小麦耐盐渐渗系山融3号根系盐胁迫转录组分析及相关基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的耐盐性是由多基因控制的复杂性状,盐胁迫应答基因涉及代谢、防御反应、能量、离子平衡和物质转运等诸多方面。深入理解控制这个性状的分子机制,有助于农作物的基因改良从而减少盐害带来的损失。对盐胁迫下植物转录组整体水平上的研究对于耐盐机理的揭示具有重要意义。目前对模式植物拟南芥和水稻盐胁迫下转录组变化研究取得了许多进展,而对非模式植物如小麦的研究较少。
     山融3号是从普通小麦济南177(Triticum aestivum L.2n=42)与其耐盐近缘属长穗偃麦草(Thinopyrum ponticum 2n=70)不对称体细胞融合杂种中筛选出来的耐盐渐渗系新品种。遗传和生理生化分析表明山融3号基因组中含有渐渗的长穗偃麦草基因组小片段,其耐盐指数及各项耐盐生理指标均优于其亲本,且其耐盐性状由一个主效基因位点和多个微效基因位点共同控制。
     本论文设计了山融3号原位合成长oligo表达谱芯片,包含15000个unigene,将之用于研究盐胁迫和渗透势相当的PEG(polyethylen glycol)胁迫下山融3号及其亲本济南177根部转录组的变化情况,通过对芯片杂交结果的分析,系统性的阐明了山融3号耐逆可能涉及的途径,还对盐胁迫早期渗透胁迫与离子胁迫对转录组影响的关系进行了探讨;在此基础上,进一步着重研究了山融3号中克隆的4个盐胁迫响应基因,结合在拟南芥中过表达等多种手段,进行功能相关研究,指出了这些基因在山融3号中参与耐逆调控的可能方式。
     主要的研究内容及结果包括:
     1.山融3号表达谱芯片的设计
     山融3号的来源与遗传背景特殊,其中有别于普通小麦的转录子可能对耐盐性状有着重要贡献,为了将这些转录子囊括于芯片分析的范围之内,首先构建了山融3号和济南177根部盐胁迫下的SSH cDNA文库,将文库测序得到的1000个EST序列聚类成180个unigene、连同山融3号全长cDNA文库EST序列聚类而成的2539个unigene、并整合DFCI小麦数据库中的unigene资源,设计了代表山融3号15000个unigene的原位合成长oligo表达谱芯片。
     2.山融3号及其亲本济南177根部盐胁迫转录组变化差异的分析
     利用上述芯片研究了山融3号及其亲本济南177在盐胁迫下不同时间点根转录组之间的差异,发现了836个具有显著性差异的探针,对这些差异基因的差异模式和功能的分析表明:
     山融3号在金属离子、水分和营养元素的运输、抗氧化、类黄酮类合成、部分ABA途径基因、部分防御反应相关基因上具有表达优势,而表达显著下降的基因包括大量的光合作用相关基因以及部分防御反应基因;
     对调控类基因(如转录因子和激素合成与代谢相关基因)和转运蛋白基因响应模式的分析发现,山融3号中盐胁迫下上调的探针数目更多,且上调程度更高,而盐胁迫下调探针的下调程度则较济南177中低,暗示山融3号的胁迫适应性反应强度提高,进而提高了胁迫耐受性;相对与济南177,JA(jasmonic acid)合成关键基因和GA(gibberellin)合成关键基因在山融3号中分别组成型的大幅度表达量降低和升高,暗示了两个品种中不同的激素平衡情况;
     最后,总结了芯片中54个在两个品种间表达有差异且代表未知小麦EST的探针,这些EST序列均来源于山融3号自身,有可能是体细胞融合带来的外源基因或基因变异的产物。
     以上发现有助于阐述山融3号的耐盐机理,并提供了许多潜在的耐盐候选基因,同时证明了体细胞融合对转录组的重大影响,以数据说明了该技术应用于耐盐品种培育的价值。
     3.利用NaCl和PEG等渗处理研究盐胁迫早期响应机制
     为了研究小麦根部对盐胁迫早期响应机制,并区分渗透胁迫与离子胁迫的关系,利用渗透势相当的NaCl和PEG对山融3号和济南177进行等渗胁迫处理,基于芯片杂交数据,分析了根部胁迫早期的转录组变化,发现:
     盐胁迫早期响应以调控基因的上调和转运相关基因的下调为主;
     等渗处理下盐胁迫和单纯渗透胁迫引发的转录组变化有很大一致性,但PEG胁迫引起了更大范围的转录组变化,同时调控类基因(转录因子和激素合成与代谢相关基因)对PEG胁迫的响应程度更大;
     存在非渗透胁迫响应的盐胁迫响应探针,并且转运蛋白基因中在胁迫早期下调的探针在NaCl胁迫下比PEG胁迫下下调程度更大。
     这些发现首次在转录组水平证明盐胁迫早期以渗透胁迫的影响为主,而离子胁迫的影响也同时存在。所筛出的差异探针也为研究早期盐胁迫信号传导和离子胁迫特异性信号传导提供了候选基因。
     4.山融3号盐胁迫早期响应基因TaDi19A和TaDi19B的克隆与功能研究
     基于对山融3号和济南177盐胁迫根部SSH文库表达差异筛选的结果,由EST片段克隆到山融3号TaDi19A和TaDi19B基因,它们都属于Di19(DROUGHTINDUCED19)基因家族。其中:
     TaDi19A定位于小麦3B染色体长臂,主要在细胞核中起作用,在非胁迫条件下小麦的根和叶中都有基本表达,在NaCl、PEG、冷以及非生物胁迫相关激素ABA和乙烯的处理下迅速上调表达;该基因在拟南芥中的组成型表达造成转基因植株在种子萌发阶段对盐胁迫、渗透胁迫以及ABA处理超敏感;转基因植株根的伸长实验表明植株盐耐受性降低且对乙烯的敏感性降低;在H_2O_2处理下,转基因植株的开花期比对照大大提前。另外,转基因拟南芥中ABA信号传导途径基因ABI1、RAB18、ERD15和ABF3,以及SOS(salt overly sensitive)途径基因SOS2的转录水平发生改变。因此,TaDi19A可能是作为胁迫信号传导的调控因子,通过改变这些基因的转录来对植物非生物胁迫及相关激素的响应产生影响。
     对TaDi19B基因的序列特征、亚细胞定位、表达谱进行了研究,并建立了拟南芥组成型表达的转基因株系。发现它主要定位于细胞核,其表达受到盐、渗透胁迫和冷胁迫的诱导,并且在山融3号中的上调更明显,推测它可能对山融3号的高耐盐性有贡献,参与了盐等非生物胁迫的响应。
     5.山融3号盐胁迫早期响应基因TaERD15A和TaERD15B初步的功能研究
     同样基于SSH文库表达差异筛选的结果,从山融3号中克隆了TaFRD15A和TaERD15B基因,对它们的序列分析表明,这类基因编码的蛋白在各个物种中差异较大,保守性较差,其拟南芥同源基因ERD15是ABA途径负调控因子。对它们的基因结构、亚细胞定位、表达谱进行了分析,并分别获得了拟南芥组成型表达的转基因株系。
     其中,TaERD15A位于小麦1A染色体短臂,蛋白在细胞内主要定位于细胞核,并且在盐胁迫和PEG造成的渗透胁迫下上调表达,且在济南177中的表达量更高,同时,它也受到低温胁迫的诱导,但不受ABA诱导。该基因在拟南芥中的组成型表达造成转基因植株的盐耐受性降低。这说明它可能是胁迫耐受性的负调控因子,并且通过非ABA依赖的途径起作用,而盐胁迫下该基因在山融3号中更低的表达量可能是山融3号更高盐耐受性的原因之一。
     TaERD15B的亚细胞定位与TaERD15A类似,并同样受PEG和冷胁迫诱导,但是不受NaCl胁迫诱导,而在PEG处理带来的渗透胁迫下,该基因在济南177中的表达量高于山融3号,推测它可能主要参与渗透胁迫和冷胁迫的响应过程。
As salt-stress tolerance characters in plants are controlled by quantitative trait loci,a comprehensive resolution of salt-tolerance mechanisms has been complicated.Microarrays have become powerful tools for high throughput screening of salt-stress responsive genes. In model plants,such as Arabidopsis and rice,tens of thousands of gene expression patterns in response to salt stress have been monitored.But for wheat,the information was still limited.
     A new somatic hybrid introgression line Shanrong No.3(SR3) has been generated in our lab from hybridization of common wheat Jinan 177(JN177) with Thinopyrum ponticum, a salt and drought tolerant grass.Cytological and molecular analysis showed that some nuclear and non-nuclear DNAs and even functional genes of donor T.ponticum were introgressed into this line.SR3 had a significantly higher yield than its parent JN177 in salt-alkali soil of Shandong,China.It has passed Shandong provincial regional yield trial for new salt-enduring wheat cultivar(Lu-Nong-Shen-Zi No.[2004]030).The results of SSRs analysis suggest that salt tolerance of SR3 is controlled by a major salt tolerance gene and some microgenes.To investigate the salinity tolerance mechanism of SR3,we have developed a new long oligo-DNA microarray based on the EST sequences either from SR3 or from public wheat EST database,which harbors 15,000 unigenes.Using it,the transcriptomes of salt and osmotic stress responses were fully analyzed in SR3 and JN177. Additionally,four stress responsive genes were cloned from SR3 and functionally analyzed.
     The main research contents and results achieved in this work were summarized as follows.
     1.Probe design of oligo-DNA microarrays for SR3
     For the special genetic background of SR3,it may have transcripts other than in common wheat which may be related to the salt tolerance of SR3.To harbor these transcripts in the microarray,we generated a SSH cDNA library between SR3 and JN177 under salt treatment.One thousand sequences from the library were clustered into 180 unigenes.We also get 2,539 unigenes from a complete cDNA library of SR3 which was constructed before.Based on these sequences,together with another 12,281 unigenes from DFCI Wheat Gene Index,probes were designed and synthesized in situ on glass slides by Agilent Technologies.
     2.Transcriptomes comparison between SR3 and JN177 under salt stress
     Using the microarray,root transcriptomes were compared between SR3 and JN177 under time course salt treatment,and 836 probes were identified to be expressed with significant difference.By analyzing the expression patterns and potential functions of the probes,we found that:
     Genes related to transport(of metal ions,water and nutrient),antioxidant production, flavonoid biosynthesis,some ABA pathway components and defense,were expressed more in SR3 than in JN177.While genes involved in photosynthesis and defense were expressed less.
