海水中锈层覆盖碳钢的腐蚀电化学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锈层/金属腐蚀是复杂腐蚀体系之一,锈层下腐蚀是金属腐蚀发展过程中最主要的、持续时间最长的腐蚀形态。锈层存在引起的腐蚀电化学行为复杂化和可靠解析腐蚀电化学参数困难增大。传统腐蚀电化学方法测定的锈层下腐蚀速度偏离失重法测量数据,测定的界面电容也偏离合理的数值。可靠测定和解析锈层下金属腐蚀电化学参数成为当前腐蚀电化学研究方法面临的重要任务之一。
     本文采用失重法和多种电化学方法(包括极化曲线、线性极化法、电化学阻抗技术和恒电位阶跃法)研究了碳钢在静态海水和动态海水中的长期腐蚀规律,结果发现在静态海水中电化学方法测定的8周以前短期浸泡的腐蚀速度与失重法持续下降的变化趋势一致,数值相近;而8周以后长期浸泡的腐蚀速度发生“逆转”,与失重测定结果之间存在偏差,并随时间逐渐增大。在动态海水中电化学方法与失重法从浸泡初期开始变化趋势就完全相反,时间越长数值相差越大。
     为了探寻电化学方法测定的腐蚀速度产生偏差的原因,采用X射线衍射(XRD)、傅里叶红外光谱(FTIR)、环境扫描电子显微镜(ESEM)、氮吸附(BET)等技术研究了锈层的形貌、结构、组成及各种锈层组分的物理化学性质,结果表明产生偏差的主要原因是当金属/锈层界面间的电位正移到某一电位值时,在金属表面会形成一层黑色的比较致密的内锈层,其中含有具有较高电化学活性的β-FeOOH,当进行电化学极化测试时,发生阴极反应而增加了阴极反应速度,导致测定的腐蚀速度数值偏高。
     为了进一步证实β-FeOOH的生成与电位有关,采用扫描微电极技术(SMET)和丝束电极技术(WBE)研究了碳钢在海水中阴极区和阳极区的分布特征和随时间的变化情况,通过对腐蚀产物的分析说明了腐蚀产物的组分与电位分布的相关性。同时采用电化学极化的方法控制了锈层的生成条件,结果证实β-FeOOH确实是在电位数值比较正的条件下生成。
     为了使用电化学方法测定锈层下碳钢的腐蚀行为,测定了除氧条件下阴极反应速度,即锈层还原速度,然后将其从总阴极反应速度中扣除,获得无锈层参与的阴极反应速度。结果表明,采用这一方法修正的腐蚀速度与失重测试结果数值和变化趋势一致,证实这是一种有效可行的锈层下碳钢腐蚀速度补偿型电化学测试方法。
Rust/metal structure is one of the multiphase and multiple interface complex systems. The corrosion under rust is the uppermost and longest form of metallic corrosion evolution. It is difficult to accurately determine the electrochemical parameters because the existence of rust complicates the electrochemical corrosion process. Corrosion rate measured by traditional electrochemical methods deviates from the weight-loss measurement result and the interface capacitance also deviates from reasonable value. Reliable measurement and analysis for rusted steel become one of the important tasks in metallic corrosion research.
     In this paper, weight-loss measurement and several kinds of electrochemical methods (including polarization curves (PC), linear polarization resistance measurement (LPR), electrochemical impedance spectra technique (EIS) and potential step (PS)) were employed to study the long-term corrosion behaviour of carbon steel in immobile and flowing seawater. The results show that the electrochemical and weight-loss measurement estimations have the same degressive trends and values during the first 8 weeks'immersion period, while the electrochemical measurement result turns to increase after 8 weeks'immersion in immobile seawater. The longer the immersion time, the bigger the deviation. In flowing seawater, electrochemical measurement result is opposite to that determined by weight-loss measurement from the beginning and the deviation becomes larger with increasing of immersion time.
     In order to explore the reasons for the deviations between electrochemical and weight-loss measurement results, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), environmental scanning electron microscope (ESEM), nitrogen adsorption (BET), etc were used to study the morphologies, structures, compositions and physicochemical properties of rust layers. Analysis indicates that a dense and black inner rust layer, which containsβ-FeOOH with high electrochemical activity, will form when the potential in the metal/rust interface achieve a noble value. In electrochemical polarization tests,β-FeOOH can participate in cathodic reduction reaction, which leads to increasing the cathodic reaction rate and overestimating the corrosion rate.
     In order to further confirm that the formation ofβ-FeOOH was related to the potential, scanning micro-electrode technique (SMET) and wire beam electrode (WBE) were used to study the distribution characteristics of cathode and anode regions for rusted carbon steel in seawater. The relationship between the compositions of corrosion products and potential distribution was illustrated by the analysis of corrosion products. At the same time, electrochemical polarization method was applied to control the formation conditions of rust layer. The results confirm thatβ-FeOOH is indeed produced in the noble potential.
     In order to study the corrosion behaviour of rusted steel by electrochemical measurement, cathodic reaction rate, that is rust reduction rate, was measured in deaerated conditions. Then deduct it from total cathodic reaction rate, the rest is oxygen reduction rate. The results show that the corrosion rate modified by this method is consistent with the weight-loss measurement result and confirm that it is a feasible and effective compensatory method to determine corrosion rate of rusted steel by electrochemical measurement.
