基于分布参数模型的柔性臂系统控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对柔性机械臂系统的分布参数模型,研究了其位置控制、力/位置混合控制和协调运动控制问题。研究了以上三种控制问题基于确切动力学模型的控制方法,提出了基于Lyapunov函数方法和线性算子半群理论的构造性静态反馈和动态反馈控制策略;研究了以上三种控制问题存在参数不确定和外部干扰影响下的分布参数模型的鲁棒控制方法,提出了一种新的构造性的变结构控制方法,通过引入表征系统关节角、关节角速度和柔性臂根部应变的复合变量,基于Lyapunov理论和Barbalat引理给出了系统的递推性的控制器设计方法以及渐近稳定性证明;针对不确定参数界未知的情况,通过设计参数自适应更新律,提出了一种新的变结构自适应控制策略;针对以上算法分别进行了仿真研究,验证了算法的有效性。
Robot abilities increase greatly as the development of robot technology, and robot applications spread into more and more fields, so people hope they can complete more complex tasks. Recent years, the modeling and control for flexible manipulator charactered by large scale, high speed and light have been studied by many researchers. Flexible manipulator has been a new current of the robotic technology. Compared to the rigid manipulators, flexible ones have many advantages such as lower arm weight, better energy efficiency, higher operating speed and improved probability. However, flexible ones also have more complex dynamic behaviors and inherent bending vibration. In essence, flexible manipulator system is a nonlinear, strong coupling and infinite dimensional dynamic system, which including not only the global motion of large range, but also the local elastic deformation. Scholars in the world have deeply studied the flexible manipulators, but for the control objects, focus on the position control and have not paid more attention to the hybrid position/force control and cooperating control. For the control methods, many scholars have only designed the controller based on the simple lumped parameter model, which will inevitably lead to the so-called overflow problem. The overflow problem can be solved if the distributed parameter model is utilized; however there have few papers about this due to the complexity of the distributed parameter model, and major existing papers assume the model is exactly known. There are many challenging, just underway and marginal aspects, for example, hybrid position/force control, cooperating control, distributed parameter model, constructive control method design based on the distributed parameter model and robust control method. These problems still need scholars pay much attention and effort. Hence, it is very necessary and significant to study further on the flexible manipulator system.
     This paper systemically studies on the position control, hybrid position/force control and cooperating control of flexible manipulators based on distributed parameter model, thus, the overflow problem is avoided. For the above three objects, the constructive control method based on the exact model and constructive robust control method based on the unknown model are studied. Main content and innovation are as follows.
     The position control method of the horizontal flexible manipulator based on the distributed parameter model is studied. A novel static feedback controller is proposed. By introducing a new variable which is a linear combination of the rotation angle, rotation angle velocity and the root strain, the controller is derived by the stepping design method from the system’s energy. The blindness of the controller design method is avoided by the above constructive steps. By introducing an additive dynamic system, the input of which is the above defined combination variable, the dynamic feedback controller and disturbance rejection is studied by virtue of the positive real lemma. The robust controller is proposed considering the uncertain parameters and external disturbance of the system. A new constructive sliding mode variable structure controller is researched, and the sliding mode is also designed as the above mentioned combination variable. The controller is also derived by the stepping design method. The asymptotic stable of the closed loop system is proved by the Barbalat’s lemma. The sliding mode is proved to converge to zero in the finite times, thus, the closed loop system converge to a partial differential equation which has only the zero solution. The variable structure adaptive controller is proposed, the adaptive ability is enhanced by the designed parameter update law, and the adaptive controller need few assumptions. Simulation results verify the proposed algorithms are very more effective and advantageous.
     The hybrid position/force control algorithm of the horizontal flexible manipulator based on the distributed parameter model is researched. A novel constructive static and dynamic feedback control method are proposed based upon the exact dynamic model, also a new constructive sliding mode variable structure and variable structure adaptive controller are derived based upon the uncertain dynamic model. In these methods, the geometry constrained condition is transformed to a new boundary condition of the partial differential equation which describing the vibration. This boundary condition makes the stepping design method can be accomplish, and the constructive algorithm of the position control system can be extended to the position/force control system. The blindness of the controller design method is avoided by the above constructive algorithm. The dynamic feedback controller resolves the problem of disturbance rejection. The problem of robust control is resolved by the constructive variable structure and variable structure adaptive controllers.
     The cooperating control algorithm of the horizontal flexible manipulator based on the distributed parameter model is researched. A novel constructive static and dynamic feedback control method are proposed based upon the exact dynamic model, also a new constructive sliding mode variable structure and variable structure adaptive controller are derived based upon the uncertain dynamic model. In these methods, the geometry constrained condition is transformed to a new boundary condition of the partial differential equation which describing the vibration, and the other new boundary condition is obtained by eliminating the coupling Lagrange multiplier. These boundary conditions make the steeping design method can be accomplish, and the constructive algorithm of the position control system can be extended to the cooperating control system. The blindness of the controller design method is avoided by the above constructive algorithm. The efficiency of the proposed methods is verified by the simulation results.
