计算化学在天然产物化学中的若干应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以计算化学方法来解决天然产物化学中存在的一些在现有实验条件下难以解决的问题。本文将从三个不同的层次进行阐述:第一个层次是天然产物的结构鉴定,通过计算天然产物的圆二色谱确定其绝对构型;第二个层次是活性天然产物的发现,运用虚拟筛选方法发现活性天然产物并进一步研究其生物活性效应;第三个层次是天然产物的反应机理研究,通过理论计算推测天然产物在生物体内的合成机理
     绝对构型的确定是目前天然产物结构鉴定中的难点之一。目前仅有X射线衍射、化学修饰等少数方法可以使用,这些方法对化合物的要求非常苛刻,前者需要质量非常好的晶体结构,后者需要进行复杂的化学修饰。对于具有复杂骨架结构、得到数量又少的天然产物而言,这些要求往往很难满足。而基于计算化合物圆二色谱的方法不需要晶体结构,只需要做出化合物的圆二色谱即可以确定其绝对构型。本文对一种新型倍半萜内酯化合物和一种新型倍半萜二聚物的圆二色谱分别进行理论计算,结合实验结果确定了它们的绝对构型。
     活性天然产物的发现是目前天然产物化学研究的热点之一。相对于传统方法而言,虚拟筛选技术可以大大提高活性化合物的发现效率,加快研究其生物活性效应。本文应用虚拟筛选技术,针对抗癌靶标基质金属蛋白酶(MMPs)和抗疟靶标恶性疟原虫半胱氨酸酶(FP-2)分别发现了若干个具有较好的活性的天然产物。随后,我们挑选一个活性较好的MMPs抑制剂进行了细胞实验,发现该天然产物不仅可以抑制MMP-2和MMP-9活化态的表达,同时还能抑制癌细胞MDA-MB-231的转移。此外,本文还对FP-2体外活性最好的抑制剂做进一步的体内药效学评价,发现该天然产物通过腹腔注射给药方式对染虫小鼠有良好的体内抗疟活性,其减虫率最高达到64%;通过对其体内作用过程的跟踪和定位,得到了该化合物作用靶点的影像和质谱实验证据,从而发现它能特异性地在滋养体阶段进入疟原虫体内,这个结果也为进一步的靶标定位提供了线索。
     天然产物生源反应机理研究是实现生物合成的重要理论基础。本文的理论计算为目前实验上还较难进行研究的生源合成机理提供了一种理论验证方法。本文通过对反应物的前线轨道和反应过渡态分析,推测出本文所研究的新型倍半萜二聚物的二聚反应机理为DA反应机理;并分析了该倍半帖类化合物二聚过程中产生选择性的原因,如空间位阻会影响其立体选择性,超共轭效应会影响其区域选择性。这些结果对经典DA反应机理做出了补充,同时也为理解复杂天然产物中DA反应机理提供了参考。
This thesis focuses on some problems existing in natural products chemistry, which remains unsolved under current experimental conditions. We will provide some computational chemistry methods to solve these problems from three perspectives. Firstly, we determine absolute configurations for natural products through calculating compound derived electronic circular dichroism (ECD) spectra data. Secondly, virtual screening is used to identify the bioactive hits from natural products. Thirdly, we investigate the synthetic mechanism of the natural products in the bioprocess based on the frontier molecular orbits theory.
     It is difficult to determine the absolute configurations for natural products. Currently, only a few methods can be used, such as X ray single crystal diffraction, chemical derivatization. However, these methods are not applicable to complicated natural products, for it is hard to acquire crystal structures of these compounds which are also hard to be synthesized, while absolute configurations can be identified only through comparing computational spectra and experimental ones. Thus the method which just calculates the compound derived ECD spectra adopted in our work is more realizable and reliable. In particular, we calculate the ECD spectra of a sesquiterpene lactone and a sesquiterpene dimmer to determine the absolute configurations for them by comparing the computational results with the experimental ones respectively.
     As for virtual screening applications, we identify several natural products hits with potent inhibitory activities against matrix metalloproteinases (MMPs) and facipain-2(FP-2), respectively. Among them, a MMPs inhibitor shows superior inhibitory effect on the expression of MMP-2and active-MMP-9, as well as suppresses the wound-healing migration of MDA-MB-231cancer cells efficiently. Besides, a FP-2inhibitor exhibits potent antimalarial activity in the model of infected mice by intraperitoneal injection, and the highest reduction rate of the malaria parasites is64%. Moreover, according to the target images and the mass spectrometry data, we find that the compound could enter the cells of the malaria parasites in the trophozoite stage specifically. These results can help us know more about mechanisms of the natural products to interact with the target.
     Understanding the synthesis mechanism of the natural products is an important foundation for biosynthesis. We also provide a solution to elucidate certain biogenic synthesis mechanisms, which are difficult to be confirmed under current experimental conditions. Through analyzing the frontline orbits and transition states, we conclude that the dimerization reaction of the novel sesquiterpene dimer is a DA reaction, and the stereoselectivity of the reaction is caused by the steric hindrance, while the regioselectivity is caused by the hyperconjugation effects. These results refine the traditional DA reaction mechanism, and help us to understand the mechanism in a thorough way.