     Based on the responsive patterns of regulatory genes(including transcription factor genes and genes involved in hormone biosynthesis and metabolism) and transporter genes under salt stress,it was found that more of these genes were up-regulated in SR3 than in JN177,and the up-regulation was also greater in SR3.However the down-regulation was more moderate in SR3.This may indicate that the adaptational response is stronger in SR3. Expression of the key genes involved in JA and GA biosynthesis were greatly suppressed and over-expressed respectively in SR3 than in JN177.This suggested the difference of the hormone balance between the two lines.
     Finally,54 differently expressed probes which represented new ESTs were highlighted. They were all from SR3 cDNA libraries and might be exogenous or mutant genes which resulted from the somatic hybridization.
     These findings can not only help to reveal the salinity tolerance mechanism of SR3 and provided lots of candidate salt-tolerance related genes,but also confirmed the great impression on transcriptome by somatic hybridization and further indicated the worth of applying this technique on salt tolerant crop breeding.
     3.Transcriptome analysis under NaCl and PEG treatments with equal osmotic potential revealed the mechanism of early salt responses
     To investigate the mechanism of early salt responses in wheat roots,especially the relationship between osmotic and ionic stress during salt stress,we treated SR3 and JN177 with NaCl and PEG which conferred equal osmotic stress.After analyzing the transcriptome data of microarray,we found that:
     The early salt responses of wheat root transcriptome were mainly composed of the up-regulation of regulatory genes and the down-regulation of transporter genes.
     The transcriptome changes under NaCl and PEG treatment shared common in a large extent,but more genes were affected under PEG treatment in comparison with NaCl treatment,and the regulatory genes(genes involved in transcriptional regulation or hormone biosynthesis and metabolism) also changed greater under PEG treatment.
     Some probes only responded to NaCl but not to PEG and some transporter genes were more suppressed under NaCl treatment than under PEG treatment.
     These findings confirmed that osmotic stress was the main stress conferred by salt treatment at the earlier stage.It was surprising that osmotic stress itself caused larger transcriptomal changes than the combination of osmotic and ionic stress.This suggests a salt stress specific way to moderate the osmotic impaction.The differently expressed genes may be involved in early salt signal transduction or ionic stress specific signal transduction.
     4.Cloning and functional analysis of early salt responsive genes TaDi19A and TaDi19B from SR3
     Based on the differential screening of SSH cDNA library,TaDi19A and TaDi19B were cloned from SR3,which belonged to Di19(DROUGHT INDUCED 19) gene family.
     TaDi19A was localized in long arm of the chromosome 3B and its protein products mainly presented in nucleus.It was constitutively expressed in both the roots and leaves of wheat seedlings grown under non-stressed conditions,but was substantially up-regulated by the imposition of stress(salinity,drought and cold),or the supply of stress-related hormones (ABA and ethylene).The heterologous over-expression of TaDi19A in Arabidopsis thaliana increased the plants'sensitivity to salinity stress,ABA and mannitol during the germination stage.Root elongation in these transgenic lines showed a reduced tolerance to salinity stress and a reduced sensitivity to ethophon.Flowering was accelerated in the transgenic lines when stressed with H_2O_2.The expression of the ABA signal pathway genes ABI1,RAB18,ERD15 and ABF3,and SOS2(SOS pathway) was altered in transgenic lines.These results suggest that TaDi19A plays a role in the plant's response to abiotic stress,and some possible mechanisms of its action are proposed.
     For TaDi19B,we analyzed its sequence character,subcellular localization and expression patterns.The heterologous over-expression Arabidopsis transgenic lines were generated.TaDi19B protein was found to be presented in nucleus and was transcriptionally up-regulated by salt,osmotic and cold stress.Its stress response was greater in SR3 than in JN177.This suggests that it may contribute to the salinity tolerance of SR3 and is involved in abiotic stress response.
     5.Cloning and preliminary functional analysis of TaERD15A and TaERD15B, two stress responsive genes from SR3
     Also based on the differential screening of SSH cDNA library,TaERD15A and TaERD15B were isolated from SR3.By homology analysis of their protein sequences,it was found that this type of proteins was less conserved among species.The only known homologous gene in Arabidopsis is ERD15A(EARLY RESPONSE TO DEHYDRATION 15), a negative regulator of ABA pathway.Gene structure,subcellular localization,expression patterns of the two genes were analyzed and heterologous over-expression Arabidopsis transgenic lines were generated respectively.
     TaERD15A localized on the short arm of chromosome 1A and the protein presented in nucleus.It was up-regulated by NaCl and PEG treatments and more expressed in JN177 than in SR3.It also responded to cold but not to exogenous ABA.The salinity tolerance of transgenetic Arabidopsis seedlings was reduced.These results indicate that TaERD15A is a negative regulator of salinity tolerance and functions in an ABA independent manner.Its less expression in SR3 under salt stress may results in the significant salt tolerance.
     The subcellular localization of TaERD15B was similar to TaERD15A.It was also induced by PEG and cold treatment but not by NaCl treatment.Under PEG treatment,its transcripts accumulated more in JN177 than in SR3.These imply that it is involved in osmotic and cold stress response.
引文
1 A.M.H (1999) Alterations in protein and esterase patterns of peanut in response to salinity stress. Biol. Plant 42: 241-248
    
