地源热泵空调系统运行建模研究及能效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地源热泵空调系统利用地下浅层的低品位能量对建筑供热制冷,比常规空调系统能源利用更合理,是一项极具发展前途的可再生能源利用新技术。在国内节能减排形势下,地源热泵技术以其节能、环保特点,越来越受重视,近年快速发展。但地源热泵空调系统建设费用高,需通过其运行节能性来弥补。地源热泵的实际使用效果及性能,不仅与设备有关,还与地区和具体工程情况以及使用情况关系密切,这些影响因素是实验数据无法反映的。对运行使用的地源热泵系统进行测试和研究,是了解地源热泵系统运行特性与节能效果的重要手段。
     本文首先分别介绍了对两类地源热泵空调系统的全年运行监测分析。这两类系统分别是地埋管热泵和地下水水源热泵,是地源热泵空调系统的两种主要应用形式。两个系统都是武汉地区住宅建筑中使用的集中空调系统,使用条件相似、空调采暖规模相近。通过监测得出了系统和机组的季节能效性能系数,分析比较了地源热泵空调系统的温度情况,对地埋管系统由于冷热堆积效应的季节影响和年度影响进行了评价。验证了住宅建筑的能耗与室外空气温度的线性关系,说明在住宅建筑中度日法用于能耗负荷预测的适用性。并对这类系统存在的典型问题进行分析。
     结合全年运行监测分析,对地源热泵空调系统应用中的重点方面进行了专题研究,包括:对两个不同类型的地源热泵空调系统进行了深入的能效对比分析,分别与传统空调和地源热泵系统的文献数据进行比较,采用实测数据用理论模型预测理想能效,并与实测能效进行比较;对地下水源热泵空调系统,通过对最热月和最冷月的平均运行工况数据分析,得出了各设备及系统的火用损及火用效率,找出了系统的薄弱环节并对所提出的两种改进措施进行了对比,两种改进措施为:控制热泵机组端差、取消井水侧的换热器的直接连接方式;针对地下水源热泵中节能和地下水利用两方面问题,建立水源侧流量分析模型和典型的基准工况,分析板式换热器循环流量和地下水流量最佳范围,以及地下水取用单价的合理范围。
     在对地埋管换热器的传热分析基础上,本文提出了一种地埋管换热器的逆向建模方法:G函数插值法。利用地埋管换热器传热的线性叠加特点,采用约束非线性单纯形法求解反卷积计算,拟合模型参数。应用该方法进行了逆向建模与预测,并同基于正向模型DST的调试建模法进行了对比验证。模拟数据验证采用一个假设算例,合成热流做为全年热流输入负荷,附加随机噪声模拟数据测试和记录过程的误差,检验两种建模方法的容错性。实际运行数据验证采用两个不同规模的实际运行地埋管空调系统的运行数据进行逆向建模,验证建模方法的实用能力。小型系统运行数据来源于文献,大型系统为本文中的地埋管热泵监测数据。通过对大型系统第二年的温度预测与实测的对比,检验逆向模型的预测效果。验证计算结果显示:G函数插值法与DST调试法拟合预测结果较好,而G函数插值法拟合误差和预测误差都小于DST调试法,日记录数据误差是产生逆向建模拟合预测误差的主要原因。在G函数法基础上,本文又提出了一个简单的方法:度日G函数法。度日G函数法采用室外温度预测地埋管换热器负荷,适用于住宅类型建筑的集中空调系统。根据实测数据验证,度日G函数插值法比DST调试法误差大,但可满足工程应用的一般要求。
     本文通过对运行系统的实测,对地源热泵应用的关键问题进行了深入研究;建立了地埋管逆向模型,为地源热泵空调系统的运行应用提供了新的计算方法。
Be using renewable geothermal energy in shallow ground layer, a ground source heat pump (GSHP) technology is known as one of air conditioning techniques which have the greatest developmental. The GSHP has great potentials in energy reduction and in reducing CO2 emissions to conventional HVAC systems. In China, energy shortage and environmental issues pose a serious challenge accompanied by rapid economic growth. GSHP has been spotlighted as both energy efficiency and environmental benefits. Generally, the initial investment for a GCHP system is higher than that of a conventional system. GCHP energy savings will offset the higher installing cost in future. However, there are many aspects affecting the actual amount of energy saved, such as climate, building load, ground heat exchanger, heat pump, control, etc. Recently, a lot of research on the energy performance of GCHP has been carried out. However, most of these previous research projects evaluated the performance of GCHP system based on a laboratory scale or a small capacity system. There is little data documenting the long-term performance of a large-sized GCHP. Evalution and research on real world installed GCHP will provide a more accurate understanding of the current technology's performance.
     The paper presented that the energy performance evaluation of two types of GSHPs based on actual operational data. The two types of GSHPs were ground-coupled heat pump system (GCHPs) and groundwater heat pump system (GWHPs) which were, respectively, installed in two apartment buildings of Wuhan, China. In one year, we monitored various operating parameters, including the outdoor temperature, the flow rate, electrical consumption, and the water temperature. The coefficient of performance (COP) values of system and chiller were determined based on a series of measurements. During residential GCHP system operation, the heat injection rate into soil is larger than the heat extraction rate out of soil. The COP of chillers of the GCHPs decreased significantly during the heating season due to the lowering of ground soil temperature. The system power consumption exhibited a strong linear relationship with outdoor temperature in both seasons and this suggests that normalizing power consumption against degree-days is a highly practical index in energy analysis in resident buildings, especially in winter.
