建筑风场任意六面体同位网格系统的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑风场数值模拟方法由于具有计算效率高、计算结果处理方便及费用低等优点,得到了广泛的重视和深入的研究。建筑风场数值模拟的成果,其准确性不仅和采用的湍流模型有关,更重要的还和采用的网格系统以及采用的数值计算方法与网格系统的适应性有关。随着作为研究对象的建筑物的外形复杂程度的提高,以及多个建筑物相互影响问题的出现,国内外学者越来越注重网格生成技术的研究。
     在目前的建筑风场数值模拟现状中,结构化直角坐标网格、贴体坐标网格和非结构网格都得到不同程度的应用,但是这三种网格有各自的优势也有很明显的限制。吸取结构化直角坐标网格、贴体坐标网格和非结构网格等三种网格形式的优点,切合建筑风场问题的自身特点,建立起一套普遍适用于各种规则与不规则建筑体型的有效的网格生成和数值模拟方法,对建筑风场数值模拟的研究有重要意义。
     首先,本文首次提出并自动生成了任意六面体同位网格系统,对于多数建筑风场数值模拟区域通常还是有规则的,可以视为多个初始六面体网格的组成或者最大限度的拟合,采用与结构化直角坐标网格同样的排序对其进行编号,根据控制网格的尺度要求对初始六面体网格进行离散划分,最终生成建筑风场数值模拟通用的任意六面体同位网格系统。该网格系统既保持了结构性网格的数据结构、列式简单的特点,又能如非结构网格一样真实反映复杂边界,网格系统的生成和调整简单而有效,能适合各种规则与不规则建筑体型的建筑风场数值模拟区域的网格生成。
     其次,本文针对任意六面体同位网格系统,采用有限体积法建立了控制方程的离散方式,以显式方式对网格非正交性和两相邻单元错位进行了修正,给出了与网格系统相适应的压力校正方程,建立了通用的SIMPLE算法,形成了一套适合建筑风场的任意六面体同位网格系统的数值模拟方法,迄今在国内外尚未见有关上述模式在建筑风场数值模拟中的研究工作的报道。基于上述工作编制了通用的建筑风场数值模拟程序WSB。程序采用FORTRAN语言和MATLAB语言编制,可实现单体和群体建筑风场的数值模拟。
     再次,应用开发的WSB程序和任意六面体同位网格系统,对双坡屋面建筑进行了风场模拟,数值模拟结果分别和正立方体网格系统的数值模拟结果以及风洞试验结果进行了比较;也对抗台风试点双坡挑檐低层建筑的风场进行模拟计算,数值模拟结果与非结构网格系统的数值模拟结果和风洞试验结果的进行了比较。这些数值模拟结果表明,程序WSB的网格生成、方程离散和算法实现是正
Numerical modeling of wind fields around buildings has attracted wide attention and has been investigated in depth in recent years, because of its various advantages such as high computational efficiency, convenience in processing numerical results and low cost. The accuracy of the numerical results is not only related to the adopted turbulence model, but more importantly, to the employed grid system and the compatibility between the numerical method and the grid system. As the geometrical configurations of buildings become more complex and the interaction between multiple buildings attracts more attention, more and more importance is being attached to the technique of generating grids.Currently, three kinds of grid systems, i.e., the structured grid systems based on Cartesian coordinates, the grid systems and the non-structured grid systems, are widely used in modeling building wind fields. All these grid systems have their own advantages and limitations. Therefore, it is very important for the numerical modeling to make full use of the advantages of the three kinds of grid systems and consider the peculiar characteristics of the building wind fields in a view to developing a comprehensive numerical model consisting of efficient numerical methods and grid generation techniques which are general and effective for both regular and irregular geometrical configurations.This paper proposed and generated grid systems composed of arbitrary collocated hexahedrons for the first time. It is argued that most modeled domains are regular and can be regarded as integrations of multiple initial grids with hexahedrons or their best approximations. These initial grids are then discretised according to the size control parameter and numbered in the same way as for the structured grids. The general grid system composed of arbitrary collocated hexahedrons is finally generated. This grid system not only keeps the simple data structures as used in the structured grid systems, but also allows complex boundaries to be truly reflected. The grid generation and adjustment are thus very simple and effective, even for very irregular geometrical configurations of buildings.Based on the above-proposed arbitrary collocated grid systems with hexahedrons, this paper uses the finite volume method to discretise the governing equation. Corrections are explicitly made in the source term of the governing equation to consider the negative effects of mesh non-orthogonality and dislocation between adjacent elements. The pressure-corrected equation compatible with the grid systems is also given. The general SIMPLE algorithm is also established. These lead to a comprehensive numerical model for effective and efficient modeling of the wind fields around buildings, which has not been reported in the literature. An in-house computer program, named Wind Simulation of Buildings (WSB), is developed in this study based on the numerical model. This program is coded using FORTRAN and MATLAB languages. It is capable of modeling the wind fields around a single building or a group of buildings.In order to validate the developed program WSB and the proposed arbitrary