引文
[1]Ngo LT, Okogun JI, Folk WR.21st Century natural product research and drug development and traditional medicines [J]. Nat Prod Rep,2013; 30:584-592.
    [2]Tietze LF, Bell HP, Chandrasekhar S. Natural product hybrids as new leads for drug discovery [J]. Angew Chem Int Ed Engl,2003; 42:3996-4028.
    [3]Pettit RK. Mixed fermentation for natural product drug discovery [J]. Appl Microbiol Biotechnol,2009; 83:19-25.
    [4]Arya P, Joseph R, Chou DT. Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age [J]. Chem Biol,2002; 9: 145-156.
    [5]Toure BB, Hall DG. Natural product synthesis using multicomponent reaction strategies [J]. Chem Rev,2009; 109:4439-4486.
    [6]McMurray L, O'Hara F, Gaunt MJ. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation [J]. Chem Soc Rev,2011; 40:1885-1898.
    [7]Craveiro AA, Machado MI, Alencar JW, et al. Natural product chemistry in north-eastern Brazil [J]. Ciba Found Symp,1994;185:95-102; discussion 102-105.
    [8]Boldi AM. Libraries from natural product-like scaffolds [J]. Curr Opin Chem Biol,2004; 8:281-286.
    [9]Yeung BK. Natural product drug discovery:the successful optimization of ISP-1 and halichondrin B [J]. Curr Opin Chem Biol,2011; 15:523-528.
    [10]Grace E. Altered vancomycin pharmacokinetics in obese and morbidly obese patients: what we have learned over the past 30 years [J]. J Antimicrob Chemother,2012; 67: 1305-1310.
    [11]O'Brian CA, Ward NE. Staurosporine:a prototype of a novel class of inhibitors of tumor cell invasion? [J]. JNatl Cancer Inst,1990; 82:1734-1735.
    [12]Gurk-Turner C, Manitpisitkul W, Cooper M. A comprehensive review of everolimus clinical reports:a new mammalian target of rapamycin inhibitor [J]. Transplantation,2012; 94:659-668.
    [13]Zhou X, Zhu H, Liu L, et al. A review:recent advances and future prospects of taxol-producing endophytic fungi [J]. Appl Microbiol Biotechnol,2010; 86:1707-1717.
    [14]Sun L, Simmerling C, Ojima I. Recent advances in the study of the bioactive conformation of taxol [J]. ChemMedChem,2009; 4:719-731.
    [15]Jackson G, Gillies H, Osterloh I. Past, present, and future:a 7-year update of Viagra (sildenafil citrate) [J]. Int J Clin Pract,2005; 59:680-691.
    [16]Bihm B, Wilson BA. Understanding fluoxetine (Prozac) [J]. Medsurg Nurs,1996; 5: 50-52,56.
    [17]Manolis DC. The perils of Prozac [J]. Minn Med,1995; 78:19-23.
    [18]Funatsu T, Kakuta H, Tanaka H, et al. [Atorvastatin (Lipitor):a review of its pharmacological and clinical profile] [J]. Nihon Yakurigaku Zasshi,2001;117:65-76.
    [19]Claussen DW. Lipitor (atorvastatin calcium) tablets [J]. Gastroenterol Nurs,1998; 21: 219-220.
    [20]Kaelin WG, Jr. Gleevec:prototype or outlier? [J]. Sci STKE,2004; 2004:pe12.
    [21]La Rosee P, O'Dwyer ME, Druker BJ. Insights from pre-clinical studies for new combination treatment regimens with the Bcr-Abl kinase inhibitor imatinib mesylate (Gleevec/Glivec) in chronic myelogenous leukemia:a translational perspective [J]. Leukemia, 2002; 16:1213-1219.
    [22]Clardy J, Walsh C. Lessons from natural molecules [J]. Nature,2004; 432:829-837.
    [23]Thorson JS, Sievers EL, Ahlert J, et al. Understanding and exploiting nature's chemical arsenal:the past, present and future of calicheamicin research [J]. Curr Pharm Des,2000;6: 1841-1879.
    [24]Dedon PC, Goldberg IH. Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin [J]. Chem Res Toxicol,1992; 5:311-332.
    [25]Yap KY, Chan SY, Weng Chan Y, et al. Overview on the analytical tools for quality control of natural product-based supplements:a case study of ginseng [J]. Assay Drug Dev Technol,2005; 3:683-699.
    [26]Marston A, Hostettmann K. Natural product analysis over the last decades [J]. Planta Med,2009; 75:672-682.
    [27]Wolfender JL. HPLC in natural product analysis:the detection issue [J]. Planta Med, 2009; 75:719-734.
    [28]Chang JB, Chen RF, Wang Q, et al. Application of CD excition chirality method to the studies of polyoxygenated cyclohexenes [J]. Acta Chimica Sinica,2000; 58:554-558.
    [29]Taniguchi T, Monde K. Exciton Chirality Method in Vibrational Circular Dichroism [J]. JAM CHEMSOC,2012; 134:3695-3698.
    [30]Bertucci C, Tedesco D. Advantages of electronic circular dichroism detection for the stereochemical analysis and characterization of drugs and natural products by liquid chromatography (vol 1269 pg 69 2012) [J]. J Chromatography A,2013; 1273:117-117.