     Some research topics were studied on the two actual cases. An exergy analysis of a ground water heat pump system on the actual operation was conduced. The energy efficiency and exergy loss and efficiency in each of the components of the system are detemined for the average measured parameters obtained from the monitored results of the hottest month and the coldest month. Inefficient facts are found out and increased energy efficiencies of two proposed improvement measures were estimated. Lower approach temperature is effective energy saving. In addition to the energy analysis, a full exergy analysis helps to identify the components where inefficiencies occur. An economic analysis model for GWHP was established to calculate energy consumption and operating cost based on a baseline condition. Plate heat exchanger flow rate and groundwater flow rate were optimization parameters according to different water price of the groundwater:GWHP survey data shows the impact of water price on groundwater flow rate in design. The long-term energy performances of the GWHPs and the GCHPs were investigated and compared with conventional HVAC systems and other GSHPs on literature data. A performances model was established base on the two cases to constrast the predicted performance with the actual performance.
     Based on superposition theorem of geothermal heat exchangers (GHE), a inverse model for GHE, G-functions interpolation approach was proposed. Linear interpolation method was adopted to fit G-functions. The method presented here uses the Nelder and Mead simplex algorithm as part of a parameter estimation algorithm to estimate G-function. For verification of G-functions interpolation approach, a numerical experimentation had been conducted where synthetic load on GHE was established. The simulation results with error and no error, were inversely modeled by G-functions interpolation approach and DST calibrated approach. The actual dataset of a small sized and a large sized GSHPs were also used in inverse modeling to verify the results from the G-functions interpolation approach. The small sized GSHPs was from literature. The large sized vertical GSHPs was the monitored case in the paper. A detailed DST model of a GHE has been calibrated to monitored data. The second year predicted temperatures calculated by the two models were compared with the measured. The results show the two approaches are reliable and have good performance of error tolerance. The error of GHE water temperature calculated by G-functions interpolation approach was less than DST calibrated approaches. The data error inversely modeled was mainly from recorded day data. As a extension study of the G-functions interpolation model, degree-day G-functions approach was proposed. The model was based on degree-day prediction load and can be applied on the residential buildings. The standard deviation of GHE water temperature by degree-day G-functions approach was larger than DST calibrated approaches. The result shows the appropriateness of degree-day G-functions interpolation approach for the quantitative modeling of GHE.
     This paper shows that the research on actual performance according measured data and presents two inverse models:G-functions interpolation model, degree-day G-functions model approach, which provides new methods for GHE inverse modeling
引文
[1]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2009[M].北京:中国建筑工业出版社2009.
    [2]EPA, Space conditioning:The next frontier-the potential of advanced residential space conditioning technologies for reducing pollution and saving consumers money Report 430-R-93-004 [R]. U.S.:Environmental Protection Agency,1993.
    [3]FLORIDES G, KALOGIROU S. Ground heat exchangers--a review of systems, models and applications [J]. Renewable Energy,2007,32 (15):2461-2478.
    [4]ASHRAE. Ashrae handbook-hvac applications (si) [M]. Atlanta, GA:ASHRAE, 2007.
    [5]李新国,赵军,朱强.地源热泵供暖空调的经济性[J].太阳能学报,2001,22(4):418-421.
    [6]王永镖,李炳熙,姜宝成.地源热泵运行经济性分析[J].热能动力工程,2002,17 (6):565-567.
    [7]SPITLER J. Ground-source heat pump system research—past, present.and future. [J].HVAC&R Research,2005,11 (2):165-168.
    [8]LUND J W. Characteristics, development and utilization of geothermal resources [M]. GHC BULLETIN. JUNE 2007.
    [9]邓海燕,周沫.武汉市对使用地下水地源热泵系统的取水户立“新规”[J].工程建设与设计,2007,(7):30-33.
    [10]YUE L, RAN M, MO Z, et al. The ground source hot pump uses the survey report of the situation domestically(2005-2006) [J]. Construction & Design for Project, 2007, (9):4-11.
    [11]YANG W, ZHOU J, XU W, et al. Current status of ground-source heat pumps in china [J]. Energy Policy,2009,38 (1):323-332.
    [12]LIANG J, LI B, WU Y, et al. An investigation of the existing situation and trends in building energy efficiency management in china [J]. Energy and Buildings,2007,39 (10):1098-1106.
    [13]GAO Q, LI M, YU M, et al. Review of development from gshp to utes in china and other countries [J]. Renewable and Sustainable Energy Reviews,2008,13 (6): 1383-1394.
    [14]武汉市建筑设计院,武汉市地质工程勘探院,华中科技大学,武汉地区地源热泵推广应甩技术研究鉴定材料[R].武汉,2009.
    [15]INGERSOLL.L.R, PLASS.H.J. Theory of the ground pipe heat source for the heat pump [J]. Heating Piping and Air Conditioning,1948,20 (7):119-122.
    [16]INGERSOLL.L.R, ZOBEL.O.J, INGERSOLL.A.C. Heat conduction with engineering, geological and other applications [M]. New York:McGraHr-HIill Co, 1954.
    [17]MEI.V.C, FISCHER.S.K. Vertical concentric tube ground-coupled heat exchangers [J]. ASHRAE Transactions,1983,89(2):391-406.