    2. Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131: 1748-1755
    
    3. Achard P, Cheng H, De Grauwe L, et al. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311: 91-94
    
    4. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18: 656-660
    
    5. Acharya BR, Assmann SM (2008) Hormone interactions in stomatal function. Plant Mol Biol 69(4): 451-62
    
    6. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399
    
    7. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in Arabidopsis. Science 285: 1256-1258
    
    8. Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis. and leaf development are altered in a T-DNA insertional mutant of AtNHXl, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229-239
    
    9. Babula D, Misztal LH, Jakubowicz M, et al. (2006) Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: identification and genome comparative mapping of specific gene homologues. Theor Appl Genet 112: 410-420
    
    10. Bailly C, El-Maarouf-Bouteau H, Corbineau F (2008) From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C R Biol 331: 806-814
    
    11. Bari R, Jones JD (2008) Role of plant hormones in plant defence responses. Plant Mol Biol 12. Batelli G, Verslues PE, Agius F, et al (2007) S0S2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27: 7781-7790
    
    13. Beattie WG,Meng L,Turner SL, et al. (1995) Hybridization of DNA targets to glass-tethered oligonucleotide probes. Mol Biotechnol 4: 213-225
    
    14. Berthomieu P, Conejero G, Nublat A, et al (2003) Functional analysis of AtHKTl in Arabidopsis shows that Na~+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22: 2004-2014
    
    15. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431-434
    
    16. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinfonnatics 19: 185-193
    
    17. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139: 790-805
    
    18. Brazma A, Hingamp P, Quackenbush J, et al. (2001) Minimum information about a microarray experiment (MIAME) -toward standards for microarray data. Nat Genet 29: 365-371
    
    19. Brazma A, Vilo J (2000) Gene expression data analysis. FEBS Lett 480: 17-24
    
    20. Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58: 301-308
    
    21. Byrt CS, Platten JD, Spielmeyer W, et al. (2007) HKTl:5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Knal. Plant Physiol 143: 1918-1928
    
    22. Canales RD, Luo Y, Willey JC, et al. (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24: 1115-1122
    
    23. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na~+ and K~+ to salt tolerance. Plant Physiol 131: 676-683
    
    24. Chao DY, Luo YH, Shi M, Luo D, Lin HX (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res 15: 796-810
    
    25. Charron JB, Ouellet F, Houde M, Sarhan F (2008) The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol 8: 86
    
    26. Chazen O, Hartung W, Neumann PM (1995) The different effects of PEG 6000 and NaCl on leaf development are associated with differential inhibition of root water transport. Plant, Cell &Environment 18: 727-735.
    
    27. Chen K, Du L, Chen Z (2003) Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol Biol 53: 61-74
    
    28. Chen LH, Zhang B, Xu ZQ (2008) Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na~+/H~+ antiporter gene AtNHXl in common buckwheat (Fagopyrum esculentum) . Transgenic Res 17:121-132
    
    29. Chen TH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5: 250-257
    
    30. Chen Z, Hong X, Zhang H, et al. (2005) Disruption of the cellulose synthase gene. AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Plant J 43: 273-283
    
    31. Chen Z, Newman I, Zhou M, et al. (2005) Screening plants for salt tolerance by measuring K~+ flux: a case study for barley. Plant Cell Environ. 28: 1230-1246
    
    32. Cheng AX, Xia GM, Zhi DY, Chen HM (2004) Intermediate fertile Triticum aestivum (+) Agropyron elongatum somatic hybrids are generated by low doses of UV irradiation. Cell Res 14: 86-91
    
    33. Cheng J, Shoffner MA, Hvichia GE, Kricka LJ, Wilding P (1996) Chip PCR. II. Investigation of different PCR amplification systems in microbabricated silicon-glass chips. Nucleic Acids Res 24: 380-385
    
    34. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50: 1187-1195
    
    35. Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277:589-600
    
    36. Christmann A, Moes D, Himmelbach A, et al. (2006) Integration of abscisic acid signalling into plant responses. Plant biol (Stuttg) 8: 314-325
    
    37. Churchill GA (2002) Fundamentals of experimental design for cDNA microarray s. Nat Genet 32 Suppl: 490-495
    
    38. Clement M, Lambert A, Herouart D, Boncompagni E (2008) Identification of new up-regulated genes under drought stress in soybean nodules. Gene 426: 15-22
    
    39. Conesa A, Gotz S, Garcia-Gomez JM, et al. (2005) Blast2GO: a universal tool for annotation,visualization and analysis in functional genomics research. Bioinformatics 21: 3674-3676
    
    40. Cramer GR (1992) Kinetics of Maize Leaf Elongation: III. Silver Thiosulfate Increases the Yield Threshold of Salt-Stressed Plants, but Ethylene Is Not Involved. Plant Physiol 100: 1044-1047
    
    41. Davenport RJ,Munoz-Mayor A, Jh&D, et al. (2007) The Na~+ transporter AtHKT1;1 controls retrieval of Na~+ from the xylem in Arabidopsis. Plant Cell Environ 30: 497-507
    
    42. Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Annu Rev Plant Biol 53: 67-107
    
    43. Dennison KL, Robertson WR, Lewis BD, et al. (2001) Functions of AKT1 and AKT2 potassium channels determined by studies of single and double mutants of Arabidopsis. Plant Physiol 127: 1012-1019
    
    44. Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L (2003) AKT1 and TRH1 are required during root hair elongation in Arabidopsis. J Exp Bot 54: 781-788
    
