输电断面安全保护与防连锁过载控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当电力系统在重负荷运行时发生过载,过载切除引起的潮流转移可能会导致系统中的其它支路连锁过载。传统的过载保护大都采取过载后延时跳闸的方式切除过载,并未顾及过载切除对系统安全性的影响,这在一定运行条件下可能会引发一系列过载保护相继动作而发生连锁过载跳闸的现象。因此,在出现过载的紧急时刻,为了避免过载切除引起连锁过载跳闸,需要快速估计过载切除对系统安全性的影响;在采取控制措施消除过载时,为了避免出现新的过载,需要快速找出调整时易发生过载的正常支路并研究保证这些支路不过载的控制策略。
     论文的主要工作及研究成果如下:
     通过分析若干典型大停电事故的原因,指出支路切除引起的潮流转移与保护装置的不合理动作是促使事故不断恶化的重要原因。
     分析了过载切除后的潮流转移特征,提出了潮流转移系数的概念,给出了输电断面新的定义,在此基础上研究了一种快速搜索输电断面的新算法。该算法基于动态规划理论,把实时的电力网络转化成拓扑图,在一个以过载支路为中心的拓扑子图内快速搜索过载支路两端节点间的前K条最短路径,然后找出受潮流转移影响较大的输电断面。把过载切除对整个系统的安全性分析缩小到一个输电断面内,减小了进一步分析的工作量。
     给出了一种基于背离路径的输电断面搜索算法。利用图论中求最短路径的算法先搜索出过载支路两端节点间的第1最短路径,然后以第1最短路径的中间节点为被背离节点派生背离路径,从这些背离路径中找出最短背离路径作为过载支路两端节点间的第2最短路径,以此类推在与过载支路电气距离较近的范围内找出前K条最短路径。由于采用了多路径搜索方式,避免了单一路径搜索时因搜索范围过小而漏选的情况;而且只需搜索少数几条路径就可较完整地找出过载支路的相关输电断面,因此该算法快速有效。
     提出了广义输电断面的概念并给出了一种确定广义输电断面的方法,研究了一种广义输电断面安全性估计策略。首先基于改进的Dijkstra算法将电网分区,形成广义电网拓扑图,然后采用改进的BFS算法快速搜索广义源点附近区域的广义节点,由这些广义节点和潮流冗余量较小的支路所在的广义节点组成广义输电断面,扩展了输电断面的范围。在估计过载切除对输电断面安全性的影响时,采用分布式并行计算模式,将广义输电断面内的每个广义节点作为一个运算单元,当发生过载时,各运算单元并行判断过载支路切除是否会引起本单元内的支路连锁过载,节省了在线分析时间,适应了实时估计快速性的要求。
     给出了最小限制因子的概念,研究了一种结合最小限制因子的输电断面安全性估计策略。分析指出,当发生过载时可通过判断过载切除是否会引起具有最小限制因子的支路连锁过载来估计过载切除对系统安全性的影响。为了避免全网计算求该支路,介绍了两个相关定理,通过合理设定分布系数限值和电流冗余量限值来确定输电断面。当发生过载时通过分析过载切除是否会引起该输电断面内的支路连锁过载来代替对具有最小限制因子支路的分析,从而减小了计算量。在估计过载切除对输电断面安全性的影响时,为了满足实时估计快速性的要求,在正常运行时确定广义电网拓扑图中各广义节点的广义输电断面子集和广义子区域,各运算单元分别计算本单元内支路的最小电流冗余量和分布系数大于限值支路的最小电流冗余量;当发生过载时,各相关运算单元只需并行判断过载切除是否会引起本单元内的支路过载,节省了在线运算时间,提高了输电断面安全性估计的效率。
     在采取紧急控制措施消除过载时,为了避免出现新的过载,考虑了正常支路潮流对控制量的约束,给出了安全约束集的概念,研究了一种结合安全约束集的防连锁过载控制策略。首先在广义电网拓扑图中采用改进的BFS算法快速搜索广义控制点附近区域的广义节点,由这些广义节点内的支路和接近热极限的支路组成安全约束集,扩展了正常支路约束集的范围。给出了结合安全约束集的控制点的选取方法和控制量的确定方法。采用基于决策中心-区域终端模式的控制策略,将每个广义节点作为一个区域终端,当发生过载时,各相关终端并行计算保证安全约束集内支路不过载的最大安全控制量,节省了计算时间,提高了控制速度。
When power system overloads in heavy load operation, the power flow transferring caused by voerload removal may cause other lines in system cascading overload. Traditional overload protection mostly takes the mode of delay tripping to remove overload with no consideration of the influence of voerload removal to system security, which may cause cascading overload trip under certain operating conditions because of a series of overload protection devices actting successively. Therefore, in the emergency time of overload, in order to avoid cascading overload trip caused by overload removal, it is needed to fast estimate the effect of voerload removal to system security. When taking control measures to eliminate overload, in order to avoid new lines overload, it is required to fast find out the normal lines prone to overload when adjustment and to study the control strategies which can ensure these normal lines won't overload when adjustment.
     The main work and achievements are as follows:
     With the reasons of some typical blackouts are analyzed, it is pointed out that the power flow transferring caused by voerload removal and the unreasonable action of protection devices are the important reasons to cause the accidents worse.
     By analyzing the features of flow transferring caused by overload removal, the concept of flow transferring factor (FTF) is proposed and the new definition of transmission section is given. On this basis, a new algorithm for fast searching transmission section is proposed. Based on dynamic programming theory, by converting the real-time power network into a topological graph, it fast finds out the K shortest paths between the two nodes of the overload line in a subgraph with overload line as its center, then finds out the transmission section suffered greatly from power flow transferring. The security analysis of oveload removal to the whole system is thus reduced to the analysis of a transmission section. In such a condition, the workload for further analysis is decreased.
     An algorithm for fast searching transmission section based on deviation path is given. It firstly searches the first shortest path between the two nodes of overload line by the algorithm of Shortest Path Search based on graph theory, then takes the intermediate nodes as deviated nodes to derive deviation paths and finds out the shortest path in these deviation paths as the second shortest path between the two nodes of overload line, by the same way finds out the K shortest paths in a region which the electrical distance is shorter to the overload line. The use of multi-path searching mode helps avoiding the case of miss-searching some lines due to too small searching region through the mode of single-path searching. The related transmission section of overlaod line can also be completely gained by searching only a small number of paths. Therefore, this algorithm is fast and effective.
     The concept of generalized transmission section (GTS) is proposed and a method to determine GTS is given. Besides, a strategy to estimate the security of GTS is studied. The power grid is firstly divided into several regions based on the improved Dijkstra algorithm to form the generalized grid topology. The generalized nodes in the nearby region of the generalized source node are searched by using the algorithm of improved Breadth First Search (BFS). The GTS is composed with the lines in the generalized nodes searched and the lines with smaller power flow redundancy, so the scope of transmission section is extended. When estimating the influence of voerload removal to transmission section security, the mode of distributed parallel computing is used. Taking each generalized node in GTS as a computing unit, when overload occurs, these units parallel judge if the lines in its own unit will overload afeter the overload line removal. In such a condition, the time of online analysis is saved, which is adapted to the rapidity requirement of real-time estimation.