    [31]Abbate S, Longhi G, Lebon F, et al. Electronic and vibrational circular dichroism spectra of (R)-(-)-apomorphine [J]. Chem Phys,2012; 405:197-205.
    [32]Warnke I, Furche F. Circular dichroism:electronic [J]. Wiley Interdisciplinary Reviews-Computational Molecular Science,2012; 2:150-166.
    [33]Mang CY, Liu CP, Wu K.C. Electronic circular dichroism of some double-helical alkynyl cyclophanes with 1,1'-binaphthyl auxiliaries investigated using time-dependent density functional calculations [J]. Mol Phys,2012; 110:1453-1460.
    [34]Li XC, Ferreira D, Ding YQ. Determination of Absolute Configuration of Natural Products:Theoretical Calculation of Electronic Circular Dichroism as a Tool [J]. Curr Org Chem,2010; 14:1678-1697.
    [35]Rizzo A, Vahtras O. Ab initio study of excited state electronic circular dichroism. Two prototype cases:Methyl oxirane and R-(+)-1,1'-bi(2-naphthol) [J]. J Chem Phys,2011; 134.
    [36]Krykunov M, Kundrat MD, Autschbach J. Calculation of circular dichroism spectra from optical rotatory dispersion, and vice versa, as complementary tools for theoretical studies of optical activity using time-dependent density functional theory [J]. J Chem Phys,2006; 125.
    [37]Chiosa V, Pantazica C, Sahini VE. Optical rotatory dispersion of some bovine serum albumin conformers [J]. Revue Roumaine De Chimie,2005; 50:503-506.
    [38]Norman P, Ruud K, Helgaker T. Density-functional theory calculations of optical rotatory dispersion in the nonresonant and resonant frequency regions [J]. J Chem Phys,2004; 120:5027-5035.
    [39]Vysin I, Svackova K, Riha J. Interpretation of the optical rotatory dispersion in tellurium [J]. Journal of Applied Crystallography,2002; 35:96-102.
    [40]Polavarapu PL, Zhao CX. Ab initio predictions of anomalous optical rotatory dispersion [J]. Journal of the American Chemical Society,1999;121:246-247.
    [41]Kwit M, Gawronski J. Refined Model of Optical Activity of cis-Dihydrodiol Metabolites: Role of 1,3-Diene Conformation in the Electronic Circular Dichroism Spectra [J]. Chirality, 2011; 23:744-751.
    [42]Li GN, Jia GQ, Gao QA, et al. Effect of Substituted Groups on the Electronic Circular Dichroism of Aldo Is:A Combined Experimental and Time-Dependent DFT Study [J]. J Phys Chem C,2011; 115:972-981.
    [43]Pescitelli G, Di Bari L, Berova N. Conformational aspects in the studies of organic compounds by electronic circular dichroism [J]. Chem Soc Rev,2011; 40:4603-4625.
    [44]Li H, Huang J, Chen L, et al. Identification of novel falcipain-2 inhibitors as potential antimalarial agents through structure-based virtual screening [J]. J Med Chem,2009; 52: 4936-4940.
    [45]Mo SL, Liu WF, Chen Y, et al. Ligand-and protein-based modeling studies of the inhibitors of human cytochrome P450 2D6 and a virtual screening for potential inhibitors from the Chinese herbal medicine, Scutellaria baicalensis (Huangqin,Baikal Skullcap) [J]. Comb Chem High Throughput Screen,2012; 15:36-80.
    [46]Badrinarayan P, Sastry GN. Virtual high throughput screening in new lead identification [J]. Comb Chem High Throughput Screen,2011;14:840-860.
    [47]Dong X, Ebalunode JO, Yang SY, et al. Receptor-based pharmacophore and pharmacophore key descriptors for virtual screening and QSAR modeling [J]. Curr Comput Aided Drug Des,2011;7:181-189.
    [48]Melagraki G, Afantitis A. Ligand and structure based virtual screening strategies for hit-finding and optimization of hepatitis C virus (HCV) inhibitors [J]. Curr Med Chem,2011; 18:2612-2619.
    [49]Ma DL, Chan DS, Lee P, et al. Molecular modeling of drug-DNA interactions:virtual screening to structure-based design [J]. Biochimie,2011; 93:1252-1266.
    [50]Geldenhuys WJ, Bishayee A, Darvesh AS, et al. Natural products of dietary origin as lead compounds in virtual screening and drug design [J]. Curr Pharm Biotechnol,2012; 13: 117-124.
    [51]Adeniyi AA, Ajibade PA. Comparing the Suitability of Autodock, Gold and Glide for the Docking and Predicting the Possible Targets of Ru(II)-Based Complexes as Anticancer Agents [J]. Molecules,2013; 18:3760-3778.
    [52]Bahlman JW, Swartz SM, Riskin DK, et al. Glide performance and aerodynamics of non-equilibrium glides in northern flying squirrels (Glaucomys sabrinus) [J]. J R Soc Interface,2013; 10:20120794.
    [53]Repasky MP, Murphy RB, Banks JL, et al. Docking performance of the glide program as evaluated on the Astex and DUD datasets:a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide [J]. J Comput Aided Mol Des,2012;26:787-799.