引文
[1]Javaherdashti R. How corrosion affects industry and life. Anti corrosion Methods and Materials,2000,47 (1):30-34
    [2]郑文龙,于青.钢的环境敏感断裂.北京:化学工业出版社,1988,12
    [3]杜元龙.金属设备的卫士.济南:山东教育出版社,2001,20
    [4]朱岳麟等.煤油设备腐蚀与防护技术新进展.石油化工设备,2002,31(1):14-16
    [5]Emi H, Kumano A, Yamamoto N, et al. A recent study on life assessment of ships and offshore structures. Tech Bull Nippon Kaiji Kyokai,1991,9:27-49
    [6]颜民,黄桂桥.中国水环境腐蚀试验站网工作回顾与展望.海洋科学,2005,29(7):73-76
    [7]莱因哈特.金属和合金在不同海洋深度下的腐蚀.见:舒马赫编.李大超等译.海水腐蚀手册.北京:国防工业出版社,1985,265
    [8]Dexter S C, Culberson C. Global variability of natural sea water. Material Performance.1980, 19(9):16-28
    [9]曹楚南.中国材料的自然环境腐蚀.北京:化学工业出版社,2005,220
    [10]朱相荣,王相润.金属材料的海洋腐蚀与防护.北京:国防工业出版社,1999,76-78,126-130
    [11]朱相荣,黄桂桥.钢在海洋飞溅带腐蚀行为探讨.腐蚀科学与防护技术,1995,7(3):246-248
    [12]侯保荣.钢材在海水-海气交换界面区的腐蚀行为.海洋与湖沼,1995,26(5):514-519
    [13]夏兰廷,黄桂桥,张三平.金属材料的海洋腐蚀与防护.北京:冶金工业出版社.2003,10
    [14]林志坚,宋文桑.潮差区钢锈层对钢润湿态阴极过程的影响.腐蚀与防护,1994,4:193-196
    [15]黄桂桥,尤建涛.海洋环境中长钢样与短钢样腐蚀差别的研究.材料保护,2000,9(33)4-5.
    [16]张明洋,郭云增,郑子林.低合金钢在不同海区挂片初步结果.1979年腐蚀与防护学术报告会议论文集.北京:科学出版社,1982.
    [17]苏方滕.低合金钢在海水中的氧浓差腐蚀电流计算.1979年腐蚀与防护学术报告会议论 文集,北京:科学出版社,1982.
    [18]戴明安,黄挂桥,朱相荣.海水中钢的局部腐蚀与海域环境的相关性.腐蚀科学与防护技术,1999,11(5):309-310
    [19]郭琦龙,辜志俊,张志刚,苏方腾.碳钢在海泥中的电化学行为.中国腐蚀与防护学报,1999,19(5):315-318
    [20]Kuang F, Wang J, Li Y, Zhang D. Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochimica Acta,2007,52:6084-6088
    [21]化学工业部化工机械研究院.腐蚀与防护手册—腐蚀理论·试验及检测.北京:化学工业出版社,1989,492
    [22]宋诗哲.腐蚀电化学研究方法.北京:化学工业出版社,1988,100-177
    [23]Ahmad S, Bhattacharjee B. A Simple arrangement and procedure for insitu measurement of corrosion rate of rebar embedded in concrete. Corrosion Science,1995,37 (5):781-791
    [24]Millard S G, Law D, Bungey J H, Cairns J. Environmental influenced on linear polarization corrosion rate measurement in reinforced concrete. NDT&E International,2001,34:409-417.
    [25]姜丽娜,杜敏,杜林.弱极化技术用于海水中金属腐蚀监测的初探.腐蚀科学与防护技术,2005,17(3):192-194
    [26]冯业铭,耿小兰,郑立群.弱极化法腐蚀速度测试仪的研制.传感器技术,1999,18(5):38-40
    [27]曹楚南.腐蚀电化学原理.北京:化学工业出版社,2004,139
    [28]Flitt H J, Schweinsberg D P. A guide to polarisation curve interpretation:deconstruction of experimental curves typical of the Fe/H2O/H+/O2 corrosion system. Corrosion Science,2005, 47:2125-2156
    [29]Jons D A, Greene N D. Electrochemical measurement of low corrosion rates. Corrosion, 1966,22(7):198-205
    [30]Govers K R, Millard S G. Pulse mapping techniques for corrosion monitoring of reinforced concrete structures. In:Swamy, R N, (eds). Corrosion and Corrosion Protection of Steel in Concrete (Vol.1). U K:Schefield Academic Press,1994,186-199
    [31]阎培渝,崔路,游轶.用电流阶跃法测定钢筋混凝土中钢筋的锈蚀速率.工业建筑,1999,29(5):50-53
    [32]宋光铃,曹楚南,史志明,林海潮.腐蚀电极恒电位阶跃暂态过程的多元线性回归分析. 中国腐蚀与防护学报,1994,14(1):31-36
    [33]赵常就.恒电量技术及其在腐蚀测量中的应用.北京:国防工业出版社,1995,130-198
    [34]Lin K, Liu Z, Zheng D. A new method for rapid determination of metal corrosion rate. Corrosion Control,7th APCCC. Beijing:International academic publishers,1991.1295-1296