     The concept of minimum limiting factor (MLF) is given and a strategy to estimate the security of transmission section based on MLF is studied. It is analyzed that when overload occurs, the effect of overload removal to system security can be estimated by judging whether the overload removal can cause the line with MLF cascading overload. In order to avoid searching that line through whole network computing, two related theorems are introduced, which determines the transmission section by reasonably setting distribution factor limit and current redundancy limit. When overload occurs, the analysis of whether the line with MLF will cascading overload after the overload line removal can be replaced by that of whether the lines in the transmission section will, so the calculation amount is reduced. When estimating the effect of overload removal to transmission section security, in order to meet the rapidity requirement of real-time estimation, the generalized transmission section subset and the generalized sub-region of each generalized node in the generalized grid topology are respectively determined during normal operation of power system. Each computing unit calculates the minimum current redundancy of the lines in its own unit and the minimum current redundancy of the lines with distribution factors greater than the distribution factor limit. When overload occurs, these related computing units only need to parallel judge whether the lines in its own unit will overload after the overload line removal. The online computing time is saved and the efficiency of transmission section security estimation is improved.
     When taking emergency control measures to eliminate overload, in order to avoid new lines overload, the constraint of normal line's power flow to the control quantity are considered, the concept of security constraint set (SCS) is given and a control strategy to prevent cascading overload based on SCS is studied. The generalized nodes in the nearby region of generalized control node in the generalized grid topology are fast searched firstly, then the SCS is composed with the lines in the generalized nodes searched and the lines close to thermal limit, so the scope of normal line's constraint set is extended. New methods to select the control nodes and to determine the control quantity combined with SCS are given. A control strategy based on the mode of decision center and regional terminal to prevent cascading overload is given. Taking each generalized node as a regional terminal, the related regional terminals parallel calculate the maximum security control quantity when overload occurs, so the computing time is saved and the control speed is improved.
引文
[1]王梅义,吴竟昌,蒙定中.大电网系统技术[M].水利电力出版社,1991
    [2]薛禹胜.综合防御由偶然故障演化为电力灾难--北美“8.14”大停电的警示[J].电力系统自动化,2003,27(18):1-5