    [54]Rajamani R, Good AC. Ranking poses in structure-based lead discovery and optimization:current trends in scoring function development [J]. Curr Opin Drug Discov Devel,2007; 10:308-315.
    [55]Zsoldos Z, Reid D, Simon A, et al. eHiTS:an innovative approach to the docking and scoring function problems [J]. Curr Protein Pept Sci,2006; 7:421-435.
    [56]Fritsch J, Lenz O, Friedrich B. Structure, function and biosynthesis of O(2)-tolerant hydrogenases [J]. Nat Rev Microbiol,2013; 11:106-114.
    [57]van Pee KH. Biosynthesis of halogenated alkaloids [J]. Alkaloids Chem Biol,2012; 71: 167-210.
    [58]Hamed RB, Gomez-Castellanos JR, Henry L, et al. The enzymes of beta-lactam biosynthesis [J]. Nat Prod Rep,2013; 30:21-107.
    [59]Tamm C, Kjellen L, Li JP. Heparan sulfate biosynthesis enzymes in embryonic stem cell biology [J].J Histochem Cytochem,2012; 60:943-949.
    [60]Sydor PK, Challis GL. Oxidative tailoring reactions catalyzed by nonheme iron-dependent enzymes:streptorubin B biosynthesis as an example [J]. Methods Enzymol, 2012; 516:195-218.
    [61]Panjikar S, Stoeckigt J, O'Connor S, et al. The impact of structural biology on alkaloid biosynthesis research [J]. Nat Prod Rep,2012; 29:1176-1200.
    [62]Rezanka T, Kolouchova I, Cejkova A, et al. Biosynthesis and metabolic pathways of pivalic acid [J]. Appl Microbiol Biotechnol,2012; 95:1371-1376.
    [63]Wohlleben W, Mast Y, Muth G, et al. Synthetic biology of secondary metabolite biosynthesis in actinomycetes:Engineering precursor supply as a way to optimize antibiotic production [J]. FEBS Lett,2012;586:2171-2176.
    [64]Bechet M, Caradec T, Hussein W, et al. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp [J]. Appl Microbiol Biotechnol,2012; 95:593-600.
    [65]Lovering AL, Safadi SS, Strynadka NC. Structural perspective of peptidoglycan biosynthesis and assembly [J]. Annu Rev Biochem,2012; 81:451-478.
    [66]Carlsson P, Kjellen L. Heparin biosynthesis [J]. Handb Exp Pharmacol,2012:23-41.
    [67]Wang P, Gao X, Tang Y. Complexity generation during natural product biosynthesis using redox enzymes [J]. Curr Opin Chem Biol,2012; 16:362-369.
    [68]Wu Q, Wu Z, Qu X, et al. Insights into pyrroindomycin biosynthesis reveal a uniform paradigm for tetramate/tetronate formation [J]. J Am Chem Soc,2012; 134:17342-17345.
    [69]Kim HJ, Ruszczycky MW, Choi SH, et al. Enzyme-catalysed [4+2] cycloaddition is a key step in the biosynthesis of spinosyn A [J]. Nature,2011; 473:109-112.
    [70]Tantillo DJ. How an enzyme might accelerate an intramolecular Diels-Alder reaction: theozymes for the formation of salvileucalin B [J]. Org Lett,2010; 12:1164-1167.
    [71]Jiang X, Wang R. Recent Developments in Catalytic Asymmetric Inverse-Electron-Demand Diels-Alder Reaction [J]. Chem Rev,2013.
    [72]Watson KD, Carosso S, Miller MJ. New and concise syntheses of the bicyclic oxamazin core using an intramolecular nitroso Diels-Alder reaction and ring-closing olefin metathesis [J]. Org Lett,2013; 15:358-361.
    [73]Baranovsky AV, Bolibrukh DA, Khripach VA, et al. Diels-Alder reaction of androsta-14,16-dien-17-yl acetates with nitroethylene:product distribution and selected adduct transformations [J]. Steroids,2013; 78:282-287.
    [74]Singh RK, Tsuneda T. Reaction energetics on long-range corrected density functional theory:Diels-Alder reactions [J]. J Comput Chem,2013; 34:379-386.
    [75]Kocsis LS, Benedetti E, Brummond KM. A thermal dehydrogenative Diels-Alder reaction of styrenes for the concise synthesis of functionalized naphthalenes [J]. Org Lett, 2012; 14:4430-4433.
    [76]Onyango EO, Jacobi PA. Synthetic studies on furanosteroids:construction of the viridin core structure via Diels-Alder/retro-Diels-Alder and vinylogous Mukaiyama aldol-type reaction [J]. J Org Chem,2012; 77:7411-7427.
    [77]Kotha S, Waghule GT. Diversity oriented approach to crownophanes by enyne metathesis and Diels-Alder reaction as key steps [J]. J Org Chem,2012; 77:6314-6318.
    [78]He L, Bekkaye M, Retailleau P, et al. Chiral phosphoric acid catalyzed inverse-electron-demand aza-Diels-Alder reaction of isoeugenol derivatives [J]. Org Lett, 2012; 14:3158-3161.
    [79]Kaminski GA, Friesner RA, Tirado-Rives J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides [J]. J Phys Chem B,2001; 105:6474-6487.