    [35]Walzak T L. Electrochemical Properties of Passive Films on 440C Stainless Steel:[博士学位 论文]. Ontario:The University of Western Ontario Libraries,1992
    [36]蒋忠锦,赵常就.用恒电量法测定耐蚀金属的腐蚀速度.材料保护,1990,23(8):14-15
    [37]赵永韬,赵常就.模拟混凝土孔隙液中钢筋腐蚀行为的恒电量法监测.材料开发与应用,2000,15(1):9-12
    [38]Gomez M A. Use of the Coulostatic Technique for Evaluating Corrosion Inhibitors. Revista Tecnica,1992,15(1):11-21
    [39]Sato Y, Hamada T, Owa T, et al. Evaluation of Iron Corrosion Rate in Solution Containing Inhibitors by Using Coulostatic Method. Zairyo-to-Kankyo (Corrosion Engineering),1991, 40(1):3-7
    [40]Zheng J, Chen Z, Ye K. A Study of the Inhibition Mechanism of RP1-1, a New Corrosion Inhibitor in Brine. Conference:Corrosion and Corrosion Control for Offshore and Marine Construction, Xiamen, China,1988,9
    [41]文建国,周家茵,周世光.恒电量微扰法研究在含Cl—介质Ce3+对航空铝材的缓蚀作用.国防科技大学学报,1998,19(6):118-122
    [42]郭兴蓬,俞敦义,叶康民.缓蚀剂研究中的电化学方法—某些问题与新方法.材料保护,1992,10:24-27
    [43]彭天剑.恒电量微扰法对钝态金属小孔腐蚀的探讨:[硕士学位论文].长沙:湖南大学图书馆,1990
    [44]刘务华.18-8不锈钢表面膜分析及其小孔腐蚀过程的研究:[硕士学位论文].长沙:湖南大学图书馆,1992
    [45]Walzak T L. Electrochemical Properties of Passive Films on 440C Stainless Steel:[博士学位论文].Ontario:The University of Western Ontario Libraries,1992
    [46]郭兴蓬,张华民,唐永凡.阴极保护最佳电位的确定.腐蚀科学与防护技术,1989,1(2):6-9
    [47]Vera Cruz R P, Nishikata A, Tsuru T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-containing environment. Corrosion Science,1996,38 (8):1397-1406
    [48]翁永基,李相怡.MH-Ni电池充放电过程中交流阻抗谱的研究.石油大学学报,1999,23(4):49-53
    [49]张万灵,刘建蓉.交流阻抗法对耐候钢腐蚀行为的研究.钢铁研究,1996,25(5):39-43
    [50]Zhang Q C, Wu J S, Wang J J, Zheng W L, Chen J G, Li A B. Corrosion behavior of weathering steel in marine atmosphere. Materials Chemistry and Physics,2002,77:603-608
    [51]Melchers R E. A new interpretation of the corrosion loss processes for weathering steels in marine atmospheres. Corrosion Science,2008,50:3446-3454
    [52]Ma Y T, Li Y, Wang F H. Corrosion of low carbon steel in atmospheric environments of different chloride content.Corrosion Science,2009,51 (5):997-1006
    [53]Al-Fozan S A, Malik A U. Effect of seawater level on corrosion behavior of different alloys. Desalination,2008,228:61-67
    [54]Bhosle N B, Wagh A B. The effect of organic matter associated with the corrosion products on the corrosion of mild steel in the Arabian Sea. Corrosion Science,1992,33(5):647-655
    [55]黄桂桥.Cr对钢海水腐蚀性的影响.腐蚀科学与防护技术,2000,12(2):86
    [56]Schultze W A, van der Wekken C J. Influence of alloying elements on the marine corrosion of low alloy steels determined by statistical analysis of published literature data. British Corrosion Journal,1976,11 (1):18-24
    [57]Venkatesan R, Venkatasamy M A, Bhaskaran T A, Dwarakadasa E S, Ravindran M. Corrosion of ferrous alloys in deep sea environments. British Corrosion Journal,2002,37 (4): 257-266
    [58]Melchers R E, Jeffrey R. Early corrosion of mild steel in seawater. Corrosion Science,2005, 47:1678-1693.