    collocated hexahedron grid systems, they are first applied to model the wind field around a double-sloped building model. The numerical results are compared with those from the orthogonal grid consisting of cubes and those from the wind tunnel tests respectively. The wind field around a low-rise buildings with gabled roof designed against typhoon is also modeled using WSB and the numerical results are compared with those from non-structured grid system and those from the wind tunnel tests. The numerical results and comparisons indicate that the generation of grid systems, the discretization of governing equations and the implementation of the corresponding algorithms are correct and effective. It is also demonstrated that compared with other grid systems, the proposed arbitrary collocated hexahedron grid systems are more accurate and efficient in modeling wind fields around buildings.Most current research on wind-caused interactions between two or more buildings is limited to two same buildings and the effect is also mainly dependent upon the distance-to-height ratio. Using the program WSB, detailed investigations are conducted in this paper on the wind-caused interactions between two low-rising buildings by changing the geometrical configuration of the disturbing building while keeping that of the disturbed building unchanged.
引文
1.孙炳楠,付国宏.9417号台风对温州民房破坏的调查[A].结构风工程研究及进展——第七届全国结构风效应学术会议论文集[C],重庆:重庆大学出版社,1995.
    2.陈水福,孙炳楠,唐锦春.建筑表面风压的三维数值模拟[J].工程力学,1997,14(4):38-43.
    3.陈水福,孙炳楠,唐锦春.建筑风载的数值模拟及其在微机上的实现[J].计算力学学报,1997,14(3):336-341.
    4.陈水福,孙炳楠.联体型高层建筑表面风压的数值模拟及试验研究[J].空气动力学学报,1998,16(21:181-185.
    5. Chen S. F, Sun B. N, Tang J. C. An extended κ-ε model for numerical simulation of wind flow around buildings[J]. Applied Math. Mech, 1998, 19(1):95-100.
    6.陈水福.高层建筑风工程的计算机模拟[D].杭州.浙江大学,1995.
    7. Harris. C. L. Influence of neighbouring structures on the wind pressure on tall buildings. Bureau of Standards. J. Res. 1934.12(Research Paper RP637) 103-118
    8. Bailey. A and Vincent. N. D. G., Wind-pressure on buildings including effects of adjacent buildings. J. Inst. Civil. Engrs 1943.20.243-475
    9. Wiren B. G. Effect of surrounding buildings on wind pressure distributions Part-Ⅰ, 112 storey detached houses. Publication bulletin M85: 19, the National Swedish Institute for building research, 1985.
    10. Holmes JD. Wind pressures on tropical housing. J Wind Eng Ind Aerodynam 1994;53:105-23.
    11. Hussain. M., Lee BE., A wind tunnel study of the mean pressure forces acting on a large group of low-rise buildings. J Wind Engng Indust Aerodyn. 1980(6):207-225
    12. Tsutsumi J., Katayania T., Nishida M., Wind tunnel tests of wind pressure on regular aligned buildings. J Wind Engng Indust Aerodyn. 1992(41-44): 1799-1810
    13. Ho TCE, Surry D, Davenport AG., The variabily of low-building wind loads due to surrounding obstructions. J Wind Engng Indust Aerodyn. 1990(38): 161-170
    14. Khanduri. A. C, Stathopoulos. T, Bedard. C. Wind-induced interference effects on building—A review of the state-of-the-art[J]. engineering Structures. 1998.20(7):617-630
    15.窦国仁,紊流力学,上册,人民教育出版社,北京,P165,1982
    16. Lin WL, Carlso K, Chen CJ, Diagonal Cartesian method for numerical simulation of incompressible flows over complex boundaries[J]. Numerical Heat Transfer, Part B,1998, 33:181-213.