    [80]Khalid S, Bond PJ. Multiscale molecular dynamics simulations of membrane proteins [J]. Methods Mol Biol,2013; 924:635-657.
    [81]Hug S. Classical molecular dynamics in a nutshell [J]. Methods Mol Biol,2013; 924: 127-152.
    [82]Cheng X, Ivanov I. Molecular dynamics [J]. Methods Mol Biol,2012; 929:243-285.
    [83]Durrant JD, McCammon JA. Molecular dynamics simulations and drug discovery [J]. BMC Biol,2011; 9:71.
    [84]Perez A, Luque FJ, Orozco M. Frontiers in molecular dynamics simulations of DNA [J]. Acc Chem Res,2012; 45:196-205.
    [85]Autschbach J, Nitsch-Velasquez L, Rudolph M. Time-dependent density functional response theory for electronic chiroptical properties of chiral molecules [J]. Top Curr Chem, 2011; 298:1-98.
    [86]de Visser SP. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes [J]. Biochem Soc Trans,2009; 37:373-377.
    [87]Orio M, Pantazis DA, Neese F. Density functional theory [J]. Photosynth Res,2009; 102: 443-453.
    [88]Grimme S, Antony J, Schwabe T, et al. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules [J]. Org Biomol Chem,2007; 5:741-758.
    [89]Tse JS. Ab initio molecular dynamics with density functional theory [J]. Annu Rev Phys Chem,2002; 53:249-290.
    [90]Ding S, Wang Y, Kolbanovskiy A, et al. Determination of absolute configurations of 4-hydroxyequilenin-cytosine and -adenine adducts by optical rotatory dispersion, electronic circular dichroism, density functional theory calculations, and mass spectrometry [J]. Chem Res in Toxico,2008; 21:1739-1748.
    [91]Genta-Jouve G, Weinberg L, Cocandeau V, et al. Revising the Absolute Configurations of Coatlines via Density Functional Theory Calculations of Electronic Circular Dichroism Spectra [J]. Chirality,2013; 25:180-184.
    [92]Padula D, Di Bari L, Santoro F, et al. Analysis of the Electronic Circular Dichroism Spectrum of (-)-[9](2,5)Pyridinophane [J]. Chirality,2012; 24:994-1004.
    [93]Kowalczyk TD, Abrams ML, Crawford TD. Ab initio optical rotatory dispersion and electronic circular dichroism spectra of (S)-2-chloropropionitrile [J]. J Phys Chem A,2006; 110:7649-7654.
    [94]Zhekova HR, Seth M, Ziegler T. A Magnetic and Electronic Circular Dichroism Study of Azurin, Plastocyanin, Cucumber Basic Protein, and Nitrite Reductase Based on Time-Dependent Density Functional Theory Calculations [J]. J Phys Chem A,2010; 114; 6308-6321.
    [95]Abbate S, Lebon F, Longhi G, et al. Vibrational and Electronic Circular Dichroism of Dimethyl Mesobilirubins-XIII alpha [J]. J Phys Chem B,2012; 116:5628-5636.
    [96]De Gussem E, Bultinck P, Feledziak M, et al. Vibrational Circular Dichroism versus Optical Rotation Dispersion and Electronic Circular Dichroism for diastereomers:the stereochemistry of 3-(1'-hydroxyethyl)-1-(3'-phenylpropanoyl)-azetidin-2-one [J]. Phys Chem Chem Phys,2012; 14:8562-8571.
    [97]Wang XB, Zhang Y, Wang JS, et al. Spectroscopic characterizations, X-ray studies, and electronic circular dichroism calculations of two alkaloid triterpenoids [J]. Struc Chem,2011; 22:1241-1248.
    [98]Zhan ZJ, Ying YM, Ma LF, et al. Natural disesquiterpenoids [J]. Nat Prod Rep,2011; 28: 594-629.
    [99]Martin DM, Toub O, Chiang A, et al. The bouquet of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) flowers arises from the biosynthesis of sesquiterpene volatiles in pollen grains [J]. Proc Natl Acad Sci USA,2009;106:7245-7250.
    [100]Gust B, Challis GL, Fowler K, et al. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin [J]. Proc Natl Acad Sci USA,2003; 100:1541-1546.
    [101]Valot G, Garcia J, Duplan V, et al. Diversity-oriented synthesis of diverse polycyclic scaffolds inspired by the logic of sesquiterpene lactones biosynthesis [J]. Angew Chem Int Ed Engl,2012; 51:5391-5394.
    [102]Rudolph M, Autschbach J. Calculation of Optical Rotatory Dispersion and Electronic Circular Dichroism for Tris-bidentate Groups 8 and 9 Metal Complexes, With Emphasis on Exciton Coupling [J]. J Phys Chem A,2011; 115:2635-2649.
    [103]Ercanli T, Boyd DB. Exploration of the conformational space of a polymeric material that inhibits human immunodeficiency virus [J]. J Chem Inf Model,2006;46:1321-1333.
    [104]Bertucci C, Tedesco D. Advantages of electronic circular dichroism detection for the stereochemical analysis and characterization of drugs and natural products by liquid chromatography [J]. J Chromatography A,2012;1269:69-81.
    [105]Ferreira D, Coleman C. Absolute Configuration of Secondary Metabolites Via Electronic Circular Dichroism [J]. Pharmaceutical Biology,2012;50:616-616.