    [59]Melchers R E. Mathematical modelling of the diffusion controlled phase in marine immersion corrosion of mild steel. Corrosion Science,2003,45:923-940
    [60]Jeffrey R, Melchers R E. Bacteriological influence in the development of iron sulphide species in marine immersion environments. Corrosion Science,2003,45:693-714
    [61]Melchers R E. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corrosion Science,2004,46:1669-1691
    [62]Melchers R E. Modelling of marine immersion corrosion for copper-bearing steels. Corrosion Science,2003,45:2307-2323
    [63]Melchers R E, Wells T. Models for the anaerobic phases of marine immersion corrosion. Corrosion Science,2006,48:1791-1811
    [64]Chernov B B, Ponomarenko S A. Physico-chemical modeling for the predication of sea water metal corrosion.14th ICC. Cape Town:1999,215
    [65]夏兰廷,王录才,黄桂桥.我国金属材料的海水腐蚀研究现状.中国铸造装备与技术,2002,6:1-4
    [66]孔德英,宋诗哲.人工神经网络技术探讨碳钢、低合金钢的实海腐蚀规律.中国腐蚀与防护学报,1998,18(4):289-296
    [67]朱相荣,张启富.灰关联分析法探讨环境因素与海水腐蚀性的关系.中国腐蚀与防护学报,2000,20(1):29-34
    [68]朱相荣,张启富.海水中钢铁腐蚀与环境因素的灰关联分析.海洋科学,2000,24(5):37-40
    [69]王海涛,韩恩厚,柯伟.灰色理论对碳钢、低合金钢海水腐蚀的预测和分析.腐蚀与防护,2005,26(9):373-374
    [70]唐晓,王佳.软测量方法评价区域海水腐蚀性的研究:非平衡态软测量模型.高技术通讯,2004,10:90-93
    [71]Yamashita M, Miyuki H, Matsuda Y, Nagano H, Misawa T. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century. Corrosion Science,1994,36 (2):283-299
    [72]Yamashita M, Miyuki H, Nagano H. Corrosion resistance of weathering steel and its application. Sumitomo Search,1995,57:12-17.
    [73]Yamashita M, Misawa T. Corrosion Engineering,2000,49 (2):159-163.
    [74]Takemura M, Fujita S, Morita K, Sato K, Sakai J-I. The protectiveness of rust on weathering steel in an atmosphere rich in airborne chloride particles. Corrosion Engineering,2000,49: 111-121.
    [75]Yamashita M, Miyuki H, Nagano H, Curr. Adv. Mater. Processes,1997,10:556.
    [76]Yamashita M, Maeda A, Uchida H, Kamimura T, Miyuki H. Crystalline rust compositions and weathering properties of steels exposed in nation-wide atmospheres for 17 years. Journal of the Japan Institute of Metals,2001,65 (11):967-971.
    [77]de Souza Jr P A, Demacedo M C S, Queiroz R S D, Klingelhofer G. Atmospheric Corrosion Investigation in Industrial, Marine and Rural Environments in South-East Brazil. Hyperfine Interactions,2002,139/140:183-191.
    [78]Shiotani K, Tanimoto W, Maeda C, Kawabata F, Amano K. Structural analysis of the rust layer on a bare weathering steel bridge exposed in a coastal industrial zone for 27 years. Corrosion Engineering,2000,49 (2):99-109
    [79]Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment. Materials Chemistry and Physics,2008,112 (3): 844-852
    [80]Refait P, Memet J-B, Bon C, Sabot R, Genin J-M R. Formation of the Fe (Ⅱ)-Fe (Ⅲ) hydroxysulphate green rust during marine corrosion of steel. Corrosion Science,2003,45 (4): 833-845.
    [81]Nishimura T, Katayama H, Noda K, Kodama T. Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions. Corrosion,2000,56 (9):935-941.
    [82]Garcia K E, Morales A L, Barrero C A, Greneche J M. New contributions to the understanding of rust layer formation in steels exposed to a total immersion test. Corrosion Science,2006,48:2813-2830.
    [83]Genin J-M R, Refait Ph, Abdelmoula M. Green Rusts and Their Relationship to Iron Corrosion; a Key Role in Microbially Influenced Corrosion. Hyperfine Interactions,2002, 139/140:119-131.
    [84]Deliyanni E A, Bakoyannakis D N, Zouboulis A I, Matis K A, Nalbandian L. Akaganeite-type β-FeO(OH) nanocrystals:preparation and characterization. Microporous and Mesoporous Materials,2001,42:49-57.
    [85]Refait P, Genin J-M R. The mechanisms of oxidation of ferrous hydroxychloride (3-Fe2(OH)3Cl in aqueous solution:the formation of akaganeite vs goethite. Corrosion Science,1997,39:539-553.
    [86]Remazeilles C, Refait Ph. On the formation of P-FeOOH (akaganeite) in chloride-containing environments. Corrosion Science,2007,49:844-857.
    [87]Ona-Nguema G, Abdelmoula M, Jorand F, Benali O, Genin A, Block J-C, Genin J-M R. Iron (Ⅱ, Ⅲ) Hydroxycarbonate Green Rust Formation and Stabilization from Lepidocrocite Bioreduction. Environmental Science Technology,2002,36,16-20.
    [88]Santana Rodriguez J J, Santana Hernandez F J, Gonzalez Gonzalez J E. XRD and SEM studies of the layer of corrosion products for carbon steel in various different environments in the province of Las Palmas (The Canary Islands, Spain). Corrosion Science,2002,44: 2425-2438.
    [89]Dunnwald J, Otto A. An investigation of phase transitions in rust layers using raman spectroscopy. Corrosion Science,1989,29:1167.
    [90]Refait Ph, Genin J-M. R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one. Corrosion Science,1993,34:797.
    [91]Detournay J, Miranda L, Derie R, Ghodsi M. The region of stability of green rust II in the electrochemical potential-pH equilibrium diagram of iron in sulphate medium. Corrosion Science,1975,15:295-306.
    [92]Refait Ph, Abdelmoula M, Genin J-M R, Sabot R. Green rusts in electrochemical and microbially influenced corrosion of steel. Comptes Rendus Geosciences,2006,338 (6-7): 476-487.