    [18]PARTIN.J.R. Sizing the closed-loop earth coupling for heat pumps [J]. ASHRAE Transactions,1985,,91(1):61-68
    [19]MEI.V.C, BAXTER.V.D. Performance of a ground-coupled heat pump with multiple dissimilar u-tube coils in series [J]. ASHRAE Transactions,1986,92(2):30-41.
    [20]PARKER.J.D, BOSE.JE, F.C M. The ashrae design/data manual for ground-coupled heat pumps [J]. ASHRAE Transactions,1985,91(2):1169-1183.
    [21]COUVILLION.R.J. Field and laboratory simulation of earth-coupled heat pump coils [J]. ASHRAE Transactions,1985,91(2):1326-1334.
    [22]LI XIN-GUO C Z-H, ZHAO JUN. Simulation and experiment on the thermal performance of u-vertical ground coupled heat exchanger [J]. Applied Thermal Engineering,2006,26(14):1564-1571.
    [23]SPITLER B. Current status of ground source heat pumps and underground thermal energy storage in europe [J]. Geothennics,2003,32 (4):579-588.
    [24]LEONG W H T V R, AITTOMAKI A.. Effect of soil type and moisture content on ground heat pump performance [J]. International Journal of Refrigeration,1998,21 (8):595-606.
    [25]YANG G. Modeling the effect of backfills on u-tube ground coil performance [J]. ASHRAE Transactions,1998,104 (2):356-365.
    [26]HART S E. Ground-coupled heat pump loop design using thermal conductivity testing and the effect of different backfill materials on vertical bore length [J]. ASHRAE Transactions,1998,104 (1):775-779.
    [27]QIANG Z. Heat transfer analysis of vertical u-tube heat exchangers in a multiple borehole field for ground source heat pump systems [D],1999.
    [28]BI Y, CHEN L, WU C. Heat source performance for solar-ground source heat pump [J]. Journal of the Energy Institute,2005,78 (4):185-189.
    [29]BI Y, GUO TW, ZHANG L. Solar and ground source heat-pump system [J]. Applied Energy,2004,78 (2):231-245.
    [30]杨卫波,施明恒,董华.太阳能一壤源热泵系统(seshps)交替运行性能的数值模拟[J].热科学与技术,2005,42(3):228-232.
    [31]YANG H, CUI P, FANG Z. Vertical-borehole ground-coupled heat pumps:A review of models and systems [J]. Applied Energy,2010,87 (1):16-27.
    [32]INGERSOLL.L.R., ZOBEL.OJ., INGERSOLL.AC. Heat conduction with engineering, geological, and other applications [M]. New York:McGraw-Hill,1954.
    [33]HART.DP, COUVILLION.R.J., Earth coupled heat transfer [R]. New York Publication of the National Water Well Association,1986.
    [34]BALL.D.A, FISCHER.R.D, HODGETT.D.L. Design methods for ground-source heat pumps [J]. ASHRAE Transactions,1983,89(2):416-440
    [35]BOSE.JE., PARKER.JD., MCQUISTON.FC., Design/data manual for closed-loop ground coupled heat pump systems [R]. Oklahoma:Oklahoma State Univ for ASHRAE,1985.
    [36]HACKNER.RJ, HUGHES.PJ. Design of echp systems in northern climates [J]. ASHRAE Transactions,1987,93-102.
    [37]ZENG H Y, DIAO N R, FANG Z H. A finite line-source model for boreholes in geothermal heat exchangers [J]. Heat Transfer—Asian Research,2002,31 (7): 20-26.
    [38]ZENG H, DIAO N, FANG Z. Heat transfer analysis of boreholes in vertical ground heat exchangers [J]. International Journal of Heat and Mass Transfer,2003, (46): 4467-4481.
    [39]LAMARCHE L, BEAUCHAMP B. A new contribution to the finite line-source model for geothermal boreholes [J]. Energy and Buildings,2007,39 (2):188-198.
    [40]DIAO.NR, ZENG.HY, FANG.ZH. Improvement in modeling of heat transfer in vertical ground heat exchangers [J]. HVAC & R Res,2004,10 (4):59-70.
    [41]丁勇,刘宪英.地源热泵系统实验综述[J].现代空调,2001,37
    [42]CARSLAW, JAEGER. Conduction of heat in solids [M]. Oxford University Press, 1959.
    [43]HELLSTROM.G. Ground heat storage:Thermal analyses of duct storage systems [D];Sweden:Department of Mathematical Physics University of Lund;,1991.
    [44]KAVANAUGH S P. Simulation and experimental verification of vertical ground coupled heat pump systems [D];Oklahoma State University 1985.
    [45]KAVANAUGH S P. Using existing standards to compare energy consumption of ground-source heat pumps with conventional equipment [J]. ASHRAE Transactions, Atlanta,1992,922-13.
    [46]DEERMAN.J.D, KAVANAUGH.S.P. Simulation of vertical u-tube ground-coupled heat pump systems using the cylindrical heat source solution [J]. ASHRAE Transactions,1997,103(1):287-295
    [47]孙纯武,张素云,刘宪英.水平埋管换热器地热源热泵实验研究及传热模型[J].重庆建筑大学学报,2001,23(6):49-55.
    [48]何雪冰,刘宪英.某住宅地源热泵系统夏季运行测试研究[J].暖通空调,2006,36(1):118-121.
    [49]MURAYA.NK, O.NEAL.DL, HEFFINGTON.WM. Thermal interference of adjacent legs in a vertical u-tube heat exchanger for a ground-coupled heat pump [J]. ASHRAE Transactions,1996,102 (2):12-21.