    17. Yang G, Causon D M, Ingram D M, Saunders R, Batten P. A Cartesian cut cell method for compressible flows Part A:Static body problems[J].The Aeronautical Journal, 1997,101 (1002) :47-56.
    18. Yang G, Causon D M, Ingram D M, Saunders R, Batten P. A Cartesian cut cell method for compressible flows Part B:Moving body problems[J].The Aeronautical Journal,1997,101(1002):57-65.
    19. Ye T, Mittal R, Udaycumar H S, Shyy W. A Cartesian grid method for viscous incompressible flows with complex immersed bound aries[R].AIAA Paper,99-3312,1999
    20. Tucker P G, Pan Z. A Cartesian cut cell method for incompressible viscous flow[J]. Applied Mathematical Modelling,2000 24:591-606.
    21. Rhie C. M, A numerical study of the flow past an isolated airfoil with separation[D]. University of Illinois, 1981.
    22. Rhie C. M, Chow W. L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA, 1983, 21 (11): 1525-1532.
    23.张相庭,工程抗风设计计算手册,中国建筑工业出版社(北京)
    24.1998王福军,计算流体动力学分析——CFD软件原理与应用,清华大学出版社(北京),2004
    25. Armitt J. Wind loading on cooling towers[J]. J. Struct. Div., ASCE, 1980, 106(ST3):623-641.
    26. Stathopoulos T, Wu H. Generic models for pedestrian-level winds in built-up regions[J]. J. Wind Eng. Indus. Aerodyn, 1995, 54&55:515-525.
    27. Soligo M. J, Irwin P. A, Williams C. J, et al. A comprehensive assessment of pedestrian comfort including thermal effects[J]. J. Wind Eng. Indus. Aerodyn, 1998, 77&78:753-766.
    28. Plate E. J. Methods of investigating urban wind fields-physical models[J]. Atmospheric Environment, 1999, 33:3981-3989.
    29. Bottema M. Towards rules of thumb for wind comfort and air quality[J]. Atmospheric Environment, 1999, 33:4009-4017.
    30. Stathopoulos T, Wu H, Zacharias J. Outdoor human comfort in an urban climate[J]. Building and Environment, 2004, 39:297-305.
    31. Khanduri A. C, Stathopoulos T, Bedard C. Wind-induced interference effects on buildings—a review of the state-of-the-art[J]. Engineering structures, 1998, 20(7):617-630.
    32. Murakami S. Current status and future trends in computational wind engineering[J]. J. Wind Eng. Indus. Aerodyn, 1997, 67&68:3-34.
    33. Stathopoulos T. Computational wind engineering: Past achievements and future challenges[J]. J. Wind Eng. Indus. Aerodyn, 1997,67&68:509-532.
    34.朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,1998.
    35.陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    36. Murakami S, Mochida A. 3-D numerical simulation of airflow around a cubic model by means of the κ-ε model[J]. J. Wind Eng. Indus. Aerodyn, 1989, 31:283-303.
    37. Murakami S, Mochida A, Hayashi Y. Examing the κ-ε model by means of a wind tunnel test and large eddy simulation of the turbulence structure around a cube[J]. J. Wind Eng. Indus. Aerodyn, 1990, 35:87-100.
    38. Murakami S, Mochida A. Three-Dimensional numerical simulation of turbulent flow around buildings using the κ-ε turbulence model[J]. Building and Environment, 1989, 24(1):51-64.
    39. Paterson D, Apelt G. Simulation of flow past a cube in turbulent boundary layer[J]. J. Wind Eng. Indus. Aerodyn, 1990, 35:149-176.
