Soimasuo, M., Oikari, A., Haimi, J.,2004. Biomarker responses of the earthworm (Aporrectodea tuberculata) to copper and zinc exposure:differences between populations with and without earlier metal exposure. Environmental Pollution 129,377-386.
    Ma, L., Zhang, J., Han, L., Li, W., Xu, L., Hu, F., Li, H.,2012a. The effects of aging time on the fraction distribution and bioavailability of PAH. Chemosphere 86,1072-1078.
    Ma, L.L., Ma, C., Shi, Z.M., Li, W.M., Xu, L., Hu, F., Li, H.X.,2012b. Effects of fluoranthene on the growth, bioavailability and anti-oxidant system of Eisenia fetida during the ageing process. European Journal of Soil Biology 50,21-27.
    Ma, W., van Kleunen, A., Immerzeel, J., de Maagd, P.,1998. Bioaccumulation of polycyclic aromatic hydrocarbons by earthworms:Assessment of equilibrium partitioning theory in in situ studies and water experiments. Environmental toxicology and chemistry 17,1730-1737.
    Ma, W.C., Immerzeel, J., Bodt, J.,1995. Earthworm and food interactions on bioaccumulation and disappearance in soil of polycyclic aromatic hydrocarbons:Studies on phenanthrene and fluoranthene. Ecotoxicology and Environmental Safety 32,226-232.
    Maboeta, M.S., Reinecke, S.A., Reinecke, A.J.,2004. The relationship between lysosomal biomarker and organismal responses in an acute toxicity test with Eisenia fetida (Oligochaeta) exposed to the fungicide copper oxychloride. Environmental Research 96,95-101.
    Mackay, D.,1979. Finding fugacity feasible. Environmental Science & Technology 13,1218-1223.
    Mackay, D.,2010. Multimedia environmental models:the fugacity approach. CRC press.
    Mackay, D., Fraser, A.,2000. Bioaccumulation of persistent organic chemicals:mechanisms and models. Environmental Pollution 110,375-391.
    Mackay, D., Paterson, S.,1981. Calculating fugacity. Environmental Science & Technology 15, 1006-1014.
    Mai, B., Fu, J., Zhang, G, Lin, Z., Min, Y, Sheng, G., Wang, X.,2001. Polycyclic aromatic hydrocarbons in sediments from the Pearl river and estuary, China:spatial and temporal distribution and sources. Applied Geochemistry 16,1429-1445.
    Maity, S., Roy, S., Chaudhury,S.,Bhattacharya, S.,2008. Antioxidant responses of the earthworm Lampito mauritii exposed to Pb and Zn contaminated soil. Environmental Pollution 151,1-7.
    Marques, C., Pereira, R., Goncalves, F.,2009.Using earthworm avoidance behaviour to assess the toxicity of formulated herbicides and their active ingredients on natural soils. Journal of Soils and Sediments 9,137-147.
    Maskaoui, K., Zhou, J., Hong, H., Zhang, Z.,2002. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China. Environmental Pollution 118, 109-122.
    Matscheko, N., Lundstedt, S., Svensson, L., Harju, J., Tysklind, M.,2002. Accumulation and elimination of 16 polycyclic aromatic compounds in the earthworm (Eisenia fetida). Environmental toxicology and chemistry 21,1724-1729.
    McCarty, L.S., Landrum, P.F., Luoma, S.N., Meador, J.P., Merten, A.A., Shephard, B.K., van Wezel, A.P., 2011. Advancing environmental toxicology through chemical dosimetry:External exposures versus tissue residues. Integrated Environmental Assessment and Management 7,7-27.
    Menzie, C.A., Potocki, B.B., Santodonato, J.,1992. Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology 26,1278-1284.
    Meylan, W.M., Howard, P.H., Boethling, R.S., Aronson, D., Printup, H., Gouchie, S.,1999. Improved method for estimating bioconcentration/bioaccumulation factor from octanol/water partition coefficient. Environmental toxicology and chemistry 18,664-672.
    Moczon, T., Swietlikowska, A.,2006. Distribution of acetylcholinesterase activity during the development of cysticercoids of Hymenolepis diminuta (Cestoda). Acta Parasitologica 51,143-151.