    [106]Li L, Si YK. Study on the absolute configuration of levetiracetam via density functional theory calculations of electronic circular dichroism and optical rotatory dispersion [J]. J Pharmaceutical and Biomedical Analysis,2011; 56:465-470.
    [107]Crawford TD, Tam MC, Abrams ML. The problematic case of (S)-methylthiirane: electronic circular dichroism spectra and optical rotatory dispersion [J]. Molecular Physics, 2007; 105:2607-2617.
    [108]Pozarska A, da Costa Mathews C, Wong M, et al. Application of COSMO-RS as an excipient ranking tool in early formulation development [J]. Eur J Pharm Sci,2013.
    [109]Berova N, Di Bari L, Pescitelli G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds [J]. Chem Soc Rev,2007; 36:914-931.
    [110]Usselman RJ, Russek SE, Klem MT, et al. Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages [J]. J App Phys,2012; 112:84701.
    [111]Glazachev YI, Khramtsov VV. Fluorescence recovery under decaying photobleaching irradiation:concept and experiment [J]. J Fluoresc,2006; 16:773-781.
    [112]Woznica M, Kowalska P, Lysek R, et al. Stereochemical Assingment of beta-lactam Antibiotics and their Analogues by Electronic Circular Dichroism Spectroscopy [J]. Curr Org Chem,2010; 14:1022-1036.
    [113]Tavazzi S, Campione M, Laicini M, et al. Measured Davydov splitting in oligothiophene crystals [J]. J Chem Phys,2006; 124:194710.
    [114]Dahl M, Schaack G. Davydov splitting of crystal-field excitations and magnetic phonon splitting in PrF3 [J]. Phys Rev Lett,1986; 56:232-235.
    [115]Berova N, Di Bari L, Pescitelli G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds [J]. Chem Soc Rev,2007; 36:914-931.
    [116]Yagai S, Iwai K, Karatsu T, et al. Photoswitchable exciton coupling in merocyanine-diarylethene multi-chromophore hydrogen-bonded complexes [J]. Angew Chem Int Ed Engl,2012;51:9679-9683.
    [117]Wu T, You X. Exciton Coupling Analysis and Enolization Monitoring by VibrationaJ Circular Dichroism Spectra of Camphor Diketones [J]. J Phys Chem A,2012.
    [118]Rudolph M, Autschbach J. Calculation of optical rotatory dispersion and electronic circular dichroism for tris-bidentate groups 8 and 9 metal complexes, with emphasis on exciton coupling [J]. J Phys Chem A,2011; 115:2635-2649.
    [119]Bautista-Lopez NL, Morillo CA, Lopez-Jaramillo P, et al. Matrix metalloproteinases 2 and 9 as diagnostic markers in the progression to Chagas cardiomyopathy [J]. Am Heart J, 2013; 165:558-566.
    [120]Tanaka K, Essick EE, Doros G, et al. Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis [J].J Am Heart Assoc,2013; 2: e005868.
    [121]Falcone D, Gallelli L, Di Virgilio A, et al. Effects of simvastatin and rosuvastatin on RAS protein, matrix metalloproteinases and NF-kappaB in lung cancer and in normal pulmonary tissues [J]. Cell Prolif,2013; 46:172-182.
    [122]Neto-Neves EM, Kiss T, Muhl D, et al. Matrix metalloproteinases as drug targets in acute pulmonary embolism [J]. Curr Drug Targets,2013; 14:344-352.
    [123]Castro MM, Tanus-Santos JE. Inhibition of Matrix Metalloproteinases (MMPs) as a Potential Strategy to Ameliorate Hypertension-Induced Cardiovascular Alterations [J]. Curr Drug Targets,2013; 14:335-343.
    [124]Palei AC, Granger JP, Tanus-Santos JE. Matrix metalloproteinases as drug targets in preeclampsia [J]. Curr Drug Targets,2013; 14:325-334.
    [125]Kucukguven A, Khalil RA. Matrix metalloproteinases as potential targets in the venous dilation associated with varicose veins [J]. Curr Drug Targets,2013; 14:287-324.
    [126]Lee SY, Paik SY, Chung SM. Neovastat (AE-941) inhibits the airway inflammation and hyperresponsiveness in a murine model of asthma [J]. J Microbiol,2005; 43:11-16.
    [127]Gingras D, Batist G, Beliveau R. AE-941 (Neovastat):a novel multifunctional antiangiogenic compound [J]. Expert Rev Anticancer Ther,2001; 1:341-347.
    [128]Falardeau P, Champagne P, Poyet P, et al. Neovastat, a naturally occurring multifunctional antiangiogenic drug, in phase III clinical trials [J]. Semin Oncol,2001; 28: 620-625.
    [129]Liu Y, Lu WQ, Cui KQ, et al. Synthesis and biological activities of novel artemisinin derivatives as cysteine protease falcipain-2 inhibitors [J]. Arch Pharm Res,2012; 35: 1525-1531.
    [130]Huang H, Lu W, Li X, et al. Design and synthesis of small molecular dual inhibitor of falcipain-2 and dihydrofolate reductase as antimalarial agent [J]. Bioorg Med Chem Lett, 2012; 22:958-962.