    [3]Phadke A G, Thorp J S. Expose Hidden Failures to Prevent Cascading Outages[J]. IEEE Computer Application in Power,1996,9(3):20-23
    [4]Pourbeik P, Kundur P S, Taylor C W. The Anatomy of a Power Grid Blackout-Root Causes and Dynamics of Recent Major Blackouts[J]. IEEE Power and Energy Magazine,2006,4(5):22-29
    [5]Tamronglak S, Horowitz S H, Phadke A G, Thorp J S. Anatomy of Power System Blackouts:Preventive Relaying Strategies[J]. IEEE Trans on Power Delivery,1996, 11(2):708-715
    [6]Horowitz S H, Phadke A G. Boosting Immunity to Blackouts[J]. IEEE Power and Energy Magazine,2003,1(5):47-53
    [7]陈亦平,洪军.巴西“11.10”大停电原因分析及对我国南方电网的启示[J].电网技术,2010,34(5):77-82
    [8]林伟芳,汤涌,孙华东等.巴西“2.4”大停电事故及对电网安全稳定运行的启示[J].电力系统自动化,2011,35(9):1-5
    [9]葛睿,董昱,吕跃春.欧洲“11.4”大停电事故分析及对我国电网运行工作的启示[J].电网技术,2007,31(3):1-6
    [10]李再华,白晓民,丁剑.西欧大停电事故分析[J].电力系统自动化,2007,31(1):1-3
    [11]C W Taylor. Improving GRID behavior. IEEE Spectrum.1999,18(6):40-45
    [12]C W Taylor, D C Erickson. Recording and Analyzing the July 2 Cascading Outage. IEEE Computer Applications in Power,1999(1):26-30
    [13]李莉华等.“美加8.14大停电初步分析与各方评论”[J].华东电力,2003.9:18-21
    [14]Corsi S, Sabelli C. General blackout in Italy Sunday September 28,2003 [C]. IEEE Power Engineering Society General Meeting, June 2004,2004(2):1691-1702
    [15]Y. Hain, I. Schweitzer. Analysis of power blackout of June 8,1995 in the Israel Electric Corporation. IEEE Transactions on Power System[J]. November 1997, 12(4):1752-1757
    [16]Bruce F, Wollenerg. From blackout to blackout 1965 to 2003:how far have we come with reliability. IEEE Power & Energy Magazine[J]. January/February 2004, 58(2):9-12
    [17]Vassell G S. Northeast Blackout of 1965[J]. IEEE Power Engineering Review, 1991,11(1):4-8
    [18]Chemanoff A, Corroyer C. The Power System Failure of Dec 19,1978[J]. RGE, 1980,2(4):1-10
    [19]刘昊.电网连锁故障分析方法研究[D].北京:华北电力大学硕士学位论文,2005:1-30
    [20]Kearsley R. Restoration in Sweden and Experience Gained from the Blackout of 1983[J]. IEEE Power Engineering Society Summer Meeting, Mexico City, Mexico, Jul 1986,1986(1):1-6
    [21]Aggarwal R, Daschmans R, Schellberg R, Venkatasubramanian V, Yirga S. Validation Studies of the July 2,1996 WSCC System Disturbance Event[R]. America:Operating Capability Study Group, Western Systems Coordinating Council, July 1997:1-50
    [22]Kosterev D, Yirga S, Venkatasubramanian V. Alidation Report of the August 10, 1996 WSCC Disturbance[R]. America:Operating Capability Study Group, Western Systems Coordinating Council, March 1997:1-50
    [23]Kosterev D N, Taylor C W, Mittestadt W A. Model validation for the August 10, 1996 WSCC Outage[J]. IEEE Trans on Power Systems,1999,14(3):967-979
    [24]U. S.-Canada Power Systems Outage Task Force. Final Report on the August 14, 2003 Blackout in the United States and Canada[R]. America:April,2004:1-200