    45. Diatchenko L, Lau YF, Campbell AP, et al. (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A 93: 6025-6030
    
    46. Diatchenko L, Lukyanov S, Lau YF, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303: 349-380
    
    47. Ding Y, Kalo P, Yendrek C, et al. (2008) Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20: 2681-2695
    
    48. Ding Z, Li S, An X, Liu X, Qin H, Wang D (2009) Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana. J Genet Genomics 36: 17-29
    
    49. Dombrowski JE, Baldwin JC, Martin RC (2008) Cloning and characterization of a salt stress-inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165: 651-661
    
    50. Dyachenko OV, Zakharchenko NS, Shevchuk TV, et al (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) 71:461-465
    
    51. Elshintinawy F, Elshourbagy MN (2001) Alleviation of changes in protein metabolism in NaCl-stressed wheat seedlings by thiamine. Biol. Plant 44: 541-545
    
    52. Evans NH, Hetherington AM (2001) Plant physiology, the ups and downs of guard cell signalling. Curr Biol 11: R92-94
    
    53. Feng D, Xia G, Zhao S, Chen F (2004) Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor Appl Genet 110:136-144
    
    54. Flowers T, Troke P, Yeo A (1977) The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28: 89-121
    
    55. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767-773
    
    56. FAO. 2008. FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush
    
    57. Frensch J, Hsiao TC (1994) Transient Responses of Cell Turgor and Growth of Maize Roots as Affected by Changes in Water Potential. Plant Physiol 104: 247-254
    
    58. Fricke W, Akhiyarova G, Veselov D, Kudoyarova G (2004) Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J Exp Bot 55: 1115-1123
    
    59. Fricke W, Akhiyarova G, Wei W,et al. (2006) The short-term growth response to salt of the developing barley leaf. J Exp Bot 57: 1079-1095
    
    60. Fricke W, Peters WS (2002) The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiol 129: 374-388
    
    61. Fujibe T, Saji H, Watahiki MK, Yamamoto KT ( 2006 ) Overexpression of the RADICAL-INDUCED CELL DEATH1 (RCD1) gene of Arabidopsis causes weak rcdl phenotype with compromised oxidative-stress responses. Biosci Biotechnol Biochem 70: 1827-1831
    
    62. Fukamatsu Y, Mitsui S, Yasuhara M, et al. (2005) Identification of LOV KELCH PROTEIN2 (LKP2) -interacting factors that can recruit LKP2 to nuclear bodies. Plant Cell Physiol 46: 1340-1349
    
    63. Fukuda A, Nakamura A, Tagiri A,et al. (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na~+/H~+ antiporter from rice. Plant Cell Physiol 45: 146-159
    
    64. Gadallah MAA (1999) Effects of proline and glycinebetaine on Viciafaba response to salt stress. Biol. Plant 42: 249-257
    
    65. Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J Exp Bot 56: 2365-2378
    
    66. Gaxiola RA, Li J, Undurraga S, et al. (2001) Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A 98: 11444-11449
    
    67. Gaxiola RA, Rao R, Sherman A, et al. (1999) The Arabidopsis thaliana proton transporters. AtNhxl and Avpl, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96: 1480-1485
    
    68. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol 17: 365-370
    
    69. Gilliham M, Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137: 819-828
    70. GiraudatJ (1995) Abscisic acid signaling. Curr Opin Cell Biol 7: 232-238
    
    71. Gong D, Gong Z, Guo Y, Chen X, Zhu JK (2002) Biochemical and functional characterization of PKS11, a novel Arabidopsis protein kinase. J Biol Chem 277: 28340-28350
    
    72. Gong D, Guo Y, Jagendorf AT, Zhu JK (2002) Biochemical characterization of the Arabidopsis protein kinase S0S2 that functions in salt tolerance. Plant Phvsiol 130: 256-264
    
    73. Gong D, Guo Y, Schumaker KS, Zhu JK (2004) The S0S3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Phvsiol 134: 919-926
    
    74. Gong HJ, Randall DP, Flowers TJ (2006) Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell Environ 29: 1970-1979
    
    75. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44: 826-839
    
    76. Gordon GJ, Jensen RV, Hsiao LL, et al. (2002) Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res 62: 4963-4967
    
    77. Gosti F, Bertauche N, Vartanian N, Giraudat J (1995) Abscisic acid-dependent and -independent regulation of gene expression by progressive drought in Arabidopsis thaliana. Mol Gen Genet 246: 10-18
    
    78. Greenway H (1972) Salt Responses of Enzymes from Species Differing in Salt Tolerance. Plant Phvsiol 49: 256-259
    
    79. Greenway H, Munns R (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology 31: 149-190
    
    80. Gulick PJ, Drouin S, Yu Z,et al. (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48: 913-923
    
    81. Gulzar S, Khan MA, Ungar IA (2003) Salt tolerance of a coastal salt marsh grass. Commun. Soil Sci. Plant Anal 34: 2595-2605
    
    82. Guo L, Lobenhofer EK, Wang C, et al. (2006) Rat toxicogenomic study reveals analytical consistency across microarray platforms. Nat Biotechnol 24: 1162-1169
    
    83. Guo WJ, Ho TH (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Phvsiol 147: 1710-1722
    
    84. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis S0S2 protein kinase physically interacts with and is activated by the calcium-binding protein S0S3. Proc Natl Acad Sci U S A 97: 3735-3740
    
    85. Hamada A, Shono M, Xia T, et al. (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46: 35-42
    
    86. Hao GP,Wu ZY, Chen MS,et al. (2004) ATHK1 gene regulates signal transduction of osmotic stress in Arabidopsis thaliana. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 30: 553-560
    
    87. Haro R, Banuelos MA, Senn ME, et al. (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Phvsiol 139: 1495-1506
    
    88. Hasegawa M, Bressan R, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5: 317-319
    
    89. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant Cellular and Molecular Responses to High Salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463-499
    
    90. He C, Yan J, Shen G, et al. (2005) Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant Cell Physiol 46: 1848-1854
    
    91. Hetherington AM, Brownlee C (2004) The generation of Ca~(2+) signals in plants. Annu Rev Plant Biol 55: 401-427
    
    92. Hirayama T, Shinozaki K (2007) Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci 12: 343-351
    
    93. Holbrook NM, Shashidhar VR, James RA, Munns R (2002) Stomatal control in tomato with ABA-deficient roots: response of grafted plants to soil drying. J Exp Bot 53: 1503-1514
    
    94. Horie T, Costa A, Kim TH, et al. (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26: 3003-3014
    
    95. Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136: 2457-2462
    
    96. Hosp J, Tashpulatov A, Roessner U, et al (2007) Transcriptional and metabolic profiles of stress-induced, embryogenic tobacco microspores. Plant Mol Biol 63: 137-149
    
    97. Houde M, Diallo AO (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9: 400
    
    98. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67: 169-181
    
    99. Huang CX, Van Steveninck RF (1989) Maintenance of Low Cl Concentrations in Mesophyll Cells of Leaf Blades of Barley Seedlings Exposed to Salt Stress. Plant Physiol 90: 1440-1443
    