    [131]Bova F, Ettari R, Micale N, et al. Constrained peptidomimetics as antiplasmodial falcipain-2 inhibitors [J]. Bioorg Med Chem,2010; 18:4928-4938.
    [132]Ettari R, Zappala M, Micale N, et al. Synthesis of novel peptidomimetics as inhibitors of protozoan cysteine proteases falcipain-2 and rhodesain [J]. Eurn J Med Chem,2010; 45: 3228-3233.
    [133]Ettari R, Bova F, Zappala M, et al. Falcipain-2 inhibitors [J]. Med Res Rev,2010; 30: 136-167.
    [134]Batra S, Sabnis YA, Rosenthal PJ, et al. Structure-based approach to falcipain-2 inhibitors:synthesis and biological evaluation of 1,6,7-trisubstituted dihydroisoquinolines and isoquinolines [J]. Bioorg Med Chem,2003; 11:2293-2299.
    [135]Mesplet M, Echaide I, Dominguez M, et al. Bovipain-2, the falcipain-2 ortholog, is expressed in intraerythrocytic stages of the tick-transmitted hemoparasite Babesia bo vis [J]. Parasit Vectors,2010; 3:113.
    [136]Capela R, Oliveira R, Goncalves LM, et al. Artemisinin-dipeptidyl vinyl sulfone hybrid molecules:design, synthesis and preliminary SAR for antiplasmodial activity and falcipain-2 inhibition [J]. Bioorg Med Chem Lett,2009; 19:3229-3232.
    [137]Subramanian S, Hardt M, Choe Y, et al. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 [J]. PLoS One,2009; 4: e5156.
    [138]Ettari R, Micale N, Schirmeister T, et al. Novel peptidomimetics containing a vinyl ester moiety as highly potent and selective falcipain-2 inhibitors [J]. J Med Chem,2009; 52: 2157-2160.
    [139]Zhu J, Chen T, Liu J, et al.2-(3,4-dihydro-4-oxothieno[2,3-d]pyrimidin-2-ylthio) acetamides as a new class of falcipain-2 inhibitors.3. design, synthesis and biological evaluation [J]. Molecules,2009; 14:785-797.
    [140]Verissimo E, Berry N, Gibbons P, et al. Design and synthesis of novel 2-pyridone peptidomimetic falcipain 2/3 inhibitors [J]. Bioorg Med Chem Lett,2008; 18:4210-4214.
    [141]Korde R, Bhardwaj A, Singh R, et al. A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development [J]. J Med Chem,2008; 51:3116-3123.
    [142]Ettari R, Nizi E, Di Francesco ME, et al. Development of peptidomimetics with a vinyl sulfone warhead as irreversible falcipain-2 inhibitors [J]. J Med Chem,2008; 51:988-996.
    [143]Hogg T, Nagarajan K, Herzberg S, et al. Structural and functional characterization of Falcipain-2, a hemoglobinase from the malarial parasite Plasmodium falciparum [J]. J Biol Chem,2006; 281:25425-25437.
    [144]Dasaradhi PV, Mohmmed A, Kumar A, et al. A role of falcipain-2, principal cysteine proteases of Plasmodium falciparum in merozoite egression [J]. Biochem Biophys Res Commun,2005; 336:1062-1068.
    [145]Kreuger MR, Grootjans S, Biavatti MW, et al. Sesquiterpene lactones as drugs with multiple targets in cancer treatment:focus on parthenolide [J]. Anticancer Drugs,2012; 23: 883-896.
    [146]Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer [J]. Curr Drug Targets,2011; 12:1560-1573.
    [147]Zidorn C. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae [J]. Phytochemistry,2008;69:2270-2296.
    [148]Staneva JD, Todorova MN, Evstatieva LN. Sesquiterpene lactones as chemotaxonomic markers in genus Anthemis [J]. Phytochemistry,2008; 69:607-618.
    [149]Merfort I. Review of the analytical techniques for sesquiterpenes and sesquiterpene lactones [J]. J Chromatogr A,2002; 967:115-130.
    [150]Robles M, Aregullin M, West J, et al. Recent studies on the zoopharmacognosy, pharmacology and neurotoxicology of sesquiterpene lactones [J]. Planta Med,1995; 61: 199-203.
    [151]Lopes JL. Sesquiterpene lactones from Vernonia [J]. Mem Inst Oswaldo Cruz,1991; 86 Suppl 2:227-230.
    [152]Tantillo DJ. Biosynthesis via carbocations:theoretical studies on terpene formation [J]. Nat Prod Rep,2011; 28:1035-1053.
    [153]Lu T, Chen F. Multiwfn:a multifunctional wavefunction analyzer [J]. J Comput Chem, 2012; 33:580-592.
    [154]Xia Y, Yin D, Rong C, et al. Impact of Lewis acids on Diels-Alder reaction reactivity:a conceptual density functional theory study [J]. J Phys Chem A,2008;112:9970-9977.
    [155]Roos G, Geerlings P, Messens J. Enzymatic catalysis:the emerging role of conceptual density functional theory [J]. J Phys Chem B,2009;113:13465-13475.
    [156]Matito E, Putz MV. New link between conceptual density functional theory and electron delocalization [J]. J Phys Chem A,2011;115:12459-12462.