    Morgan, A.J., Kille, P., Sturzenbaum, S.R.,2007. Microevolution and ecotoxicology of metals in invertebrates. Environmental Science & Technology 41,1085-1096.
    Morgan, J.E., Morgan, A.J.,1990. The distribution of cadmium, copper, lead, zinc and calcium in the tissues of the earthworm <i>Lumbricus rubellus sampled from one uncontaminated and four polluted soils. Oecologia 84,559-566.
    Nahmani, J., Hodson, M.E., Black, S.,2007. A review of studies performed to assess metal uptake by earthworms. Environmental Pollution 145,402-424.
    OECD,1984. Earthworm, acute toxicity tests. Guideline for testing chemicals. No.207. OECD, Paris, France.
    OECD,1998. OECD guidelines for testing of chemicals. OECD Publishing.
    OECD,2004. Earthowrm reproduction test. Guideline for testing chemicals. No.222. OECD, Paris, France.
    Parrish, Z.D., White, J.C., Isleyen, M., Gent, M.P., Iannucci-Berger, W., Eitzer, B.D., Kelsey, J.W., Mattina, M.I.,2006. Accumulation of weathered polycyclic aromatic hydrocarbons (PAHs) by plant and earthworm species. Chemosphere 64,609-618.
    Rault, M., Mazzia, C., Capowiez, Y.,2007. Tissue distribution and characterization of cholinesterase activity in six earthworm species. Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology 147,340-346.
    Reinecke, A., Reinecke, S.,2003. The influence of exposure history to lead on the lysosomal response in (Eisenia fetida)(Oligochaeta). Ecotoxicology and Environmental Safety 55,30-37.
    Reinecke, S.A., Reinecke, A.J.,2007. Biomarker response and biomass change of earthworms exposed to chlorpyrifos in microcosms. Ecotoxicology and Environmental Safety 66,92-101.
    Ribera, D., Narbonne, J., Arnaud, C., Saint-Denis, M.,2001. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl. Soil Biology and Biochemistry 33,1123-1130.
    Rocco, A., Scott-Fordsmand, J.J., Maisto, G., Manzo, S., Salluzzo, A., Jensen, J.,2011. Suitability of lysosomal membrane stability in Eisenia fetida as biomarker of soil copper contamination. Ecotoxicology and Environmental Safety 74,984-988.
    Rozman, K.K., Doull, J.,2000. Dose and time as variables of toxicity. Toxicology 144,169-178.
    Sablji, A., G"1 sten, H., Verhaar, H., Hermens, J.,1995. QSAR modelling of soil sorption. Improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31,4489-4514.
    Saint-Denis, M., Narbonne, J., Arnaud, C., Ribera, D.,2001. Biochemical responses of the earthworm (Eisenia fetida andrei) exposed to contaminated artificial soil:effects of lead acetate. Soil Biology and Biochemistry 33,395-404.
    Saint-Denis, M., Narbonne, J., Arnaud, C., Thybaud, E., Ribera, D.,1999. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil:effects of benzo (a) pyrene. Soil Biology and Biochemistry 31,1837-1846.
    Sanchez-Hernandez, J.,2006. Earthworm biomarkers in ecological risk assessment. Reviews of Environmental Contamination and Toxicology,85-126.
    Sanchez-Hernandez, J.C., Mazzia, C., Capowiez, Y., Rault, M.,2009. Carboxylesterase activity in earthworm gut contents:Potential (eco) toxicological implications. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology 150,503-511.
    Sanchez-Hernandez, J.C., Wheelock, C.E.,2009. Tissue distribution, isozyme abundance and sensitivity to chlorpyrifos-oxon of carboxylesterases in the earthworm Lumbricus terrestris. Environmental Pollution 157,264-272.
    Schaefer, M.,2003. Behavioural endpoints in earthworm ecotoxicology. Journal of Soils and Sediments 3,79-84.
    Scheu, S.,2003. Effects of earthworms on plant growth:patterns and perspectives. Pedobiologia 47, 846-856.
    Scott-Fordsmand, J.J., Weeks, J.M.,2000. Biomarkers in earthworms. Rev Environ Contam Toxicol, 117-159.
    Scott-Fordsmand, J.J., Weeks, J.M., Hopkin, S.P.,2009. Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetica (Oligochaeta:Annelida), using neutral-red retention assay. Environmental toxicology and chemistry 19,1774-1780.