    100. Huang W, Ma X, Wang Q, et al. (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays) . Plant Mol Biol 68: 451-463
    
    101. Hubank M, Schatz DG (1994) Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res 22: 5640-5648
    
    102. Ishitani M, Liu J, Halfter U, et al. (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12: 1667-1678
    
    103. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142: 1537-1547
    
    104. James RA, Munns R, von Caemmerer S, et al. (2006) Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell Environ 29: 2185-2197
    
    105. Jeannette E, Rona JP, Bardat F, Cornel D, Sotta B, Miginiac E (2002) Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells The Plant Journal 18: 13-22
    
    106. Jensen MK, Hagedorn PH, de Torres-Zabala M, et al. (2008) Transcriptional regulation by an NAC (NAM-ATAF1.2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56: 867-880
    
    107. Ji H, Davis RW (2006) Data quality in genomics and microarrays. Nat Biotechnol 24:1112-1113
    
    108. Ji W, Wright MB, Cai L, Flament A, Lindpaintner K (2002) Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics 3: 12
    
    109. Jiang C, Fu X (2007) GA action: turning on de-DELLA repressing signaling. Curr Opin Plant Biol 10: 461-465
    
    110. Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6: 25
    
    111. Jung C, Seo JS, Han SW, et al. (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146: 623-635
    
    112. Kalebina TS, Farkas V, Laurinavichiute DK, et al. (2003) Deletion of BGL2 results in an increased chitin level in the cell wall of Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 84: 179-184
    
    113. Kang HG, Kuhl JC, Kachroo P, Klessig DF (2008) CRT1, an Arabidopsis ATPase that interacts with diverse resistance proteins and modulates disease resistance to turnip crinkle virus. Cell Host Microbe 3: 48-57
    
    114. Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14: 343-357
    
    115. Kang X, Chong J, Ni M (2005) HYPERSENSITIVE TO RED AND BLUE 1, a ZZ-Type Zinc Finger Protein, Regulates Phytochrome B-Mediated Red and Cryptochrome-Mediated Blue Light Responses. The Plant Cell 17: 822-835
    
    116. Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophila. Plant Cell Environ 29: 1220-1234
    
    117. Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET (2006) EARLY RESPONSIVE TO DEHYDRATION 15, a Negative Regulator of Abscisic Acid Responses in Arabidopsis. Plant Physiology 142:1559-1573
    118.Katiyar-Agarwal S,Zhu J,Kim K,et at(2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis.Proc Natl Acad Sci U S A 103:18816-18821
    119.Kawasaki S,Borchert C,Deyholos M,et al.(2001) Gene expression profiles during the initial phase of salt stress in rice.Plant Cell 13:889-905
    120.Kawaura K,Mochida K,Ogihara Y(2008) Genome-wide analysis for identification of salt-responsive genes in common wheat.Funct Integr Genomics 8:277-286
    121.Kawaura K,Mochida K,Yamazaki Y,Ogihara Y(2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray.Funct Integr Genomics 6:132-142
    122.Kempa S,Krasensky J,Dal Santo S,Kopka J,Jonak C(2008) A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism.PLoS ONE 3:e3935
    123.Kerkeb L,Donaire JP,Venema K,Rodriguez-Rosales MP(2001) Tolerance to NaCl induces changes in plasma membrane lipid composition,fluidity and H+-ATPase activity of tomato calli.Physiol Plant 113:217-224
    124.Khavarinejad RA,Chaparzadeh N(1998) The effects of NaCl an d CaCl2 on photosynthesis and growth of alfalfa plants.Photosynthetica 35:461-466
    125.Khavarinejad RA,Mostofi Y(1998) Effects of NaCl on photosynthetic pigments,saccharides,and chloroplast ultrastructure in leaves of tomato cultivars.Photosynthetica 35:151-154
    126.Kiegle E,Moore CA,Haseloff J,Tester MA,Knight MR(2000) Cell-type-specific calcium responses to drought,salt and cold in the Arabidopsis root.Plant J 23:267-278
    127.Kim J,Kim HY(2006) Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling.FEBS Lett 580:5251-5256
    128.Kim S,Choi K,Park C,Hwang HJ,Lee I(2006) SUPPRESSOR OF FRIGIDA4,encoding a C2H2-Type zinc finger protein,represses flowering by transcriptional activation of Arabidopsis FLOWERING LOCUS C.Plant Cell 18:2985-2998
    129.Kim SG,Lee AK,Yoon HK,Park CM(2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination.Plant J 55:77-88
    130.Kimura M,Yamamoto YY,Seki M,et al.(2003) Identification of Arabidopsis genes regulated by high light-stress using cDNA microarray.Photochem Photobiol 77:226-233
    131.Kieine T,Kindgren P,Benedict C,Hendrickson L,Strand A(2007) Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.Plant Physiol 144:1391-1406
    132.Knight H(2000) Calcium signaling during abiotic stress in plants.Int Rev Cytol 195:269-324
    133.Knight H,Trewavas AJ,Knight MR(1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity.Plant J 12:1067-1078
    134.Kotchoni SO,Kuhns C,Ditzer A,Kirch HH,Bartels D(2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress.Plant Cell Environ 29:1033-1048
    135.Kurban H,Saneoka H,Nehira K,et al.(1999) Effect of salinity on growth,photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi.Soil Sci.Plant Nutr 45:851-886
    136.Kurepa J,Smalle J,Van Montagu M,Inze D(1998) Oxidative stress tolerance and longevity in Arabidopsis:the late-flowering mutant gigantea is tolerant to paraquat.Plant J 14:759-764
    137.Kwon YR,Lee HJ,Kim KH,et al.(2008) Ectopic expression of Expansin3 or Expansinbetal causes enhanced hormone and salt stress sensitivity in Arabidopsis.Biotechnol Lett 30:1281-1288
    138.Lamar EE,Palmer E(1984) Y-encoded,species-specific DNA in mice:evidence that the Y chromosome exists in two polymorphic forms in inbred strains.Cell 37:171-177
    139.Laurie S,Feeney KA,Maathuis FJ,et al.(2002) A role for HKT1 in sodium uptake by wheat roots.Plant J 32:139-149
    140.Li J,Yang H,Peer WA,et al.(2005) Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development.Science 310:121 - 125
    141.Liang P,Pardee AB(1992 ) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science 257:967-971
    142.Lisitsyn NA(1995) Representational difference analysis:finding the differences between genomes.Trends Genet 11:303-307
    143.Liu H,Liu S,Xia G(2009) Generation of high frequency of novel alleles of the high molecular weight glutenin in somatic hybridization between bread wheat and tall wheatgrass.Theor Appl Genet:DOI 10.1007/s00122-009-0973-x
    144.Liu HH,Tian X,Li YJ,Wn CA,Zheng CC(2008) Microarrav-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.RNA 14:836-843
    145.Liu J,Ishitani M,Halfter U,Kim CS,Zhu JK(2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Proc Natl Acad Sci U S A 97:3730-3734
    146.Liu X,Zhang M,Duan J,Wu K(2008) Gene expression analysis of germinating rice seeds responding to high hydrostatic pressure.J Plant Physiol 165:1855-1864
    147.Lu CM,Vonshak A(1999) Characterization of PS Ⅱ photochemistry,in salt-adapted cells of cyanobacterium Spirulina platensis.New Phytol.141 231-239
    148.Lynch J,Polito VS,Lauchli A(1989) Salini.ty Stress Increases Cytoplasmic Ca~(2+) Activity in Maize Root Protoplasts.Plant Physiol 90:1271-1274
    149.Maeshima M(2000) Vacuolar H~+-pvrophosphatase.Biochim Biophys Acta 1465:37-51
    150.Magome H,Yamaguchi S,Hanada A,Kamiya Y,Oda K(2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene,GA2ox7,under high-salinity stress in Arabidopsis.Plant J 56:613-626
    151.Mahajan S,Pandey GK,Tuteja N(2008) Calcium- and salt-stress signaling in plants:shedding light on SOS pathway.Arch Biochem Biophys 471:146-158
    152.Mahajan S,Tuteja N(2005) Cold,salinity and drought stresses:An overview.Arch Biochem Biophys 444:139-158
    153.Mao X,Cai T,Olyarchuk JG,Wei L(2005) Automated genome annotation and pathway identification using the KEGG Orthology(KO) as a controlled vocabulary.Bioinformatics 21:3787-3793
    154.Maser P,Hosoo Y,Goshima S,et al.(2002) Glycine residues in potassium channel-like selectivity,filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants.Proc Natl Acad Sci U S A 99:6428-6433
    155.Maslenkova LT,Zanev Y,Popova LP(1990) Oxygen-Evolving Activity of Thylakoids from Barley Plants Cultivated on Different Concentrations of Jasmonic Acid.Plant Physiol 93:1316-1320
    156.Mauch-Mani B,Manch F(2005) The role of abscisic acid in plant-pathogen interactions.Curr Opin Plant Biol 8:409-414
    157.McGall G,Labadie J,Brock P,et al.(1996) Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists.Proc Natl Acad Sci U S A 93:13555-13560
    158.Merlot S,Gosti F,Guerrier D,et al.(2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway.Plant J 25:295-303
    159.Milla MA,Townsend J,Chang IF,Cushman JC(2006) The Arabidopsis AtDi19 gene family encodes a novel type of Cys2/His2 zinc-finger protein implicated in ABA-independent dehydration,high-salinity stress and light signaling pathways.Plant Mol Biol 61:13-30
    160.Miller G,Suzuki N,Rizhsky L,et al.(2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species,plant development,and response to abiotic stresses.Plant Physiol 144:1777-1785
    161.Mitchum MG,Yamaguchi S,Hanada A,a al.(2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development.Plant J 45:804-818
    162.Mittler R(2002) Oxidative stress,antioxidants and stress tolerance.Trends Plant Sci 7:405-410
    163.Mittler R,Vanderauwera S,Gollery M,Van Breusegem F(2004) Reactive oxygen gene network of plants.Trends Plant Sci 9:490-498
    164.Mohammadi M,Kay NN,Deyholos MK(2008) Transcript expression profile of water-limited roots of hexaploid wheat(Triticum aestivum 'Opata').Genome 51:357-367
    165.Moller IS,Tester M(2007) Salinity tolerance of Arabidopsis:a good model for cereals? Trends Plant Sci 12:534-540
    166. Moore CA, Bowen HC, Scrase-Field S, et al. (2002) The deposition of suberin lamellae determines the magnitude of cytosolic Ca2+ elevations in root endodermal cells subjected to cooling. Plant J 30: 457-465
    