    [25]刘振亚.加快建设坚强国家电网促进中国能源可持续发展[J].中国电力,2006,39(9):1-3
    [26]Massoud Ami. Toward Self-Healing Energy infrastructure systems. IEEE Computer Applications in Power[J]. January 2001,42(3):20-28
    [27]By S. H, Horowitz, A. G, Phadke. Boosting Immunity to Blackouts. IEEE Power & Energy Magazine[J].2003,3(1):47-53
    [28]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力.中国电机工程学报[J].2004,24(7):1-6
    [29]杨以涵,张东英,马骞,刘文颖.大电网安全防御体系的基础研究.电网技术[J].2004,28(9):23-27
    [30]林伟芳,孙华东,汤涌等.巴西“11.10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5
    [31]Report ONS RE3 252/2009. Analysis disruption of the day 10/11/2009 at the 22hl3m involving the Shutdown of three circuits LT 765kV Itabera-Ivaipora[R]. Brazil ONS,2009
    [32]南方电网技术研究中心.2009年11月10日巴西大停电事故分析报告[R].广州:南方电网技术研究中心,2010
    [33]王梅义.电网继电保护应用[M].北京:中国电力出版社,1999-1-200
    [34]贺家李,宋从矩.电力系统继电保护原理[M].北京:中国电力出版社,1994:1-150
    [35]杨奇逊,黄少峰.微型机继电保护基础[M].北京:中国电力出版社,2005:1-100
    [36]陆延昌.继电保护和自动化技术的进步[J].继电器,2004,24(8):30-33
    [37]何大愚.对美国西部系统1996年两次大事故的后续认识(分层分析)[J].中国电力,1998,31(5):37-40
    [38]王宁.继电保护及安全自动装置存在问题分析及措施[J].华北电力技术,2004,34(7):50-53
    [39]Xu H M, Bi T S, Huang S F, Yang Q X. Study of Wide-area Backup Protection forPower Systems[C].2005 International Conference of Electrical Engineering, Kunming, July 2005,2005(1):1-6
    [40]Xu H M, Bi T S, Huang S F, Yang Q X. Study on Wide Area Backup Protection to Prevent Cascading Trips Caused by Flow Transferring[C].2005/2006 IEEE Transmission and Distribution Conference & Exposition, Dallas, TX, USA, May 2006,2006(1):833-838
    [41]IEEE Std. C37113-1999, IEEE Guide for Protective Relay Applications to Transmission Lines[S]. America:Power Systems Relaying Committee of the IEEE Power Engineering Society,1999:1-100
    [42]王英涛,印永华,蒋宜国,张道农,张文涛,王兆家.我国实时动态监测系统的发展现状及实施策略研究[J].电网技术,2005,29(11):44-48
    [43]许树楷,谢小荣,辛耀中.基于同步相量测量技术的广域测量系统应用现状及发展前景[J].电网技术,2005,29(2):44-49
    [44]Naduvathuparambil B, Valenti M. C, Feliachi A. Communication Delay in Wide Area Measurement Systems[C]. Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory,2002:118-122
    [45]国家电力调度通信中心.电力系统继电保护规程汇编(第二版)[S].北京:中国电力出版社,2000:1-200
    [46]Min Y. Phasor Measurement Applications in China[C]. Asia Pacific IEEE/PES Transmission and Distribution Conference and Exhibition 2002, (1):485-489
    [47]Chaudhuri B, Majumder R, Pal B. Wide-Area Measurement-Based Stabilizing Control of Power System Considering Signal Transmission Delay[J]. IEEE Trans on Power Systems,2004,19(4):1971-1979
    [48]Xie X R, Xin Y Z, Xiao J Y, Wu J T, Han Y D. WAMS Applications in Chinese Power Systems[J]. IEEE Power and Energy Magazine,2006,4(1):54-63
    [49]胡志祥,谢小荣,肖晋宇,童陆园.广域测量系统的延迟分析及其测试[J].电力系统自动化,2004.28(15):39-43
    [50]江全元,邹振宇,曹一家,韩祯祥.考虑时滞影响的电力系统稳定分析和广域控制研究进展[J].电力系统自动化,2005,29(3):1-7