    [50]李芃,仇中柱,于立强.垂直埋管式土壤源热泵埋管周围土壤温度场的数值模拟[J].建筑热能通风空调,2000,(4):1-4.
    [51]李芃,刘士龙,陈汝东.土壤源热泵的选择应用及设计中的几个问题[J].流体机械,2005,33(3):73-76.
    [52]HELLSTROM G, Duct ground heat storage model:Manual for computer code [R]. Lund:Lund, Sweden:University of Lund, Department of Mathematical Physics.,1989.
    [53]YAVUZTURK C. Modeling of vertical ground loop heat exchangers for ground source heat pump systems [D];Oklahoma State University,1999.
    [54]ROTTMAYER.SP, BECKMAN.WA, MITCHELL.JW. Simulation of a single vertical utube ground heat exchanger in an infinite medium [J]. ASHRAE Trans, 1997,103 (2):651-660.
    [55]ZHONGJIAN L, MAOYU Z. Development of a numerical model for the simulation of vertical u-tube ground heat exchangers [J]. Appl Therm Eng,2009,29 (5): 920-924.
    [56]ESKILSON P. Thermal analysis of heat extraetion boreholes [D]. Sweden; LundsUniversity,1987.
    [57]ESKILSON P, CLAESSON J. Simulation model for thermally interacting heat extraction boreholes [J]. Numerical Heat Transfer,1988,13(2):149-165
    [58]YAZUZTURK. C, D.SPITLER J. A short time step response factor model for vertical ground loop heat exchangers [J]. ASHRAE Transactions,1999,105 475-480.
    [59]YAVUZTURK C, SPITLER. J D. Field validation of a short time-step model for vertical ground loop heat exchangers [J]. ASHRAE Transactions,2001,107 (1): 617-625.
    [60]YOUNG T R. Development, verification, and design analysis of the borehole fluid thermal mass model for approximating short term borehole thermal response [D]. Stillwater, Oklahoma; Oklahoma State University,2004.
    [61]SHONDER J A, BAXTER V, THORNTON J, et al. A new comparison of vertical ground heat exchanger design methods for residential applications [J]. ASHRAE Transactions,1999,105 1179-1189.
    [62]SIGNHILD E A G, GORAN H. Comparison of four models for thermal response test evaluation [J]. ASHRAE Transactions,2003,109 131-142.
    [63]MCLAIN H A, MARTIN M A, A preliminary evaluation of the doe-2.Le ground vertical well model using maxey school measured data [R]. U.S.,1999.
    [64]YAVUZTURK C, SPITLER J D. Field validation of a short time step model for vertical ground-loop heat exchangers/discussion [J]. ASHRAE Transactions,2001, 107617-621.
    [65]YILDRIM N, TOKSOY M, G K EN G. District heating system design for a university campus [J]. Energy Build,2006,37 (3):1111-1119.
    [66]DOHERTY P S, AL-HUTHAILI A, RIFFAT S B. Ground source heat pump-description and preliminary results of the eco house system [J]. Appl Therm Eng,2004,24 2627-2641.
    [67]ZHAO L, ZHANG T J, ZHANG Q. Influence of two systematic parameters on the geothermal heat pump system operation [J]. Renew Energy,2003,2835-43.
    [68]ZHAO L. Experimental evaluation of a non-azeotropic working fluid for geothermal heat pump system [J]. Energy Convers Manage,2004,45 1369-1378.
    [69]KARABACAK R, GUEN ACAR S, KUMSAR H. Experimental investigation of the cooling performance of a ground source heat pump system in denizli, turkey [J]. International Journal of Refrigeration,2010,34 (2):454-465.
    [70]INALLI M, ESEN H. Seasonal cooling performance of a ground-coupled heat pump system in a hot and arid climate [J]. Renewable Energy,2005,30 (9):1411-1424.
    [71]ESEN H, INALLI M, ESEN M. A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling [J]. Building and Environment, 2007,42(5):1955-1965.
    [72]OZYURT O, EKINCI D A. Experimental study of vertical ground-source heat pump performance evaluation for cold climate in turkey [J]. Applied Energy,2010,88 (4): 1257-1265.
    [73]BAKIRCI K. Evaluation of the performance of a ground-source heat-pump system with series ghe (ground heat exchanger) in the cold climate region [J]. Energy,2009, 35 (7):3088-3096.
    [74]HEPBASLI A, AKDEMIR O, HANCIOGLU E. Experimental study of a closed loop vertical ground source heat pump system [J]. Energy Conversion and Management,2003,44 (4):527-548.
    [75]BLUM P, CAMPILLO G, KBEL T. Techno-economic and spatial analysis of vertical ground source heat pump systems in germany [J]. Energy,2011, In Press, Corrected Proof
    [76]MINEA V. Ground-source heat pumps Energy efficiency for two canadian schools [J]. ASHRAE Journal,2006,48(5) 28-38.
    [77]CONSORTIUM G H P, LABORATORY N R E, Measured performance of five residential geothermal systems [R]. NAHB:NAHB Research Center, Inc.,1999.
    [78]S.NAICKER, REES S. Monitoring of a large scale ground source heat pump system; proceedings of the Energy and Sustainable Development Institute of Energy and Sustainable Development, Queens,2010 [C].