    167. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239-250
    
    168. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167: 645-663
    
    169. Munns R, Guo JM, Passioura JB, Cramer GR (2000) Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley. Australian Journal of Plant Physiology 27: 949 - 957
    
    170. Munns R, James RA, Lauchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57: 1025-1043
    
    171. Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol 59: 651-681
    
    172. Murashige T and Skoog F. (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15: 473 - 497
    
    173. Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10: 339-346
    
    174. Nakai K, Kanehisa M (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911
    
    175. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology 149
    
    176. Nandwal AS, Kukreja S, Kumar N, et al. (2007) Plant water status, ethylene evolution. N (2) -fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. J Plant Physiol 164: 1161-1169
    
    177. Nguyen HT, Leipner J, Stamp P, Guerra-Peraza O (2009) Low temperature stress in maize (Zea mays L.) induces genes involved in photosynthesis and signal transduction as studied by suppression subtractive hybridization. Plant Physiol Biochem 47: 116-122
    
    178. Nishizawa A, Yabuta Y, Yoshida E,et al. (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48: 535-547
    
    179. Ogasawara Y, Kaya H, Hiraoka G, et al. (2008) Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. J Biol Chem 283: 8885-8892
    
    180. Oh SJ, Song SI, Kim YS, et al. (2005) Arabidopsis CBF3/DREB1A and ABF3 in Transgenic Rice Increased Tolerance to Abiotic Stress without Stunting Growth. Plant Physiol 138: 341-351
    
    181. Ohta M, Guo Y, Halfter U, Zhu JK (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100: 11771-11776
    
    182. Ohta M, Hayashi Y, Nakashima A,et al. (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532: 279-282
    
    183. Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PALI and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165: 1491-1499
    
    184. Ouyang B, Yang T, Li H, et al. (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58: 507-520
    
    185. Ouyang J, Shao X, Li J (2000) Indole-3-glycerol phosphate, a branchpoint of indole-3-acetic acid biosynthesis from the tryptophan biosynthetic pathway in Arabidopsis thaliana. Plant J 24: 327-333
    
    186. Overmyer K, Tuominen H, Kettunen R, et al. (2000) Ozone-sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849-1862
    
    187. Oztur ZN, Talame V, Deyholos M, et al. (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48: 551-573
    
    188. Pan W, Lin J, Le CT (2002) How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol 3: research0022
    189. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57: 1181-1199
    
    190. Parida AK, Das AB, Mittra B, Mohanty P (2004) Salt-stress induced alterations in protein profile and protease activity in the mangrove Bruguiera parviflora. Z Naturforsch 59: 408-414
    
    191. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, et al. (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24: 1140-1150
    
    192. Pease AC, Solas D, Sullivan EJ, et al. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 91: 5022-5026
    
    193. Platten JD, Cotsaftis O, Berthomieu P, et al. (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11: 372-374
    
    194. Plaut Z, Heuer B (1985) Adjustment, growth, photosynthesis and transpiration of sugar beet plants exposed to saline conditions. Field crop Res. 10:1 -13
    
    195. Ponting CP, Blake DJ, Davies KE, Kendrick-Jones J, Winder SJ (1996) ZZ and TAZ: new putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci 21: 11-13
    
    196. Qi Y, Kawano N, Yamauchi Y, Ling J, Li D, Tanaka K (2005) Identification and cloning of a submergence-induced gene OsGGT (glycogeninglucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta 221: 437-445
    
    197. Qi Y, Yamauchi Y, Ling J, et al . (2004) Cloning of a putative monogalactosyldiacylglycerol synthase gene from rice (Oryza sativa L.) plants and its expression in response to submergence and other stresses. Planta 219: 450-458
    