    40. Zhang Z. X. Numerical predictions of turbulent recirculating flows with a κ-ε model[J]. J. Wind Eng. Indus. Aerodyn, 1994, 51:177-201.
    41. Delaunay D, Lakehal D, Pierrat D. Numerical approach for wind loads prediction on buildings and structures[J]. J. Wind Eng. Indus. Aerodyn, 1995, 57:307-321.
    42. Baskaran A, Stathopoulos T. Computational evaluation of wind effects on buildings[J]. Building and Environment, 1989, 24(4):325-333.
    43. Baetke F, Werner H. Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and comers[J]. J. Wind Eng. Indus. Aerodyn, 1990, 35:129-147.
    44. Baskaran A, Stathopoulos T. Numerical computation of wind pressures on buildings[J]. Computers & Structures, 1993, 46(6): 1029-1039.
    45. Stathopoulos T, Zhou Y. Numerical evaluation of wind pressures on flat roofs with the κ-ε model[J]. Building and Environment, 1995, 30(2):267-276.
    46. Yu Da-hai, Kareem A. Numerical simulation of flow around rectangular prism[J]. J. Wind Eng. Indus. Aerodyn, 1997, 67&68:195-208.
    47. Selvam R. P. Computation of pressures on Texas Tech building[J]. J. Wind Eng. Indus. Aerodyn, 1992, 41&44:1619-1627.
    48. Paterson D. A, Holmes J. D, Computation of wind pressures on low-rise structures[J]. J. Wind Eng. Indus. Aerodyn, 1995, 41 &44:1629-1640.
    49. Selvam R. P. Computation of flow around Texas Tech building using κ-ε and Kato-Launder κ-ε turbulence model[J]. Engineering structures, 1996, 18(11):856-860.
    50. Haggkvist K, Svensson U, Taesler. R. Numerical simulations of pressure fields around buildings[J]. Building and Environment, 1989,24(1):65-72.
    51. Maharana S. K, Ghosh A. K. Numerical simulation of flow over tow successive buildings of square cross-section[J]. J. Wind Eng. Indus. Aerodyn, 1997, 67&68:944.
    52. Chang C. H, Meroney R. N. The effect of surroundings with different separation distances on surface pressures on low-rise buildings[J]. J. Wind Eng. Indus. Aerodyn, 2003, 91:1039-1050.
    53. Sathopoulos T, Baskaran A. Computer simulation of wind environmental conditions around buildings[J]. Engineering Structures, 1996, 18(11):876-885.
    54. Baskaran A, Kashef A. Investigation of air flow around buildings using computational fluid dynamics techniques[J]. Engineering Structures, 1996, 18(11):861-875.
    55. Ferreira A. D, Sousa A. C. M, Viegas D. X. Prediction of building interference effects on pedestrian level comfort[J]. J. Wind Eng. Indus. Aerodyn, 2002, 90:305-319.
    56. Launder B. E, Kato M. Modeling flow-induced oscillation in turbulent flow around a square cylinders[C]. ASME Fluid Engng. Conf., June 1993, Washington, DC.
    57. Tsuchiya M, Murakami S, Mochida A, et al. Development of a new κ-ε model for flow and pressure fields around bluffbody[J]. J. Wind Eng. Indus. Aerodyn, 1997, 67&68:169-182.
    58. Kawamoto S. Improved turbulence models for estimation of wind loading[J]. J. Wind Eng. Indus. Aerodyn, 1997, 67&68:589-599.
    59. Murakami S. Overview of turbulence models applied in CWE-1997[J]. J. Wind Eng. Indus. Aerodyn, 1998, 74&76:1-24.
    60. Zhou Y, Stathopoulos T. A new technique for the numerical simulation of wind flow around buildings[J]. J. Wind Eng. Indus. Aerodyn, 1997, 72:137-147.
    61. Mulder W. A, VanLeer B. Experiments with implicit methods for the euler equations[J]. J.Comp.Phys, 1995, 59:232.
    62. Quirk J. A parallel adaptive grid algorithm for computational shock hydrodynamics[J]. Applied Numerical Mathematics, 1996, 20:427-453.