    [79]MICHOPOULOS A, BOZIS D, KIKIDIS P, et al. Three-years operation experience of a ground source heat pump system in northern greece [J]. Energy and Buildings, 2007,39 (3):328-334.
    [80]HWANG Y, LEE J-K, JEONG Y-M, et al. Cooling performance of a vertical ground-coupled heat pump system installed in a school building [J]. Renewable Energy,2009,34 (3):578-582.
    [81]DOHERTY P S, AL-HUTHAILI S, RIFFAT S B, et al. Ground source heat pump--description and preliminary results of the eco house system [J]. Applied Thermal Engineering,2004,24(17-18):2627-2641.
    [82]李元旦,张旭,周亚素,等.土壤源热泵冬季工况启动特性的实验研究[.J].暖通空调,2001,31(1)17-20.
    [83]周亚素,张旭,陈沛霖.土壤源热泵机组冬季供热性能的数值模拟与实验研究[J].东华大学学报,2002,41(1):34-38.
    [84]张旭,徐琳.上海某别墅土壤热源热泵系统节能效果分析[J].制冷技术,2004,(4)23-25.
    [85]刘宪英,王勇,胡鸣明.地源热泵地下垂直埋管换热器的试验研究[J].重庆建筑大学学报,1999,21(5):21-24.
    [86]王明国,付祥钊.重庆某地源热泵系统冬季供热能力实验研究[J].建筑热能通风空调,2007,(3):23-27.
    [87]王勇.动态负荷下地源热泵性能研究[D];重庆大学,2006.
    [88]张信树,刘泽华,陈北领,等.某写字楼地源热泵冬季供暖性能测试及节能分析[J].制冷空调与电力机械,2007,(3):16-20.
    [89]朱强,李新国,赵军.不同方式地下埋管换热器的实验研究[J].华北电力大学学报,2004,31(6)61-64.
    [90]宋著坤,赵军,李新国.地源热泵冬夏两季运行性能分析与实验研究[J].流体机械,2006,34(2)55-59.
    [91]YU X, WANG R Z, ZHAI X Q. Year round experimental study on a constant temperature and humidity air-conditioning system driven by ground source heat pump [J]. Energy,2010,36 (2):1309-1318.
    [92]ASHRAE. Ashrae handbook-fundamentals (si edition) [M]. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA,,2009.
    [93]MICHOPOULOS A, KYRIAKIS N. A new energy analysis tool for ground source heat pump systems [J]. Energy and Buildings,2009,41 (9):937-941.
    [94]CUI. P, YANG H.X, FANG. Z.H. The simulation model and design optimization of ground source heat pump systems [J]. HKIE Trans,2007,14(1):1-5.
    [95]王景刚,马一太.地源热泵的运行特性模拟研究[J].工程热物理学报,2003,24 (3):361-366.
    [96]王景刚.自然工质热泵循环和地源热泵运行特性研究[D];天津大学,2003.
    [97]SHONDER J A, HUGHES P J. Increasing confidence in geothermal heat pump design methods;proceedings of the Proc 2nd Stockton Geothermal Conference, 1998 [C].
    [98]MAGRANER T, MONTERO, QUILIS S, et al. Comparison between design and actual energy performance of a hvac-ground coupled heat pump system in cooling and heating operation [J]. Energy and Buildings,2010,42 (9):1394-1401.
    [99]FISHER D E, REES S J, PADHMANABHAN S K, et al. Implementation and validation of ground-source heat pump system models in an integrated building and system simulation environment [J]. HVAC&R Research,2006,12 (3a):693-710.
    [100]LIU.X. Enhanced design and energy analysis tool for geothermal water loop heat pump systems; proceedings of the Proceedings of 9th international energy agency heat pump conference, Zurich, Switzerland,2008 [C].
    [101]CUI P, YANG H, SPITLER J D, et al. Simulation of hybrid ground-coupled heat pump with domestic hot water heating systems using hvacsim+[J]. Energy and Buildings,2008,40 (9):1731-1736.
    [102]KHAN.MH, VARANASI.A, SPITLER.JD, et al. Hybrid ground source heat pump system simulation using visual modeling tool for hvacsim+; proceedings of the Eighth international ibpsa conference, Eindhoven, Netherlands,2003 [C].
    [103]SPITLER.JD. Glhepro-a design tool for commercial building ground loop heat exchangers;proceedings of the Proceedings of the fourth international heat pumps in cold climates conference, Aylmer, Quebec,2000 [C].
    [104]ESEN H, INALLI M, ESEN M. Numerical and experimental analysis of a horizontal ground-coupled heat pump system [J]. Building and Environment,2007, 42(3):1126-1134.
    [105]LI X, CHEN Z, ZHAO J. Simulation and experiment on the thermal performance of u-vertical ground coupled heat exchanger [J]. Applied Thermal Engineering,2006, 26(14-15):1564-1571.
    [106]GENTRY J E, SPITLER J D, FISHER D E, et al. Simulation of hybrid ground source heat pump systems and experimental validation; proceedings of the 7th International Conference on System Simulation in Buildings, Liege,2006 [C].
    [107]MONFET D, ZMEUREANU R P P, CHARNEUX R P, et al. Calibration of a building energy model using measured data [J]. ASHRAE Transactions.2009,115 348-356.
    [108]GENTRY J E. Simulation and validation of hybrid ground source and water-loop heat pump systems [D];Oklahoma State University,2007.