    198. Qiu QS, Guo Y, Dietrich MA, et al. (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and S0S3. Proc Natl Acad Sci U S A 99: 8436-8441
    
    199. Qiu SP, Huang J, Pan LJ, Wang MM, Zhang HS (2006) Salt induces expression of RH3.2A. encoding an H3.2-type histone H3 protein in rice (Oryza sativa L.) . Yi Chuan Xue Bao 33: 833-840
    
    200. Quintero FJ, Ohta M, Shi H, et al. (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A 99: 9061-9066
    
    201. Raven J (1985) Regulation of pH and generation of osmolarity in vascular plants: A cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol. 101: 25-77
    
    202. Ren ZH, Gao JP, Li LG, et al. (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37: 1141-1146
    
    203. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49: 592-606
    
    204. Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R (2008) Rp133, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20: 2221-2237
    
    205. Saez A, Robert N, Maktabi MH, et al. (2006) Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiol 141: 1389-1399
    
    206. Sahr T, Voigt G, Paretzke HG, Schramel P, Ernst D (2005) Caesium-affected gene expression in Arabidopsis thaliana. New Phytol 165: 747-754
    
    207. Sakamoto H, Maruyama K, Sakuma Y,et al. (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136: 2734-2746
    
    208. Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20: 3246-3248
    
    209. Sanchez-Barrena MJ, Martinez-Ripoll M, Zhu JK, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345: 1253-1264
    
    210. Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt Tolerance of Glycinebetaine-Deficient and -Containing Maize Lines. Plant Physiol 107: 631-638
    
    211. Santa-Maria GE, Epstein E (2001) Potassium/sodium selectivity in wheat and the amphiploid cross wheat × Lophopyrum elongatum. Plant Sci 160: 523-534
    212. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470
    
    213. Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410: 327-330
    
    214. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. Oliver & Boyd. Edinburgh
    
    215. Sears ER, Sears LMS (1978) The telocentric chromosomes of common wheat. In S RAMANUJAM. ed. Proceedings of the 5th International Wheat Genetics Symposium. Indian Society of Genetics & Plant Breeding, India, pp 389-407
    
    216. Seki M, Ishida J, Narusaka M, et al. (2002) Monitoring the expression pattern of around 7.000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2: 282-291
    
    217. Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25: 333-341
    
    218. Service RF (1998) Microchip arrays put DNA on the spot. Science 282: 396-399
    
    219. Shan L, Zhao SY, Xia GM (2005) Cloning of the full-length cDNA of the wheat involved in salt stress -Root hair defective 3 gene (RHD3). J of Integrative Plant Biology 47: 881 -891
    
    220. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na (+) /H (+) antiporter S0S1 controls long-distance Na~+ transport in plants. Plant Cell 14: 465-477
    
    221. Shi L, Reid LH, Jones WD,et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24: 1151-1161
    
    222. Shi YH, Zhu SW, Mao XZ, et al. (2006) Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18: 651-664
    
    223. Shippy R, Fulmer-Smentek S, Jensen RV, et al. (2006) Using RNA sample titrations to assess microarray platform performance and normalization techniques. Nat Biotechnol 24: 1123-1131
    
    224. Sickler C, Edwards G, Kiirats O, Gao Z, Loescher W (2007) Response of mannitol producing Arabidopsis thaliana to abiotic stress. Funct. Plant Biol 34: 382-391
    
    225. Singh-Gasson S, Green RD, Yue Y, et al. (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17: 974-978
    
    226. Smyth GK, Yang YH, Speed T (2003) Statistical issues in cDNA microarray data analysis. Methods Mol Biol 224: 111-136
    
    227. Srivastava AK, Venkatachalam P, Raghothama KG, Sahi SV (2007) Identification of lead-regulated genes by suppression subtractive hybridization in the heavy metal accumulator Sesbania drummondii. Planta 225: 1353-1365
    
    228. Staal M, Maathuis F, Elzenga J, Overbeek J, Prins H (1991) Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt-sensitive Plantago media. Physiol Plant 82: 174-184
    
    229. Stenzel I, Hause B, Miersch O, et al. (2003) Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana. Plant Mol Biol 51: 895-911
    
    230. Storey R, Walker R (1999) Citrus and salinity. Sci. Hortic. 78:39-81
    
    231. Sumer A, Zorb C, Yan F, Schubert S (2004) Evidence of sodium toxicity for the vegetative growth of Maize (Zea mays L.) during the first phase of salt stress. J. Appl. Bot 78: 135-139
    
    232. Sun MM, Li LH, Xie H, Ma RC, He YK (2007) Differentially expressed genes under cold acclimation in Physcomitrella patens. J Biochem Mol Biol 40: 986-1001
    
    233. Sunarpi, Horie T, Motoda J, et al. (2005) Enhanced salt tolerance mediated by AtHKTI transporter-induced Na~+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928-938
    
    234. Surekha Katiyar-Aganval JZ, Kangmin Kim, Manu Aganval, et al. (2006) The plasma membrane Na~+/H~+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. PNAS 103: 18816-18821
    
    235. Swarup R, Pern P, Hagenbeek D, et al. (2007) Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186-2196
    
    236. Tamayo P, Slonim D, Mesirov J, et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A96:2907-2912
    
    237. Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131: 454-462
    
    238. Tanaka Y, Sano T, Tamaoki M, Nakajima N, Kondo N, Hasezawa S (2005) Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. Plant Physiol 138: 2337-2343
    
    239. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot (Lond) 91:503-527
    
    240. Tian J, Belanger FC, Huang B (2009) Identification of heat stress-responsive genes in heat-adapted thermal Agrostis scabra by suppression subtractive hybridization. J Plant Physiol 166(6):588-601
    
    241. Tong W, Lucas AB, Snippy R, et al. (2006) Evaluation of external RNA controls for the assessment of microarray performance. Nat Biotechnol 24: 1132-1139
    
    242. Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31: 1063-1073
    
    243. Tran LS, Urao T, Qin F, et al. (2007) Functional analysis of AHK1/ATHK1 and cytokmin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104: 20623-20628
    
    244. Tseng GC, Wong WH (2005) Tight clustering: a resampling-based approach for identifying stable and tight patterns in data. Biometrics 61: 10-16
    
    245. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-5121
    
    246. Urao T, Katagiri T, Mizoguchi T, et al. (1994) An Arabidopsis thaliana cDNA encoding Ca~(2+)-dependent protein kinase. Plant Physiol 105: 1461-1462
    
    247. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57: 201-212
    
    248. Voisin AS, Reidy B, Parent B, et al. (2006) Are ABA, ethylene or their interaction involved in the response of leaf growth to soil water deficit? An analysis using naturally occurring variation or genetic transformation of ABA production in maize. Plant Cell Environ 29: 1829-1840
    
    249. Walia H, Wilson C, Condamine P, et al. (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30: 410421
    
    250. Wang H, Miyazaki S, Kawai K, et al. (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Mol Biol 52: 873-891
    
    251. Wang J, Xiang F, Xia G, Chen H (2004) Transfer of small chromosome fragments of Agropyron elongatum to wheat chromosome via asymmetric somatic hybridization. Sci China C Life Sci 47: 434-441
    