     The corresponding control algorithm of the three control objects have the similar construction, thus, it is confirmed that the control algorithm proposed in this paper is a uniform method which is applicable to the different three control objects. The conclusion and the perspective of future research are given at the end of the paper.
引文
[1] W J Book, Maizza Neto, Whitney D E. Feedback Control of Two Beam, Two Joint Systems With Distributed Flexibility. ASME J. Dynamic Systems, Measurements and Control, 1975, 97(4):424-431
    [2] S K Dwivedy, P Eberhard. Dynamic Analysis of Flexible Manipulators, a Literature Review. Mechanism and Machine Theory, 2006, 41:749-777
    [3] 王树新,员今天,石菊荣,刘又午.柔性机械臂建模与控制方法研究综述.机器人,2002,24(1): 86-91
    [4] 刘明治,刘春霞.柔性机械臂建模和控制研究.力学进展,2001,31(1): 1-8
    [5] M Benosman, G L Vey. Control of Flexible Manipulators: a Survy, Robotica, 2004, 22:533-545
    [6] 和兴锁,顾致平,邓峰岩.大型空间柔性梁的有限元动力学建模方法研究.机械科学与技术,2007,26(9): 1194-1197
    [7] Ge S S, Lee T H. Nonlinear Feedback Controller for a Single-Link Flexible Manipulators Based Finite Element Model. Journal of Robotic Systems, 1997, 14(3): 165-178
    [8] R J Theodore, A Ghosal. Comparision of the Assumed Modes and Finite Element Models for Flexible Multi-Link Manipulators. International Journal of Robotic Research, 1995, 14(2):91-111
    [9] 陆佑方.柔性多体系统动力学.高等教育出版社,1996
    [10] Li C J, Sankar T S. Systemic Methods for Efficient Modelling and Dynamics Computation of Flexible Robotic Manipulators. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(1):77-94
    [11] J M Martins, Z Mohamed, Tokhi M O, S D Costa, M A Botto. Approaches for Dynamic Modelling of Flexible Manipulator Systems. IEE Proc. Control Theory Application, 2003, 150(4):401-411
    [12] B Pratiher, S K Dwivedy. Non-linear Dynamics of a Flexible Singel Link Cartesian Manipulator. International Journal of Non-Linear Mechnics, 2007,42:1062-1073
    [13] Fumitoshi M, Toshio A, Yoshiyuki S. Modelling and Quasi-Static Hybrid Position/Force Control of Constrained Planar Two-Link Flexible Manipulators, IEEE Transactions on Robotics and Automation, 1994, 10(3):287-297
    [14] Fumitoshi M, Michinori H. Robust Coperative Control of Two Two-link Flexible Manipulators on the Basis of the Quasi-Static Equations, the International Journal of Robotic Research, 1999, 18(4):414-428
    [15] Cai G P, Hong J Z, S X Yang. Dynamic Analysis of a Flexible Hub-Beam System with a Tip Mass. Mechnics Reseach Communications, 2005, 32:173-190
    [16] 李元春,陆佑方,唐保健.双连杆柔性臂轨迹跟踪的鲁棒控制. 自动化学报, 1999, 25(3): 330-336
    [17] Li Y C, Tang B J, Shi Z X, Lu Y F. Experimental Study for Trajectory of a Two-Link Flexible Manipulator. International Journal of Systems Science, 2000, 31(1): 1-9
    [18] S K Tso, T W Yang, W L Xu, Z Q Sun. Vibration Control for a Flexible Link Robot Arm with Deflection Feedback. International Journal of Non-Linear Mechnics, 2003, 38: 51-62
    [19] M C Shaker, A Ghosal. Nonlinear Modeling of Flexible Manipulators Using Nondimensional Variables. Journal of Computational and Nonlinear Dynamics, 2006,1:123-134
    [20] B Siciliano. Closed-Loop Inverse Kinematics Algorithm for Constrained Flexible Manipulators under Gravity. Journal of Robotic Systems, 1999, 16(6):353-362
    [21] 边宇枢.柔性机械臂动力学建模的一种方法.北京航空航天大学学报,1999, 25(4):486-490
    [22] J E Slotine, W P Li. Applied Nonlinear Control, New York: Prentice-Hall, 1991
    [23] Guo B Z, Wang J M. The Well-posedness and Stability of a Beam Equation with Conjugate Variables Assigned at the Same Boundary. IEEE Transactions on Automatic Control, 2005, 50(12):2087-2093
    [24] H Canbolat, D Dawson, C Rahn, P Vedagarbha. Boundaray Control of a Cantilevered Flexible Beam with Point-Mass Dynamics at the Free End. Mechatronics, 1998,8:163-186