    [109]XU X, D.SPITLER J. Modeling of vertical ground loop heat exchangers with variable convective resistance and thermal mass of the fluid; proceedings of the Proceedings of the 10th International Conference on Thermal Energy Storage, Ecostock 2006, Pomona, NJ.,2006 [C].
    [110]THORNTON J W, MCDOWELL T P, SHONDER J A, et al. Residential vertical geothermal heat pump system models:Calibration to data [J]. ASHRAE Transactions,1997,103 660-669.
    [111]ESEN H, INALLI M, SENGUR A, et al. Performance prediction of a ground-coupled heat pump system using artificial neural networks [J]. Expert Systems with Applications,2008,35 (4):1940-1948.
    [112]ESEN H, INALLI M, SENGUR A, et al. Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing [J]. International Journal of Thermal Sciences,2008,47 (4): 431-441.
    [113]ESEN H, INALLI M. Modelling of a vertical ground coupled heat pump system by using artificial neural networks [J]. Expert Systems with Applications,2009,36 (7): 1229-1238.
    [114]ESEN H, INALLI M, SENGUR A, et al. Modelling a ground-coupled heat pump system using adaptive neuro-fuzzy inference systems [J]. International Journal of Refrigeration,2008,31 (1):65-74.
    [115]ESEN H, INALLI M. Ann and anfis models for performance evaluation of a vertical ground source heat pump system [J]. Expert Systems with Applications,2010,37 (12):8134-8147.
    [116]ESEN H, INALLI M, SENGUR A, et al. Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system [J]. Energy and Buildings,2008,40 (6):1074-1083.
    [117]ESEN H, INALLI M, SENGUR A, et al. Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based anfis [J]. Building and Environment.2008,43(12):2178-2187.
    [118]刘宪英,陈建萍,丁勇.地源热泵地下埋管换热系统的神经网络模型;全国暖通空调制冷2002年学术年会,北京,2002[C].
    [119]易新,刘宪英.神经网络模型在地源热泵地下埋管换热系统中的应用[J].流体机械,2002,(8):23-27.
    [120]赵军,王华军.U型管埋地换热器长期性能的实验研究与灰色预测[J].太阳能学报,2006,(6):822-827.
    [121]张群力,王晋.地源热泵和地下水源热泵的研发现状及应用过程中的问题分析[J].流体机械,2003,31(5):50-54.
    [122]张远东,万育生.我国地下水源热泵应用现状和监管措施探讨[J].中国水利,2009,(21):39-41.
    [123]徐伟.中国地源热泵发展研究报告(2008)[M].北京:中国建筑工业出版社,2008.
    [124]HATTEN.M.J. Groundwater heat pumping:Lessons learned in 43 years at one building [J]. ASHRAE Transactions,1992,98 (1):1031-1037.
    [125]NAM Y, OOKA R, SHIBA Y. Development of dual-source hybrid heat pump system using groundwater and air [J]. Energy and Buildings,2009,42 (6):909-916.
    [126]AMPOFO F, MAIDMENT G G, MISSENDEN J F. Review of groundwater cooling systems in london [J]. Applied Thermal Engineering,2006,26 (17-18):2055-2062.
    [127]陈超,倪真,李小宁,等.住宅建筑中闭式水源热泵空调系统的应用研究[J].暖通空调,2004(6):13-17.
    [128]陈超,孙凤岭,冯磊,等.地下水源水环热泵空调系统的节能运行研究[J].暖通空调,2005,(12):18-22.
    [129]邬小波.地下含水层储能和地下水源热泵系统中地下水回路与回灌技术现状[J].暖通空调,2004,(1):23-27.
    [130]RUSSO S L, TADDIA G, BACCINO G, et al. Different design scenarios related to an open loop groundwater heat pump in a large building:Impact on subsurface and primary energy consumption [J]. Energy and Buildings,2010,43 (2-3):347-357.
    [131]NAM Y, OOKA R. Numerical simulation of ground heat and water transfer for groundwater heat pump system based on real-scale experiment [J]. Energy and Buildings,2009,42 (1):69-75.
    [132]KEVIN D R. Well-pumping issues in commercial groundwater heat pump systems [J]. ASHRAE Transactions.1998,104927-932.
    [133]RAFFERTY K P. Commercial open loop heat pump systems [J]. ASHRAE Journal, 2009,51(3):52-56.
    [134]ASHRAE. Ashrae handbook—applications,chapter 32 [M]. ASHRAE,2007.
    [135]RAFFERTY K. Design aspects of commercial open loop heat pump systems; proceedings of the Transactions of the 2000 Heat Pumps in Cold Climates Conference, Caneta Research, Missisaugua, ON, Canada.,2000 [C].
    [136]RAFFERTY.K. Dual set point control of open-loop heat pump systems [J]. ASHRAE Transactions,2001,107 (1):600-604.
    [137]倪龙,马最良,徐生恒,等.北京某同井回灌地下水地源热泵工程现场试验研究[J].暖通空调,2006,(10):25-29.
    [138]何俊仕,杨菲,吴法伟.沈阳城区地下水地源热泵运行状况调查及分析[J].暖通空调,2008,(11):32-36.
    [139]江亿.我国建筑耗能状况及有效的节能途径[J].暖通空调,2005,(5):35-39.
    [140]BI Y, WANG X, LIU Y, et al. Comprehensive exergy analysis of a ground-source heat pump system for both building heating and cooling modes [J]. Applied Energy, 2009,86 (12):2560-2565.