    63. Peric M, Kessler R, Scheuerer. G. Comparison of finite-volume numerical methods with staggered and collocated grida[J]. Computers & Fluids, 1988, 16:389-403.
    64. Majumdar S. Role of underrelaxation momentum interpolation for calculation of flow with nonstaggered grids[J]. Numerical Heat Transfer, 1988, 13:125-132.
    65. Greaves D.M, Borthwick A. G. L. On the use of adaptive hierarchical meshes for numerical simulation of separated flows[J]. Int. J. Numer. Meth. Fluids, 1998, 26:303-322.
    66. Van Doormaal J. P, Raithby G. D. Enhancements of the simple method for predicting incompressible fluid flows[J]. Numerical Heat Transfer, 1984, 7:147-163.
    67.郭宽良.数值计算传热学[M].合肥:交徽科学技术出版社,1987.
    68.范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1991.
    69.倪浩清,沈永明.工程湍流流动、传热及传质的数值模拟[M].北京:中国水利水电出版社,1996.
    70. Davidson L. A pressure correction method for unstructured meshes with arbitrary control volumes[J]. Int. J. Numer. Meth. Fluids, 1996, 22:265-281.
    71. Baskaran A, Stathopoulos T. Influence of computational parameters on the evaluation of wind effects on the building envelope[J]. Building and Environment, 1993, 27:39-49.
    72. Boersma B. J, Kooper M. N, Nieuwstadt F. T. M, et al. Local grid refinement in large-eddy simulations [J]. Journal of Engineering Mathematics, 1997, 32: 161-175.
    73. Castro I. P, Robins A. G. The flow around a surface-mounted cube in uniform and turbulent streams[J]. J. Fluid Mech, 1977, 79(2):307-335.
    74. Zhu X. Wind pressure on buildings with appurtenances[J]. M. Eng.(Building) thesis, Concordia University, Montreal, 1987.
    75. Wiren B. G. Effects of surrounding buildings on wind pressure distributions and ventilative heat losses for a single family house[J]. J. Wind Eng. Indus. Aerodyn, 1983, 15:15-26.
    76. Stathopoulos T, Wu H. Generic models for pedestrian-level winds in built-up regions[J]. J. Wind Eng. Indus. Aerodyn, 1995, 54&55:515-525.
    77. He J, Song C. C. S. Evaluation of pedestrian winds in urban area by numerical approach[J]. J. Wind Eng. Indus. Aerodyn, 1999, 81:295-309.
    78. Shuzo Murakami, Current status and future trends in computational wind engineering,Joural of Wind engineering and Industrial Aerodynamics 67&68(1997)3-34.
    79.陈建国,钱炜祺,符松 蓝旗营住宅楼群风环境数值模拟 清华大学学报(自然科学版),2003,8:1074-1078.
    80.丁宗梁,张华,北京西站主站房建筑风荷载模拟实验研究 建筑结构学报,1996,5:56-60.
    81.李会知,城市建筑风环境的风洞模拟研究,华北水利水电学院学报,1999,3:32-34.
    82.刘学利,胡大明,狄惠众,高层建筑风荷载模拟研究,住宅科技,1994,4:3-5.
    83.高智,申义庆,Navier—Stokes(NS)方程组差分计算中的物理和网格尺度效应及NS方程组的简化,空气动力学学报,2001:1-7.
    84.张华,张湘伟,一种适用于板料成形过程分析的自适应有限元方法,计算力学学报,2000,2:170-175.
    85.黄鹏,施宗城,陈伟,顾明,大气边界层风场模拟及测试技术的研究,同济大学学报,2001,1:40-44.
    86.吴义章,李阳,齐常生,建筑风环境模拟及其舒适性判断,郑州大学学报,2003,1:92-94.
    87.赵彬,林波荣,李先庭,江亿,建筑群风环境的数值模拟仿真优化设计,城市规划汇刊,2002,2:57-61.
    88.唐革风,苏铭德,符松,横向风影响下空冷塔内外流场的数值研究,空气动力学学报,1997,3:328-336.