    [93]Drissi S H, Refait Ph, Abdelmoula M, Genin J-M R. Preparation and thermodynamic properties of Fe(Ⅱ)-Fe(Ⅲ) hydroxycarbonate (green rust 1), Pourbaix diagram of iron in carbonatecontaining aqueous media. Corrosion Science,1995,37:2025-2041.
    [94]Refait Ph, Abdelmoula M, Genin J-M R. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions. Corrosion Science, 1998,40:1547-1560.
    [95]Genin J-M R, Olowe A A, Refait Ph, Simon L. On the stoichiometry and Pourbaix diagram of Fe (Ⅱ)-Fe (Ⅲ) hydroxysulphate or sulphate-containing green rust 2:an electrochemical and Mossbauer spectroscopy study. Corrosion Science,1996,38:1751-1762.
    [96]Genin J-M R, Dhouibi L, Refait Ph, Abdelmoula M, Triki E. Influence of phosphate on corrosion products of iron in chloridepolluted-concrete-simulating solutions:ferrihydrite vs. green rust. Corrosion,2002,58:467-478.
    [97]Genin J-M R, Rezel., Bauer Ph, Olowe A A, Beral A. Mossbauer spectroscopy characterization and electrochemical study of the kinetics of oxidation of iron in chlorinated aqueous media:structure and equilibrium diagram of green rust one. Material Science Forum, 1986,8:477-490.
    [98]Inouye K, Ishii S, Kaneko K, Ishikawa T. Effect of copper (Ⅱ) on the crystallization of α-FeOOH. Zeitschrift fur anorganische und allgemeine Chemie,1972,391:86-96.
    [99]Inouye K, Ichimura K, Kaneko K, Ishikawa T. The effect of copper (Ⅱ) on the formation of γ-FeOOH. Corrosion Science,1976,16 (8):507-517.
    [100]Inouye K, Imamura H, Kaneko K, Ishikawa T. The Effect of Copper (Ⅱ) on the Formation and Thermal Change of Synthetic P-FeOOH. Bulletin of the Chemical Society of Japan,1974,47 (3):743-744.
    [101]Ishikawa T, Nagashima A, Kandori K. Structure of nickel-doped α-FeOOH. Journal of Materials Science,1991,26 (22):6231-6236.
    [102]Ishikawa T, Yamashita H, Yasukawa A, Nakayama T, Yuse F. Structures of Ti (Ⅳ)-doped α-FeOOH particles. Journal of Materials Chemistry,2000,10:543-547.
    [103]Ishikawa T, Katoh R, Yasukawa A, Kandori K, Nakayama T, Yuse F. Influences of metal ions on the formation of P-FeOOH particles. Corrosion Science,2001,43 (9): 1727-1738.
    [104]Ishikawa T, Motoyoshi N, Yasukawa A, Kandori K, Nakayama T, Yuse F. Influences of metal ions on formation of α-FeOOH rust-Single and multiple additions of Cu (Ⅱ), Ni (Ⅱ) and Ti (Ⅳ). Zairyo-to-Kankyo,2001,50 (4):155-161.
    [105]Ishikawa T, Nakazaki H, Yasukawa A, Kandori K, Seto M. Influences of Co2+, Cu2+ and Cr3+ ions on the formation of magnetite. Corrosion Science,1999,41 (8):1665-1680.
    [106]Genin J-M R, Refait Ph, Bourrie G, Abdelmoula M, Fabienne Trolard. Structure and stability of the Fe (Ⅱ)-Fe (Ⅲ) green rust "fougerite" mineral and its potential for reducing pollutants in soil solutions. Applied Geochemistry,2001,16:559-570.
    [107]Refait Ph, Bon C, Simon L, BourrieG, Trolard F, Bessiere J, Genin J-M R. Chemical composition and Gibbs free energy of formation of Fe (Ⅱ)-Fe (Ⅲ) hydroxysulphate green rust and Fe (Ⅱ) hydroxide. Clay Minerals.1999,34:499-510.
    [108]Simon L, Francois M, Refait P, Renaudin G, Lelaurain M, Genin J-M R. Structure of Fe (Ⅱ-Ⅲ) layered double hydroxysulphate green rust two from Rietveld analysis. Solid-State Science,2003,5:327-334.
    [109]Ujihira Y, Nomura K. Analyses of corrosion products of steels by conversion electron Mossbauer spectrometry. Research Signpost, Trivandrum, India,1996.
    [110]Kamimura T, Nasu S, Segi T, Tazaki T, Miyuki H, Morimoto S, Kudo T. Influence of cations and anions on the formation of β-FeOOH. Corrosion Science,2005,47:2531-2542.
    [111]Misawa T, Kyuno T, Suetaka W, Shimodaira S. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels. Corrosion Science,1971, 11:35-48.
    [112]Ishikawa T, Kondo Y, Yasukawa A, Kandori K. Formation of magnetite in the presence of ferric oxyhydroxides. Corrosion Science,1998,40 (7):1239-1251
    [113]Dillmann Ph, Mazaudier F, HoerleS. Advances in understanding atmospheric corrosion of iron.I. Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion. Corrosion Science,2004,46:1401-1429.