    252. Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8: 1470-1489
    
    253. Wang Y, Duan L, Lu M, Li Z, Wang M, Zhai Z (2006) Expression of NAC1 up-stream regulatory region and its relationship to the lateral root initiation induced by gibberellins and auxins. Sci China C Life Sci 49: 429-435
    
    254. Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA. IAA, JA, and SA in Iris hexagona. J Chem Ecol 27: 327-342
    
    255. Wang Z, Cao G, Wang X, et al. (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep 27: 125-135
    
    256. Wang Z, Zang QW, Guo ZA, Jing RL (2004) A preliminary study on gene expression profile induced by water stress in wheat (Triticum aestivum L.) seedling. Yi Chuan Xue Bao 31:842-849
    
    257. Watt DA (2003) Aluminium-responsive genes in sugarcane: identification and analysis of expression under oxidative stress. J Exp Bot 54: 1163-1174
    
    258. Welsch R, Maass D, Voegel T, Dellapenna D, Beyer P (2007) Transcription factor RAP2.2 and its interacting partner SINAT2: stable elements in the carotenogenesis of Arabidopsis leaves. Plant Physiol 145: 1073-1085
    
    259. Williams TD, Gensberg K, Minchin SD, Chipman JK (2003) A DNA expression array to detect toxic stress response in European flounder (Platichthys flesus). Aquat Toxicol 65: 141-157
    
    260. Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12: 443-455
    
    261. Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20: 1101-1117
    
    262. Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na~+/H~+ antiporter plays an important role in salt stress. Plant Cell Physiol 45: 600-607
    
    263. Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34: W720-724
    
    264. Wu JL, Seliskar DM, Gallagher JL (1998) Stress tolerance in the marsh plane Spartina patens: impact of NaCl on growth and root plasma membrane lipid composition. Physiol. Plant. 102
    
    265. Wu Y, Thorne ET, Sharp RE, Cosgrove DJ (2001) Modification of expansin transcript levels in the maize primary root at low water potentials. Plant Physiol 126: 1471-1479
    
    266. Xia G, Xiang F, Zhou A, Wang H, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevishi. Theor Appl Genet 107: 299-305
    
    267. Xiang F, Xia G, Chen H (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum) and Avena sativa L. Sci China C Life Sci 46: 243-252
    
    268. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14: 3024-3036
    
    269. Xiong L, Gong Z, Rock CD, et al. (2001) Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev Cell 1: 771-781
    
    270. Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14 Suppl: S165-183
    
    271. Xue GP, Mclntyre CL, Glassop D, Shorter R (2008) Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol 67: 197-214
    
    272. Yan Guo,Q-SQ, Francisco J. et al. (2004) Transgenic Evaluation of Activated Mutant Alleles of S0S2 Reveals a Critical Requirement for Its Kinase Activity and C-Terminal Regulatory Domain for Salt Tolerance in Arabidopsis tlialiana. The Plant Cell 16: 435-449
    
    273. Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30: e15
    
    274. Yang YH, Speed T (2002) Design issues for cDNA microarray experiments. Nat Rev Genet 3: 579-588
    
    275. Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMTla, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol
    
    276. Yeo A, Lee K, Izard P, Boursier P, Flowers T (1991) Short- and long-term effects of salinity on leaf growth in rice (Oryza sativa L.) . J Exp Bot 42: 881 -889
    
    277. Yeo AR, Flowers TJ, Troke PF (1977) The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology 28: 89-121
    
    278. Yokoi S, Quintero FJ, Cubero B, et al. (2002) Differential expression and function of Arabidopsis tlialiana NHX Na+/H+ antiporters in the salt stress response. Plant J 30: 529-539
    
    279. Yokotani N, Ichikawa T, Kondou Y,et al. (2008) Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 227: 957-967
    
    280. Zalejski C, Paradis S, Maldiney R, et al. (2006) Induction of abscisic acid-regulated gene expression by diacylglycerol pyrophosphate involves Ca2+ and anion currents in Arabidopsis suspension cells.Plant Physiol 141:1555-1562
    281.Zarate SI,Kempema LA,Walling LL(2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses.Plant Physiol 143:866-875
    282.Zhang HX,Blumwald E(2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.Nat Biotechnol 19:765-768
    283.Zhang HX,Hodson JN,Williams JP,Blumwald E(2001) Engineering salt-tolerant Brassica plants:characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation.Proc Natl Acad Sci U S A 98:12832-12836
    284.Zhang JF,Yuan LJ,Shao Y,Du W,Yan DW,Lu YT(2008) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis.Plant Cell Environ 31:562-574
    285.Zhang Y,Mian MA,Chekhovskiy K,So S,Kupfer D,Lai H,Roe BA(2005) Differential gene expression in Festuca under heat stress conditions.J Exp Bot 56:897-907
    286.Zhang Y,Yang C,Li Y,Zheng N,Chen H,Zhao Q,Gao T,Guo H,Xie Q(2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis.Plant Cell 19:1912-1929
    287.Zhang Z,Feechan A,Pedersen C,et al.(2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways.Plant J 49:302-312
    288.Zhu JK(2002) Salt and drought stress signal transduction in plants.Annu Rev Plant Biol 53:247-273
    289.Zhu JK,Liu J,Xiong L(1998) Genetic analysis of salt tolerance in Arabidopsis.Evidence for a critical role of potassium nutrition.Plant Cell 10:1181-1191
    290.Zhu XG,Zhang QD(1999) Advance in the research on the effects of NaCl on photosynthesis Chinese Bulletin of Botany 16:332-338
    291.Zou M,Guan Y,Ren H,Zhang F,Chen F(2008) A bZIP transcription factor,OsABI5,is involved in rice fertility and stress tolerance.Plant Mol Biol 66:675-683
    292.王新伟(1998)不同盐浓度对马铃薯试管苗的胁迫效应。马铃薯杂志12:203-207
    293.王军,权太勇,夏光敏(2004)盐胁迫下小麦体细胞杂种与亲本幼苗的生长量和Na+、K+含量比较。热带亚热带植物学报12:355-358
    294.牟永花,张德威.(1998)NaCl胁迫下番茄苗的生长和营养元素积累。植物生理学通讯34:14-16
    295.李翠玲(2008)小麦渐渗系新品种山融3号耐盐表达谱和耐盐相关基因研究。山东大学博士学位论文
    296.戴伟民,蔡润,潘俊松等(2002)盐胁迫对番茄幼苗生长发育的影响。上海农业学报18:58-62
    297.魏国强,朱祝军,方学智等(2004)NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响。中国农业科学37:1754-1759
    298.单雷,赵双宜,夏光敏(2004) 小麦与高冰草体细胞杂种耐盐新品系的盐胁迫应答cDNA 差异表达分析。高技术通讯7:29-33
    299.张云,薛少白(1990)钙和细胞功能,Vol 2.高等教育出版社,北京
    300.杨秀玲,郁继华,李雅佳等(2004)NaCl胁迫对黄瓜种子萌发及幼苗生长的影响。甘肃农业大学学报39:6-17