    [51]Tan J C, Crossley P A, Kirschen D, et al. An Expert System for the Back-up Protection of a Transmission Network[J]. IEEE Trans on Power Delivery,2000, 15(2):508-514
    [52]J. Zaborsky, K. W. Whang, K. Prasad. Fast contingency evaluation using concentric relaxation. IEEE Transaction Power Apply System[J].1983, PAS-102:3899-3894
    [53]V. Brandwajn. Efficient bounding method for linear contingency analysis. IEEE Transaction on Power System[J].1988, Feb. (3):38-43
    [54]V. Brandwajn, M. G. Lauby. Complete bounding method for AC Contingency screening. IEEE Transaction on Power System[J]. May 1989,4(2):724-729
    [55]R. Bacher, W. F. Tenney. Faster Local Power Flow Solutions:the Zero Mismatch Approach. IEEE Transaction on Power Systems[J]. Oct.1989,04:1345-1354
    [56]崔岚,邹森.电力系统预想事故快速分析的一种新算法.电网技术[J].1997,21(5):12-15
    [57]陈儒华.专家系统在电力系统静态安全分析中的应用[D].北京:清华大学工学博士论文,1989
    [58]张波,邹森.专家系统用于电力系统预想事故筛选.山东工业大学学报[J].1997,27(3):286-291
    [59]孙斌.专家系统在静态安全中应用的研究.电力系统自动化[J].1995,19(3):38-44
    [60]H. Sasaki, N. Yorino, R. Yokoyama. An Expert system for power system security control. IEEE Transaction on Power System[J]. Feb,1989,3:259-266
    [61]王成山,许晓菲,余贻鑫,等.基于割集功率空间上的静态电压稳定域局部可视化方法闭,中国电机工程学报,2004,24(9):13-18
    [62]刘广利,李响.基于输电断面划分原则及方法[J].东北电力技术.2005,(11):13-16
    [63]周德才,张保会,姚峰.基于图论的输电断面快速搜索[J],中国电机工程学报,2006,26(12):32-38
    [64]倪宏坤,徐玉琴.基于动态规划原理分支界限算法的关键输电断面搜索方法[J].华北电力大学学报.2009,36(4):11-15
    [65]程临燕,张保会,郝治国.基于线路功率组成的关键输电断面快速搜索[J].中国电机工程学报,2010,30(10):50-56
    [66]徐慧明,毕天妹,黄少锋.基于WAMS的潮流转移识别算法.电力系统自动化[J].2006.30(14):14-19
    [67]王艳,张艳霞,徐松晓.基于广域信息的防连锁过载跳闸保护[J].电力系统自动化,2008,32(10):37-41
    [68]姚峰,张保会,周德才.输电断面有功安全性保护及其快速算法[J].中国电机工程学报,2006,26(13):31-36
    [69]徐慧明,毕天妹,黄少锋.基于广域同步测量系统的预防连锁跳闸控制[J].中国电机工程学报,2007,27(19):32-38
    [70]丁理杰,江全元,包哲静.基于多智能体技术的大电网连锁跳闸预防控制[J].电力系统自动化,2008,32(17):6-11
    [71]邓佑满,黎辉,张伯明,等.电力系统有功安全校正策略的反向等量配对调整法[J].电力系统自动化.1999.23(18):5-8
    [72]赵晋泉,江晓东,张伯明.一种基于连续线性规划技术的在线静态安全校正算法[J].电网技术,2005,29(5):25-30
    [73]张保会,姚峰,周德才.输电断面安全性保护及其关键技术研究[J],中国电机工程学报.2006,26(21):1-7
    [74]张玮,潘贞存,赵建国.新的防止大停电事故的后备保护减载控制策略[J].电力系统自动化.2007,31(8):27-31
    [75]Daniel Kirschen, Ron Allan, Goran Strbac. Contribution of individual generators to loads and flows. IEEE Transactions on Power Systems[J].1997,12(1):45-62.
    [76]Phongsak D, Yehskul, Iraj Dabbaghchi. A Topology-Based Algorithm for Tracking Network Connectivity. IEEE Transactions on Power Systems[J].1995,10(1): 339-346
    [77]魏坪,倪以信,等.基于图论的输电线路功率组成和发电机与负荷间功率输送 关系的快速分析.中国电机工程学报[J].2000,34(6):21-25
    [78]武志刚,张尧.求解功率追踪问题的图论方法.电力自动化设备[J].2002,12(3):12-15
    [79]Men-Shen Tsai. Development of Islanding Early Warning Mechanism for Power Systems. IEEE Transactions on Power Systems[J].2000,35(4):22-26
    [80]谢开贵,周家启.基于有向通路的潮流跟踪新方法.中国电机工程学报[J].2001,21(11):87-91
    [81]张伯明,陈寿孙,严正.高等电力网络分析[M].北京:清华大学出版社,2007