    [114]Stahl K, Nielsen K, Jiang J Z, Lebech B, Hanson J C, Norby P, Lanschot J. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corrosion Science,2003,45:2563-2575.
    [115]Weckler B, Lutz H D. Lattice vibration spectra. Part XCV. Infrared spectroscopic studies on the iron oxide hydroxides goethite (α), akagankite (β), lepidocrocite (γ), and feroxyhite (δ). European Journal of Solid State and Inorganic Chemistry.1998,35:531-544.
    [116]Ohtsuka T, Komatsu T. Enhancement of electric conductivity of the rust layer by adsorption of water. Corrosion Science,2005,47:2571-2577.
    [117]Gusmano G, Montesperelli G, Nunziante P, Traversa E. Study of the conduction mechanism of MgAl2O4 at different environmental humidities. Electrochimica Acta,1993,38: 2617-2621.
    [118]Hoerle S, Mazaudier F, Dillmann Ph, Santarini G. Advances in understanding atmospheric corrosion of iron Ⅱ. Mechanistic modelling of wet-dry cycles. Corrosion Science,2004,46:1431-1465.
    [119]Stratmann M, Bohnenkamp K, Engell H J. An electrochemical study of phase-transitions in rust layers. Corrosion Science,1983,23:969.
    [120]Qu D Y. Application of a. c. impedance technique to the study of the proton diffusion process in the porous MnO2 electrode. Electrochimica Acta,2003.48:1675-1684.
    [121]Freger V. Diffusion impedance and equivalent circuit of a multilayer film. Electrochemistry Communications,2005,7:957-961.
    [122]de Levie R. Adv. Electrochem. Electrochem. Eng.6 (1967) 329.
    [123]Memet J B, Girault P, Sabot R, Compere C, Deslouis C. Electrochemical impedance spectroscopy of a free-standing oxide film. Electrochimica Acta,2002,47:1043-1053.
    [124]Barcia O E, E. D'Elia, Frateur I, Mattos O R, Pebere N, Tribollet B. Application of the impedance model of de Levie for the characterization of porous electrodes. Electrochimica Acta,2002,47 (13-14):2109-2116.
    [125]刘国超,董俊华,韩恩厚,柯伟.耐候钢锈层研究进展.腐蚀科学与防护技术,2006,18(4):269-272
    [126]张全成,王建军,吴建生,郑文龙,陈家光,李爱柏.锈层离子选择性对耐候钢抗海洋性大气腐蚀性能的影响.金属学报,2001,37(02):193-196
    [127]Itagaki M, Nozue R, Watanabe K, Katayama H, Noda K. Electrochemical impedance of thin rust film of low-alloy steels. Corrosion Science,2004,46:1301-1310.
    [128]Miyuki H, Yamashita M, Fujiwara M, Misawa T. Ion selective properties of rust membranes and protective effect of stable rust layer formed on weathering steel. Zairyo-to-Kankyo,1998,47(3):186-192.
    [129]Stratmann M, Muller J, The mechanism of the oxygen reduction on rust-covered metal substrates. Corrosion Science,1994,36:327.
    [130]Stratmann M, Hoffmann K. In situ Moβbauer spectroscopic study of reactions within rust layers. Corrosion Science,1989,29(11-12):1329.
    [131]Stratmann M, Streckel H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers—Ⅱ. Experimental results. Corrosion Science,1990,30:697.
    [132]Evans U R, Taylor C A J. Mechanism of atmospheric rusting. Corrosion Science,1972, 12 (3):227-246.
    [133]Antony H, Legrand L, Marechal L, Perrin S, Dillmann Ph, Chauss'A. Study of lepidocrocite γ-FeOOH electrochemical reduction in neutral and slightly alkaline solutions at 25℃. Electrochimica Acta,2005,51:745-753.
    [134]董杰,董俊华,韩恩厚,刘春明,柯伟.低碳钢带锈电极的腐蚀行为.腐蚀科学与 防护技术,2006,18(6):414.
    [135]Andrade C, Keddam M, Novoa X R, Perez M C, Rangel C M, Takenouti H. Electrochemical behaviour of steel rebars in concrete:influence of environmental factors and cement chemistry. Electrochimica Acta,2001,46:3905-3912.
    [136]Novak P, Mala R. Comparison of electrochemical data and mass loss corrosion rate measurements for steel reinforcements in concrete. European Federation of Corrosion Publications,2000,31:41.
    [137]Videm K. Phenomena disturbing electrochemical corrosion rate measurements for steel in alkaline environments. Electrochimica Acta,2001,46:3895-3903
    [138]Gonzalez J A, Miranda J M, Otero E, Feliu S. Effect of electrochemically reactive rust layers on the corrosion of steel in a Ca (OH)2 solution. Corrosion Science,2007,49: 436-448.
    [139]Flis J, Pickering H W, Osseo-Asare K. Interpretation of impedance data for reinforcing steel in alkaline solution containing chlorides and acetates. Electrochimica Acta,1998,43 (12-13):1921.