    89.陈凯麒,李平衡,温排水对湖泊、水库富营养化影响的数值模拟,水利学报,1999,1:22-25.
    90.佘振苏,苏卫东,湍流中的层次结构和标度律,力学进展,1999,3:289-303.
    91.朱自强,贾剑波,三角翼大迎角不可压粘流的数值模拟,力学学报,1996,6:736-740.
    92.李沁,张涵信,高树椿,一种混合型四阶格式、基于特征的边界条件及其应用,空气动力学学报,2000,2:146-155.
    93.张正科,朱自强,庄逢甘,某型双立尾战斗机的网格生成及流场解,计算力学学报,1998,2:137-143.
    94.唐智礼,黄明恪,用隐式多重网格法计算实用外形无粘绕流,空气动力学学报,1999,1:52-59.
    95.庞勇,张树海,张涵信,跨声速三角翼漩涡破裂过程的数值模拟,空气动力学学报,1999.2:195-202.
    96.张增产,一般形式的二维时—空守恒格式,计算力学学报,1997,11:378-381.
    97.王建军,陆明万,张雄,流体力学Petrov-Galerkin有限元法研究进展,计算力学 学报,1997,4:495-502.
    98.邱志刚,黎志成,关于模拟模型生成的探讨,计算机模拟与信息技术,徐光主编,国际工业出版社,1997:21-26.
    99.邓建辉,熊文林,葛修润,复杂区域非结构化四边形网格全自动生成方法,计算结构力学及其应用,1995,2:196-204.1,26:302-322(1998).
    100、朱军政,范西俊,三维多块结构椭圆型贴体网格的生成,空气动力学学报,1997,2:245-250.
    101、张来平,张涵信,高树椿等,任意平面域的三角形网格和混合网格生成,空气动力学学报,1999,1:8-14.
    102、朱国林,王开春,郭应钧,用三维N-S方程计算钝体绕流,空气动力学学报,1994,2:152-157.
    103、安恩科,徐通模,锅炉炉膛出口烟速偏差的数值模拟,动力工程,1999,3:29-32.
    104、张来平,张涵信,高树椿,矩形/非结构混合网格技术及在二维/三维复杂无粘流场数值模拟中的应用,空气动力学学报,1998,1:79-87.
    105、王志东等,非正交同位网格中的SIMPLE算法,河海大学学报(自然科学版)2003,3,509-512.
    106、陈和春,李炜,基于混合有限分析差值的非交错网格方法,三峡大学学报(自然科学版),2003,4:301-304.
    107、柏威,鄂学全,基于非结构化同位网格的SIMPLE算法,计算力学学报,2003,6:702-710.
    108、孙剑,汤广发,李念平,非规则网格有限体积法处理不规则边界的研究,湖南大学学报,2001,2:78-82.
    109、严泽想、陶智,非交错网格求解传热及流体流动,推进技术,1997,5:73-77.
    110、钱炜祺,蔡金狮,一种新的非线性κ-ε两方程湍流模型,空气动力学学报,1997,4:391-397.
    111、杨名生,有限元网格自动生成的组合处理方法,大连理工大学学报,1994,5:507-512.
    112、吴斌鑫,陈康民,应用非交错网格的SIMPLE算法计算柱塞式化油器内部流场,内燃机 工程,1997,2:40-48.
    113、苏铭德,唐革风,高层建筑风载的数值模拟,空气动力学学报,1996,4:436-442.
    114、李义科,吴文斐,符永正,建筑物表面风压分布随侧风面长度变化的数值模拟研究,工业建筑,1998,2:52-54.
    115、张辉,陈善年,基于非错列网格的三维椭圆型流动问题的算法,东南大学学报,1994,4:56-61.
    116、邓保庆,吴文权,同位网格上不可压流动的反欠松弛压力修正算法,工程热物理学报,2002,5:605-607.
    117、涂尚荣,张扬军,谢今明,杨胜,郑孟伟,汽车外部流场仿真的复杂网格系统生成,汽车工程,2002,5:408-411.