    [141]SAYYAADI H, AMLASHI E H, AMIDPOUR M. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm [J]. Energy Conversion and Management,2009,50(8):2035-2046.
    [142]荆有印,郑国忠,方月兰,等.地下水源热泵系统的火用分析[J].煤气与热力,2006,26(5):53-57.
    [143]戎卫国,孟繁晋.空调节能技术的热力学分析与思考[J].暖通空调,2008,38(12):58-60.
    [144]张伟伟,刘俊杰,朱能.水源热泵采暖系统的可用能效率分析[J].流体机械,2005.1364-66.
    [145]徐友文,刘金祥.水源热泵空调系统供暖工况的烟效率分析[J].制冷空调与电力机械,2006,55-10.
    [146]付峥嵘,王汉青,罗清海,等.地下含水层储能系统的火用分析[J].煤气与热力,2006,248-50.
    [147]武汉市建筑节能办.武汉市居住建筑节能设计技术规定[M]//武汉市建委. 2000.
    [148]陈焰华,於仲义,胡平放,等.武汉地区地源热泵系统的运行测试与分析[J].暖通空调,2009,42(6):46-51.
    [149]李玉云.武汉地区地下水地源热泵的应用与分析[J].暖通空调,2006,36(06):111-115.
    [150]周建伟,谢先明,周爱国,等.武汉市地下水源热泵应用研究现状及发展前景分析[J].工程建设与设计,2007,(11):9-13.
    [151]陈焰华,祁传斌.武汉香榭里花园水源热泵空调系统设计[J].暖通空调,2006,(03):
    [152]袁东立.水源热泵设计图集[M].北京:中国建筑工业出版社,2006.
    [153]BRANDEMUEHL M J, KRARTI M, PHELAN J, Methodology development to measure in-situ chiller, fan, and pump [R]. ASHRAE,1996.
    [154]P.BAHNFLETH W, PEYER E. Comparative analysis of variable and constant primary flow chilled water plant performance [J]. HPAC Engineering,2001,4 41-50.
    [155]清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2008[M].中国建筑工业出版社2008.
    [156]武茜.杭州地区住宅能耗问题与节能技术研究[D];浙江大学,2005.
    [157]黄志甲,张国志,张样.马鞍山市住宅夏季能耗调查分析;proceedings of the全国暖通空调制冷2008年学术年会,2008[C].
    [158]朱光俊,张晓亮.住宅建筑采暖空调能耗模拟研究[J].住宅科技,2004,1135-38.
    [159]钟婷,龙惟定.上海市住宅空调的相关调查及其耗电量的估算[J].建筑热能通风空调,2003,(3):32-36.
    [160]胡平放.湖北地区住宅热环境与能耗调查[J].暖通空调,2004,(6):35-39.
    [161]李兆坚,江亿.住宅空调方式的夏季能耗调查与思考[J].暖通空调,2008,281-84.
    [162]任俊,孟庆林.广州住宅空调能耗分析与研究[J].墙材革新与建筑节能,2003,(4):96-99.
    [163]陶轶华,王厚文,徐恺.安徽省城市建筑中央空调用能现状调查报告[J].建设 科技,2007,(12):55-59.
    [164]夏热冬冷地区居住建筑节能设计标准(JGJ 134-2001) [S].北京:中国建筑工业出版社,2001.
    [165]DOE. Doe-2 reference manual, part 1, version 2.1 [M]. Lawrence Berkeley National Laboratories, Berkeley, CA,1980.
    [166]SREEDHARAN P, HAVES. P. Comparison of chiller models for use in model-based fault detection,2001 [C]. Texas A&M University, Energy Systems Laboratory
    [167]MARK HYDEMAN P E, KENNETH L. GILLESPIE J. Tools and techniques to calibrate electric chiller component models [J]. ASHRAE Symposium,2002, AC-02-9-1
    [168]文远高,郑重.地下水资源在住宅空调中应用的方式及注意的问题[J].住宅科技,2004,(6):38-40.
    [169]WEPFER.W.J, GAGGIOLI.R.A, OBERT.E.F. Proper evaluation of available energy for hvac [J]. ASHRAE Transactions, Atlanta,1979,85 (1):214-230.
    [170]项新耀.工程火用分析方法[M].北京:石油工业出版社,1992.
    [171]汤学忠.热能转换与利用(第二版)[M].北京:冶金工业出版社,2002.
    [172]杨磊.制冷原理与技术[M].北京:科学技术出版,1988.
    [173]Ari guideline e-1997, fouling factors:A survey of their application in today's air conditioning and refrigeration industry [R]. Arlington,U.S.A.:Air-Conditioning and Refrigeration Institute,1997.
    [174]程德威,孙平,李雪.螺杆式冷水机组性能影响因素分析及其应用[J].建筑热能通风空调,2002,(06):35-36.
    [175]俞秀民,宁立伟.冷冻机组水冷器污垢经济损失研究报告[J].湖南工程学院学报,2002,12(2):21-23.
    [176]孔庆军,刘金平,刘雪峰.水冷式冷水机组冷凝器污垢热阻的动态试验研究[J].制冷技术,2002,21(4):45-47.
    [177]王珏.中央空调冷凝器自动清洗装置节能运行分析[J].制冷与空调,2009,23(02):127-129.
    [178]PRIYA.SREEDHARAN. Evaluation of chiller modeling approaches and their usability for fault detection [M]. Lawrence Berkeley National Laboratory.2001.