    [82]王凌,段江涛,王保保.GIS中最短路径的算法与仿真[J].计算机仿真,2005,22(1):117-120
    [83]Wang Feiyue, Tang Shuming, Sui Yagang, et al. Toward intelligent transportation systems for the 2008 Olympics[J]. Intelligent Systems, IEEE,2003,18(6):8-11
    [84]余贻鑫,段刚.基于最短路算法和遗传算法的配电网重构[J].中国电机工程学报,2000,20(9):44-49
    [85]韩忠晖,顾雪平,刘艳.考虑机组启动时限的大停电后初期恢复路径优化[J].中国电机工程学报,2009,29(4):21-26
    [86]Eppstein D. Finding the k shortest paths[J]. SIAM Journal on Computing,1999, 28(2):652-673
    [87]Zuwairie Ibrahim, Yusei Tsuboi, Mohd Saufee Muhammad. DNA implementation of k-shortest paths computation[A].2005 IEEE Congress on Evolutionary Computation[C]. UK:Edinburgh,2005,1:707-713
    [88]W Matthew Carlyle, R Kevin Wood. Near-shortest and K-shortest simple paths[J]. Networks,2005,46(2):98-109
    [89]John Hershberger, Matthew Maxely. Subhash Suriz. Finding the K shortest simple paths:A new algorithm and its implementation[J]. ALENEX Baltimore.2003
    [90]Macgegor M H, Crover W D. Optimized k-shortest-paths algorithm for facility restoration[J]. Software Practice and Experience,1994,24(9):823-828
    [91]G Liu. K G Ramakrishnan. A* Prune:An algorithm for finding k shortest paths subject to multiple constraints[C].Proceedings of the INFO-COM 2001 Conference, IEEE, Anchorage, Alaska,2001:743-749
    [92]傅俊伟,李兴明,陈捷.基于背离路径的Kth最短路径实用搜索算法[J].计算机技术与发展.2009,19(2):120-126
    [93]戴树贵,陈文兰.一个求解k短路径实用算法[J].计算机工程与应用.2005,36:63-65
    [94]李成江.新的k最短路算法[J].山东大学学报.2006,41(4):40-43
    [95]吴际舜.电力系统静态安全分析[M].上海:上海交通大学出版社,1985:26-32
    [96]柴登峰,张登荣.前N条最短路径问题的算法及应用[J].浙江大学学报.2002,36(5):531-534
    [97]王明中,谢剑英,陈应麟.一种新的Kth最短路径搜索算法[J].计算机工程与应用,2004(30):49-50
    [98]苗邦均.应用图论[M].北京:中国铁道出版社,1980:18-19
    [99]王峰,游志胜,曼丽春.Dijkstra及基于Dijkstra的前N条最短路径算法在智能交通系统中的应用[J].计算机应用研究,2006,(9):203-208
    [100]石立宝,史中英,姚良忠.现代电力系统连锁性大停电事故机理研究综述[J].电网技术,2010,34(3):48-54
    [101]李春艳,陈洲,肖孟金,等.西欧“11.4"大停电分析及对华中电网的启示[J].高电压技术,2008,34(1):163-167
    [102]吴彤.复杂网络研究及其意义[J].北京;哲学研究,2004,8(1):58-70
    [103]William Ford, William Topp.数据结构C++语言描述—应用标准模板库[M](第二版)陈君译.北京:清华大学出版社,2003
    [104]J.A.邦迪,U.S.R.默蒂.图论及其应用[M].北京:科学出版社,1984
    [105]严蔚敏,吴伟民.数据结构[M].北京:清华大学出版社,1997
    [106]季坤,王克英,蔡泽祥.广域测量系统中PMU的通信方案[J].电力系统自动化,2005,29(3):77-80
    [107]张薇,王晓茹,廖国栋.基于广域量测数据的电力系统自动切负荷紧急控制算法[J].电网技术,2009,33(3):69-73
    [108]毕兆东,王建全,韩祯样.基于数值积分法灵敏度的快速切负荷算法[J].电网技术,2002,26(8):4-7
    [109]Abrantes H. D, Castro C. A. New branch overload elimination method using nonlinear programming. Power Engineering Society Summer Meeting.2000, (1): 231-236
    [110]朱文东,郝玉国,刘广一,等.应用线性规划方法的安全约束调度[J].中国电机工程学报,1994,14(4):57-64
    [111]Canto C A, Anjan Bose. Correctability in on-line contingency analysis. IEEE Transactions on Power Systems,1993,8(3):807-814
    [112]邓佑满,张伯明,相年德,等.联络线族的有功安全校正[J].电力系统自动化,1994,18(6):47-51
    [113]程临燕,郝治国,张保会.基于内点法消除输电断面过载的实时控制算法[J].电 力系统自动化,2011,35(17):51-55