    [157]Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory [J]. Chem Rev,2003; 103:1793-1873.
    [158]Kohl H, Dreizler RM. Time-dependent density-functional theory:Conceptual and practical aspects [J]. Physl Rev Lett,1986:56:1993-1995.
    [159]Ruhrmann S, Schultze-Lutter F, Klosterkotter J. Intervention in the at-risk state to prevent transition to psychosis [J]. Curr Opin Psychiatry,2009; 22:177-183.
    [160]Amyes TL, Richard JP. Rational design of transition-state analogues as potent enzyme inhibitors with therapeutic applications [J]. ACS Chem Biol,2007; 2:711-714.
    [161]Schramm VL. Enzymatic transition state theory and transition state analogue design [J]. J Biol Chem,2007; 282:28297-28300.
    [162]Sosnick TR, Krantz BA, Dothager RS, et al. Characterizing the protein folding transition state using psi analysis [J]. Chem Rev,2006; 106:1862-1876.
    [163]Berti PJ, McCann JA. Toward a detailed understanding of base excision repair enzymes: transition state and mechanistic analyses of N-glycoside hydrolysis and N-glycoside transfer [J]. Chem Rev,2006; 106:506-555.
    [164]Schramm VL. Enzymatic transition states and transition state analogues [J]. Curr Opin Struct Biol,2005; 15:604-613.
    [165]Ni F, Li W, Li YM, et al. Analysis of the phosphoryl transfer mechanism of c-AMP dependent protein kinase (PKA) by penta-coodinate phosphoric transition state theory [J]. Curr Protein Pept Sci,2005; 6:437-442.
    [166]Houk KN, Leach AG, Kim SP, et al. Binding affinities of host-guest, protein-ligand, and protein-transition-state complexes [J]. Angew Chem Int Ed Engl,2003; 42:4872-4897.
    [167]Shiga M, Fujisaki H. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates[J].J Chem Phys,2012; 136:184103.
    [168]Aguilar-Mogas A, Gimenez X, Bofill JM. Implementation of an algorithm based on the Runge-Kutta-Fehlberg technique and the potential energy as a reaction coordinate to locate intrinsic reaction paths [J]. J Comput Chem,2010; 31:2510-2525.
    [169]Richard JP, Williams KB. A Marcus treatment of rate constants for protonation of ring-substituted alpha-methoxystyrenes:intrinsic reaction barriers and the shape of the reaction coordinate [J]. J Am Chem Soc,2007; 129:6952-6961.
    [170]Crehuet R, Bofill JM. The reaction path intrinsic reaction coordinate method and the Hamilton-Jacobi theory [J].J Chem Phys,2005; 122:234105.
    [171]Halpern AM, Glendening ED. An intrinsic reaction coordinate calculation of the torsion-internal rotation potential of hydrogen peroxide and its isotopomers [J]. J Chem Phys, 2004; 121:273-279.
    [172]Jones JP, Rettie AE, Trager WF. Intrinsic isotope effects suggest that the reaction coordinate symmetry for the cytochrome P-450 catalyzed hydroxylation of octane is isozyme independent [J]. JMed Chem,1990; 33:1242-1246.
    [173]Johnson ER, Keinan S, Mori-Sanchez P, et al. Revealing noncovalent interactions [J]. J Am Chem Soc,2010; 132:6498-6506.
    [174]Glendening ED, Landis CR, Weinhold F. NBO 6.0:Natural bond orbital analysis program [J]. J Comput Chem,2013.
    [175]Sadlej-Sosnowska N. Application of natural bond orbital analysis to delocalization and aromaticity in C-substituted tetrazoles [J]. J Org Chem,2001; 66:8737-8743.
    [176]Bean GP. Application of Natural Bond Orbital Analysis and Natural Resonance Theory to Delocalization and Aromaticity in Five-Membered Heteroaromatic Compounds [J]. J Org Chem,1998; 63:2497-2506.
    [177]Anderson JSM, Melin J, Ayers PW. Conceptual density-functional theory for general chemical reactions, including those that are neither charge-nor frontier-orbital-controlled.2. Application to molecules where frontier molecular orbital theory fails [J]. J Chem Theo and Comput,2007;3:375-389.
    [178]Chattaraj PK. Chemical reactivity and selectivity:Local HSAB principle versus frontier orbital theory [J]. Journal of Physical Chemistry A,2001; 105:511-513.
    [179]Dannenberg JJ. Using perturbation and frontier molecular orbital theory to predict diastereofacial selectivity [J]. Chem Rev,1999; 99:1225-1241.
    [180]Wannere CS, Paul A, Herges R, et al. The existence of secondary orbital interactions [J]. J Comput Chem,2007; 28:344-361.
    [181]Arrieta A, Cossio FP, Lecea B. Direct evaluation of secondary orbital interactions in the Diels-Alder reaction between cyclopentadiene and maleic anhydride [J]. J Org Chem,2001; 66:6178-6180.
    [182]Garcia JI, Mayoral JA, Salvatella L. Do secondary orbital interactions really exist? [J]. Acc Chem Res,2000; 33:658-664.
    [183]Pophristic V, Goodman L. Hyperconjugation not steric repulsion leads to the staggered structure of ethane [J]. Nature,2001; 411:565-568.