    [140]Panda B, Balasubramaniam R, Dwivedi G. On the corrosion behaviour of novel high carbon rail steels in simulated cyclic wet-dry salt fog conditions. Corrosion Science,2008, 50(6):1684-1692
    [141]Bousselmi L, Fiaud C, Tribollets B, Triki E. The Characterisation of the coated layer at the interface carbon steel-natural salt water by impedance spectroscopy. Corrosion Science, 1997,39 (9):1711-1724.
    [142]Yadav A P, Nishikata A, Tsuru T. Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions—influence of time of wetness. Corrosion Science, 2004,46(1):169-181
    [143]Bousselmi L, Fiaud C, Tribollets B, Trike E. Impedance spectroscopic study of a steel electrode in condition of scaling and corrosion:Interphase model. Electrochimica Acta,1999, 44 (24):4357-4363
    [144]Song G L. Theoretical analysis of the measurement of polarization resistance in reinforced concrete. Cement & Concrete Composites 2000,22 (6):407-415
    [145]邓勃.原子吸收分光光度法.北京:清华大学出版社,1982
    [146]刘希尧.工业催化剂分析测试表征.北京:烃加工出版社,1990
    [147]欧阳维真,王蕾,许淳淳.带锈铁器在海水介质中腐蚀行为的电化学阻抗研究.桂林工学院学报,2008,28(3):389-392
    [148]邱于兵,齐公台,郭稚弧,张华民,刘烈炜.海水腐蚀下A3钢锈层对基体腐蚀电化学行为的影响.中国海上油气(工程),1996,8(5):18-21
    [149]Forsyth J B, Hedley I G, Johnson C E. The magnetic structure and hyperfine field of goethite (α-FeOOH), Journal of Physics C,1968,1:179-188.
    [150]Smith D C, McEnaney B. The influence of dissolved oxygen concentration on the corrosion of grey cast iron in water at 50℃. Corrosion Science,1979,19 (6):379-394
    [151]Raman A, Nasrazadani S, Sharma L. Morphology of rust phases formed on weathering steels in various laboratory corrosion tests. Metallography,1989,22:79-96
    [152]Kwon S K, Shinoda K, Suzuki S, Waseda Y. Influence of silicon on local structure and morphology of γ-FeOOH and α-FeOOH particles. Corrosion Science,2007,49:1513-1526
    [153]Majzlan J, Mazeina L, Navrotsky A. Enthalpy of water adsorption and surface enthalpy of lepidocrocite (γ-FeOOH). Geochimica et Cosmochimica Acta,2007,71:615-623
    [154]熊慧欣,周立祥.不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用.岩石矿物学杂志,2008,27(6):559-566
    [155]Post J E, Buchwald V F. Crystal structure refinement of akaganeite. American Mineral, 1991,76:272-277.
    [156]李晓飞,祝一锋,李小年,刘化章.Fe3O4和Fe1-xO的性质及其在氨合成催化剂中的应用.化工生产与技术,2005,12(4):17-22
    [157]Kamimura T, Hara S, Miyuki H, Yamashita M, Uchid H. Composition and protective ability of rust layer formed on weathering steel exposed to various environments. Corrosion Science,2006,48:2799-2812.
    [158]Lair V, Antony H, Legrand L, ChausseA. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron. Corrosion Science,2006,48: 2050-2063.
    [159]Evans U R. Electrochemical mechanism of atmospheric rusting. Nature,1965,206:980-982
    [160]Nishimura T, Tanaka I, Shimizu Y. Effect of NaCl on rusting of steel in wet and dry corrosion cycle. Tetsu-to-Hagane,1995,81 (11):1079-1084.
    [161]Antony H, Perrin S, Dillmann Ph, Legrand L, Chausse A. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artefacts. Electrochimica Acta, 2007,52 (27):7754-7759
    [162]Uhlig H H, Revie R W. Corrosion and Corrosion Control, third ed., John Wiley and Sons, New York,1985,12-15.
    [163]Forgeson B W, Southwell C R, Alexander A L. Corrosion of metals in tropical environments-part 3-underwater corrosion of ten structural steels. Corrosion (NACE),1960, 16:105-114.
    [164]Kirk W W, Pikul S J. Seawater corrosivity around the world:results from three years of testing, in:Baloun C H (Ed.), Corrosion in natural waters, ASTM STP 1086, American Society for Testing and Materials, Philadelphia,1990,2-36.
    [165]Blekkenhorst F, Ferrari G M, van der Wekken C J, Ijsseling F P. Development of high strength low alloy steels for marine applications, part 1:results of long term exposure tests on commercially available and experimental steels, British Corrosion Journal,1986,21: 163-176.
    [166]Phull B S, Pikul S J, Kain R M. Seawater corrosivity around the world:results from five years of testing, in:R.M. Kain, W.T. Young (Eds.), Corrosion Testing in Natural Waters:vol. 2, ASTM STP 1300, American Society for Testing and Materials, Philadelphia,1997,34-73.
    [167]Corcoran E F, Kittredge J S. Pitting corrosion of reserve fleet ships. Corrosion Prevention and Control,1956,3:45-48.