    Sheng-wang, P., Shi-qiang, W., Xin, Y, Sheng-xian, C.,2008. The removal and remediation of phenanthrene and pyrene in soil by mixed cropping of alfalfa and rape. Agricultural Sciences in China 7,1355-1364.
    Shi, Y, Wang, X., Lu, Y, Yan, S.,2007. Comparative effects of lindane and deltamethrin on mortality, growth, and cellulase activity in earthworms (Eisenia fetidd). Pesticide Biochemistry and Physiology 89,31-38.
    Sijm, D., Kraaij, R., Belfroid, A.,2000. Bioavailability in soil or sediment:exposure of different organisms and approaches to study it. Environmental Pollution 108,113-119.
    Simkiss, K., Taylor, M.,1981. Cellular mechanisms of metal ion detoxification and some new indices of pollution. Aquatic Toxicology 1,279-290.
    Solomon, K.R.,1996. Overview of Recent Developments in Ecotoxicological Risk Assessment. Risk Analysis 16,627-633.
    Song, Y, Zhu, L.S., Wang, J., Wang, J.H., Liu, W., Xie, H.,2009. DNA damage and effects on antioxidative enzymes in earthworm (Eisenia foetida) induced by atrazine. Soil Biology aad Biochemistry 41,905-909.
    Spurgeon, D., Hopkin, S.,2000. The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida. Environmental Pollution 109, 193-201.
    Spurgeon, D.J., Svendsen, C., Rimmer, V.R., Hopkin, S.P., Weeks, J.M.,2009. Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry 19,1800-1808.
    Svendsen, C., Meharg, A.A., Freestone, P., Weeks, J.M.,1996. Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Applied Soil Ecology 3,99-107.
    Svendsen, C., Weeks, J.M.,1997a. Relevance and Applicability of a Simple Earthworm Biomarker of Copper Exposure. I. Links to Ecological Effects in a Laboratory Study with (Eisenia andre). Ecotoxicology and Environmental Safety 36,72-79.
    Svendsen, C., Weeks, J.M.,1997b. Relevance and Applicability of a Simple Earthworm Biomarker of Copper Exposure. II. Validation and Applicability under Field Conditions in a Mesocosm Experiment with (Lumbricus rubellus). Ecotoxicology and Environmental Safety 36,80-88.
    Tewatia, G.,2007. Earthworm Ecology. Discovery Publishing House Pvt. Ltd.
    Udovic, M., Lestan, D.,2010. Eisenia fetida avoidance behavior as a tool for assessing the efficiency of remediation of Pb, Zn and Cd polluted soil. Environ Pollut 158,2766-2772.
    Van der Oost, R., Beyer, J., Vermeulen, N.P.E.,2003. Fish bioaccumulation and biomarkers in environmental risk assessment:a review. Environmental Toxicology and Pharmacology 13,57-149.
    Velki, M., Hackenberger Kutuzovic, B.,2012a. Biomarker responses in earthworm Eisenia andrei exposed to pirimiphos-methyl and deltamethrin using different toxicity tests. Chemosphere 45, 6535.
    Velki, M., Hackenberger Kutuzovic, B.,2012b. Inhibition and recovery of molecular biomarkers of earthworm Eisenia andrei after exposure to organophosphate dimethoate. Soil biology & biochemistry 38,0717.
    Venkateswara Rao, J., Surya Pavan, Y., Madhavendra, S.S.,2003. Toxic effects of chlorpyrifos on morphology and acetylcholinesterase activity in the earthworm, Eisenia foetida. Ecotoxicology and Environmental Safety 54,296-301.
    Vermeulen, F., Covaci, A., D'Have, H., Van den Brink, N.W., Blust, R., De Coen, W., Bervoets, L.,2010. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain. Environment International 36,721-727.
    Vijver, M.G., Van Gestel, C.A.M., Lanno, R.P., Van Straalen, N.M., Peijnenburg, W.J.G.M.,2004. Internal metal sequestration and its ecotoxicological relevance:A review. Environmental Science & Technology 38,4705-4712.