    [179]周春风.刘建华.叶瑞芳.几种地下水热泵系统的水路连接方式[J].暖通空调, 2004,34(09):62-64.
    [180]KIM J, LEE Y, YOON W S, et al. Numerical modeling of aquifer thermal energy storage system [J]. Energy,2010,35(12):4955-4965.
    [181]GB 50366-2009地源热泵系统工程技术规范[S].2009.
    [182]乔玉善,王贵君,姜宏,等.收取地源热泵空调水费值得探讨[J].太阳能,2007,(10):54-56.
    [183]袁东立.水源热泵设计图集[M].中国建筑工业出版社,2010.
    [184]燕达,夏建军,刘烨,等.建筑环境设计模拟分析软件dest-第9讲冷热源与水系统模拟分析(下) [J].暖通空调,2005,(4):24-28.
    [185]Hvac2 toolkit:Algorithms and subroutines for secondary hvac systems energy calculations, brandemuehl.1993;ashrae 629-rp [M].
    [186]全国勘察设计注册工程师公用设备专业管理委员会秘书处.全国勘察设计注册公共设备工程师暖通空调专业考试复习教材[M].机械工业出版社,2007.
    [187]武汉市物价局,武汉市财政局,武汉市水务局.关于调整水资源费征收标准(试行)及有关问题的通知[M].2006.
    [188]段小东,林豹.地下水用作中央空调冷源的经济性分析;proceedings of the全国暖通空调制冷2008年学术年,2008[C].
    [189]李玉云.武汉地区地下水地源热泵的应用与分析[J].暖通空调,2006,36(06):111-115.
    [190]陈焰华,於仲义,胡平放,等.武汉地区地源热泵推广应用技术研究-鉴定材料[R].武汉,2009.
    [191]XU X. Simulation and optimal control of hybrid ground source heat pump systems [D]; Oklahoma State University,2007.
    [192]HELLSTROM G. Ground heat storage, thermal analysis of duct storage systems [D]. Lund, Sweden; University of Lund,1991.
    [193]SPITLER J D, CULLIN J R, LEE E, et al. Preliminary intermodel comparison of ground heat exchanger simulation models [J].2009,
    [194]JOHN A S, VAN D B, PATRICK J H, et al. A comparison of vertical ground heat exchanger design software for commercial applications/discussion [J]. ASHRAE Transactions,2000,106 (1):831-842.
    [195]SHONDER J A, PATRICK J. HUGHES P E. Increasing confidence in geothermal heat pump design methods; proceedings of the Proc 2nd Stockton Geothermal Conference,1998 [C].
    [196]JOHN A S, PATRICK J H, JEFF W T. Using calibrated engineering models to predict energy savings in large-scale geothermal heat pump projects [J]. ASHRAE Transactions,1998,104944-950.
    [197]PAPATHEODOROU N G, FRAGOGIANNIS G I, STAMATAKI S K. Transient simulation of a hybrid ground source heat pump system; proceedings of the Proceedings World Geothermal Congress 2010,2010 [C].
    [198]MAGRANER T, MONTERO A, QUILIS S, et al. Comparison between simulation and experimental results for a monitored ground coupled heat pump system; proceedings of the Proceedings World Geothermal Congress 2010, Bali, Indonesia, 2010 [C].
    [199]JOHN A S, PATRICK J H, JEFF T. Development of deemed energy and demand savings for residential ground-source heat pump retrofits in the state of texas [J]. ASHRAE Transactions,2002,108953-958.
    [200]NELDER.J, MEAD.R. A simplex method for function minimization [J]. Computer Journal,1965,7 (4):308-313.
    [201]刁乃仁,方肇洪.地埋管地源热泵技术[M].高等教育出版社,2006.
    [202]BERNIER M, CHAHLA A, PINEL P. Long-term ground-temperature changes in geo-exchange systems [J]. ASHRAE Transactions,2008,114342-349.
    [203]BERNIER M A, PATRICE P, RICHARD L, et al. A multiple load aggregation algorithm for annual hourly simulations of gchp systems [J]. HVAC&R Research, 2004,10 (4):471-476.
    [204]BERNIER M, KUMMERT M, BERTAGNOLIO S. Development and application of test cases for comparing vertical ground heat exchanger models; proceedings of the Building Simulation 2007,2007 [C].
    [205]LAMARCHE L, BEAUCHAMP B. A fast algorithm for the simulation of gchp systems [J]. ASHRAE Transactions,2007,113 470-475.
    [206]Geothermal heat pumps database [M]. The Department of Production Engineering, Thermo and Mathematical Models of the University of Genoa.2011.
    [207]FOSSA M. Gshp plant of the s.Martino hospital kindergarten, in genoa:Modelling and performance; proceedings of the Geothermal Heating & Cooling in Italy & Mediterranean countries:a growing market, Milano-Italy,2008 [C].
    [208]PIET D D, FOSSA M. A tool for borehole heat exchanger design for ground-source heat pump applications;proceedings of the CLIMAMED2007-ENERGY,CLIMATE AND INDOOR COMFORT IN MEDITERRANEAN COUNTRIES, Genova,Italy, 2007 [C].
    [209]DAY T. Degree-days:Theory and application [M]. U.K.:Chartered Institution of Building Services Engineers,2006.
    [210]黄光德.夏热冬冷地区居住建筑能耗分析[D];重庆大学,2006.