    [168]Jeffrey R, Melchers R E. The changing topography of corroding mild steel surfaces in seawater. Corrosion Science,2007,49:2270-2288
    [169]田昭武,林昌健.电化学实验方法进展.厦门:厦门大学出版社,1989,254
    [170]林昌健,李彦,林斌,胡融刚,张敏,卓向东,杜荣归.扫描电化学微探针的发展及其在局部腐蚀研究中的应用.电化学,2009,15(2):121-128
    [171]余家康,曹楚南,林海潮.通用型微区电位、电流密度分布测量系统的建立.腐蚀科学与防护技术,1997,9(1):66-69
    [172]邵敏华,付燕,胡融刚,林昌健.A12024-T3合金局部腐蚀的扫描微电极研究.物理化学学报,2002,18(4):350-354
    [173]李彦,杜荣归,邵敏华,胡融刚,林玉华,林昌健.钢筋表面微区电位分布的原位测 量.厦门大学学报(自然科学版),2004,43(1):138-140
    [174]Li W S, Cui N, Luo J L. Pitting initiation and propagation of hypoeutectoid iron-based alloy with inclusions of martensite in chloride-containing nitrite solutions. Electrochimica Acta,2004,49 (9-10):1663-1672
    [175]Zeng Y M, Luo J L, Norton P R. Initiation and propagation of pitting and crevice corrosion of hydrogen-containing passive films on X70 micro-alloyed steel. Electrochimica Acta,2004,49 (5):703-714
    [176]乔利杰,肖纪美,林昌健.黄铜应力腐蚀开裂的电位前驱效应.中国腐蚀与防护学报,1991,11(1):67-74
    [177]陈铠,叶赐麒.海水中921钢及其焊接接头的腐蚀性能.北京工业大学学报,1992,18(1):11-16
    [178]张士华,李异.微电极扫描测量焊缝电位的分布.化工腐蚀与防护,1991,3:12-15
    [179]Akid R, Mills D J. A comparison between convential macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion. Corrosion Science,2001,43 (7):1203-1216
    [180]郭海丁,田锡唐,王杰.夹层体的电偶腐蚀.腐蚀科学与防护技术,1996,8(1):72-78
    [181]Xu K, Dexter S C, Luther G W. Development of Voltammetric Microelectrodes for use in Corrosion Studies. Corrosion/97 (NACE), International, Houston,1997:300
    [182]Abrahamson M, Lewandowski Z, Geesey G, Skjak-Brek G, Strand W, Christensen B E. Development of an artificial biofilm to study the effects of a single microcolony on mass transport. Journal of Microbiological Methods,1996,26:161-169
    [183]Yang S, Lewandowski Z. Measurement of local mass transfer coefficient in biofilms. Biotechnol Bioeng,1995,48:737-744
    [184]胡荣宗,林昌健,周香,谭建光,赵雄超.腐蚀介质中混凝土/钢筋界面电极电位分布的立体分析.电化学,2000,6(2):227-232
    [185]Aung N N, Tan Y-J. Monitoring pitting-crevice corrosion using the WBE-noise signatures method. Materials and Corrosion,2006,57 (7):555-561
    [186]Wang W, Zhang X, Wang J. Pits with coloured halos formed on 1 Cr18Ni9Ti stainless steel surface after Ennoblement in seawater, Material Science and Engineering C.2009,29 (3):851-855
    [187]王丹,李国希,章红春,朱日龙,杜艳娜.用丝束电极研究SO22-对纯铝缝隙腐蚀的影响.腐蚀与防护,2006,27(1):7-10
    [188]Tan Y-J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. Ⅱ. Crevice corrosion and crevice corrosion exemption. Corrosion Science, 2001,43:1919-1929
    [189]黄桂芳,吴翠兰,靳九成.防锈油防护性能的影响因素及油膜下金属腐蚀特征.中国腐蚀与防护学报,1999,19(3):179-184
    [190]Zhong Q D. A novel electrochemical testing method and its use in the investigation of the self-repairing ability of temporarily protective oil coating. Corrosion Science,2002,44: 1247-1256
    [191]Tan Y-J, Bailey S, Kinsella B. Mapping non-uniform corrosion using the wire beam electrode method. Ⅲ. Water-line corrosion. Corrosion Science,2001,43:1931-1937
    [192]黄桂芳,李国希,黄维清,吴翠兰,王荣吉.用丝束电极研究金属/有机涂层体系的进展.腐蚀与防护,2004,25(8):339-341
    [193]Thu Q Le, Bonnet G, Compere C, Trong H Le, Touzain S. Modified wire beam electrode:a useful tool to evaluate compatibility between organic coatings and cathodic protection. Progress in Organic Coatings,2005,52:118-125
    [194]施惠生,邓恺.用丝束电极模拟研究混凝土中钢筋的锈蚀.建筑材料学报,2005,8(6):682-686
    [195]董泽华,郭兴蓬,刘宏芳,许立铭,郑家燊.用丝束电极研究SRB微生物诱导腐蚀的电化学特征.中国腐蚀与防护学报,2002,22(1):48-53
    [196]Wang W, Zhang X, Wang J. The influence of local glucose oxidase activity on the potential/current distribution on stainless steel:A study by the wire beam electrode method. Electrochimica Acta,2009,54:5598-5604
    [197]Wang W, Lu Y H, Zou Y, Zhang X, Wang J. The heterogeneous electrochemical characteristics of mild steel in the presence of local glucose oxidase-A study by the wire beam electrode method. Corrosion Science,2010,52 (3):810-816