    Vijver, M.G., Vink, J.P.M., Miermans, C.J.H., van Gestel, C.A.M.,2003. Oral sealing using glue:a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biology and Biochemistry 35,125-132.
    Wallace, W.G., Lee, B.G., Luoma, S.N.,2003. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Marine Ecology Progress Series 249,183-197.
    Wallace, W.G., Luoma, S.N.,2003. Subcellular compartmentalization of Cd and Zn in two bivalves.Ⅱ. Significance of trophically available metal (TAM). Marine Ecology Progress Series 257,125-137.
    Wang, Y, Wu, S., Chen, L., Wu, C., Yu, R., Wang, Q., Zhao, X.,2012. Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 88,484-491.
    Weeks, J.M., Svendsen, C.,1996. Neutral red retention by lysosomes from earthworm (Lumbricus rubellus) coelomocytes:a simple biomarker of exposure to soil copper. Environmental toxicology and chemistry 15,1801-1805.
    Wenchuan, Q., Dickman, M., Chengxin, F., Sumin, W., Chenwei, S., Lu, Z., Huixian, Z.,2002. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in Taihu Lake sediments, China. Hydrobiologia 485,163-171.
    White, J.C., Qui "ones-RIVERA, A., Alexander, M.,1998. Effect of wetting and drying on the bioavailability of organic compounds sequestered in soil. Environmental toxicology and chemistry 17,2378-2382.
    Wu, S., Wu, E., Qiu, L., Zhong, W., Chen, J.,2011. Effects of phenanthrene on the mortality, growth, and anti-oxidant system of earthworms (Eisenia fetida) under laboratory conditions. Chemosphere 83, 429-434.
    Wu, S., Zhang, H., Hu, Y., Li, H.-1., Chen, J.-m.,2012a. Effects of 1,2,4-trichlorobenzene on the enzyme activities and ultrastructure of earthworm Eisenia fetida. Ecotoxicology and Environmental Safety 76,175-181.
    Wu, S., Zhang, H., Zhao, S., Wang, J., Li, H., Chen, J.,2012b. Biomarker responses of earthworms (Eisenia fetida) exposured to phenanthrene and pyrene both singly and combined in microcosms. Chemosphere 87,285-293.
    Xiao, N.W., Song, Y., Ge, F., Liu, X.H., Ou-Yang, Z.Y.,2006. Biomarkers responses of the earthworm (Eisenia fetida) to acetochlor exposure in OECD soil. Chemosphere 65,907-912.
    Yang, X., Song, Y., Kai, J., Cao, X.,2012. Enzymatic biomarkers of earthworms Eisenia fetida in response to individual and combined cadmium and pyrene. Ecotoxicology and Environmental Safety 86,162-167.
    Yu, S., Lanno, R.P.,2010. Uptake kinetics and subcellular compartmentalization of cadmium in acclimated and unacclimated earthworms (Eisenia andrei). Environmental Toxicology and Chemistry 29,1568-1574.
    Zhang, L., Dong, L., Ren, L., Shi, S., Zhou, L., Zhang, T., Huang, Y.,2012. Concentration and source identification of polycyclic aromatic hydrocarbons and phthalic acid esters in the surface water of the Yangtze River Delta, China. Journal of Environmental Sciences 24,335-342.
    Zhang, M., Zhu, L.,2009. Sorption of polycyclic aromatic hydrocarbons to carbohydrates and lipids of ryegrass root and implications for a sorption prediction model. Environmental Science & Technology 43,2740-2745.
    Zhang, Y, Tao, S.,2008. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) emissions in China. Environmental Pollution 156,657-663.
    Zhang, Y., Tao, S., Cao, J., Coveney Jr, R.M.,2007. Emission of polycyclic aromatic hydrocarbons in China by county. Environmental Science & Technology 41,683-687.
    Zhang, Z., Hong, H., Zhou, J., Huang, J., Yu, G.,2003. Fate and assessment of persistent organic pollutants in water and sediment from Minjiang River Estuary, Southeast China. Chemosphere 52, 1423-1430.
    Zheng, S., Song, Y., Qiu, X., Sun, T., Ackland, M.L., Zhang, W.,2008. Annetocin and TCTP expressions in the earthworm Eisenia fetida exposed to PAHs in artificial soil. Ecotoxicology and Environmental Safety 71,566-573.