    [25] M Krstic, A A Siranosian, A Balogh, B Z Guo. Control of Strings and Flexible Beams by Backstepping Boundary Control. Proceedings of the 2007 American Control Conference, 2007:882-887
    [26] 于景元,丁耀庭,李胜家,梁展东.具有组合边界控制力的梁振动系统的最优指数衰减率.中国科学(E辑),1999, 29(3):245-255
    [27] 阎庆旭,冯德兴.具有耗散边界反馈的Timoshenko梁的镇定.控制理论与应用,2001, 18(3):353-357
    [28] 阎庆旭,陈振国,冯德兴.具有一般耗散边界反馈的Euler-Bernoulli梁的指数镇定问题.自动化学报,2004, 30(3):351-356
    [29] 阎庆旭,谢宇,冯德兴. Euler-Bernoulli梁的非线性耗散边界反馈镇定.自动化学报,2003, 29(1):1-7
    [30] 冯德兴,张维弢.Euler-Bernoulli梁的反馈镇定.自动化学报,1996, 22(2):135-144
    [31] O Morgul. Stabilization and Disturbance Rejection for the Beam Equation. IEEE Transactions on Automatic Control, 2001, 46(12):1913-1918
    [32] B Chentouf, J M Wang. Stabilization and Optimal Decay Rate for a Non-Homogenous Rotating Body-Beam with Dynamic Boundary Controls. Journal of Mathematical Analysis and Applications, 2006, 318:667-691
    [33] B Chentouf. A Simple Approach to Dynamic Stabilization of a Rotating Body-Beam. Applied Mathematics Letters, 2006, 19:97-107
    [34] O Morgul. Dynamic Boundary Control of a Euler-Bernoulli Beam. IEEE Transactions on Automatic Control, 1992, 37(5):639-642
    [35] Z H Luo, B Z Guo, O Morgul. Stability and Stabilization of Infinite Dimensional Systems with Applications. Springer, 1999
    [36] 姚翠珍.一个复合系统边界反馈的Riesz基性质.数学物理学报,2000, 20(4):568-576
    [37] F Conrad, O Morgul. On the Stabilization of a Flexible Beam with a Tip Mass. SIAM J. Control Optim, 1998, 36(6):1962-1986
    [38] 姚翠珍,郭宝珠.弹性梁点控制、点测量与指数镇定.控制理论与应用,2003, 20(3):351-360
    [39] B Z Guo. Riesz Basis Approach to the Stabilization of a Flexible Beamwith a Tip Mass. SIAM J. Control Optim, 2001, 39(6):1736-1747
    [40] K J Yang, K S Hong, Fumitoshi M. Robust Boundary Control of an Axially Moving String by Using a PR Transfer Function, IEEE Transactions on Automatic Control, 2005, 50(12): 2053-2058
    [41] 霍伟.机器人动力学与控制.高等教育出版社,2005
    [42] 申铁龙.机器人鲁棒控制基础.清华大学出版社,2000
    [43] 王耀南.机器人智能控制工程.科学出版社,2005
    [44] R Kelly, R Ortega, A Ailton. Global Regulation of Flexible Joint Robots Using Approximate Differentiation. IEEE Transactions on Automatic Control, 1994, 36(6): 1222-1224
    [45] Ge S S, Lee T H, Zhu G. Improving Joint PD Control of Single-Link Flexible Robots by Strain/Tip Feedback. Proceedings of IEEE International Conference on Control Applications, 1996:965-969
    [46] A Isidori. Nonlinear Control Systems(Third Edition). London: Sringer-Verlag, 1995
    [47] H K Khail. Nonlinear Systems(Third Edition). New Jersey: Pentice-Hall,2002
    [48] Wang D, M Vidyassagar. Control of a Class of Manipulators with a Single Flexible Link. Part I: Feedback Linearization, Part Ⅱ: Observer-Controller. ASME J. Dynamic Systems, Measurements and Control, 1991, 113(4):655-668
    [49] M Moallem, R V Patel, K Khorasani. Nonlinear Tip-Position Tracking Control of a Flexible-Link Manipulator: Theory and Experiments. Automatica, 2001, 37:1825-1834
    [50] 刘华平,孙富春,何克忠,孙增圻.奇异摄动控制系统:理论与应用.控制理论与应用,2003,20(1): 1-5
    [51] P V Kokotovic, H K Khail. Singular Perturbations in Systems and Control. IEEE Press, New York, 1986
    [52] B Siciliano, W J Book. A Singnular Perturbation Approach to Control of Lightweight Flexible Manipulators. International Journal of Robotics Research, 1988, 17(4):79-90
    [53] Li Y C, Liu G J, Hong T, Liu K P. Robust Control of a Two-Link Flexible Manipulator with Neural Networks Based Quasi-Static DeflectionCompensation. Journal of Intelligent and Robotic Systems, 2005, 44(3):263-276
    [54] J Lin, F L Lewis. Two-Link Scale Fuzzy Logic Controller of Flexible Link Robot Arm. Fuzzy Set and Systems, 2003, 139:125-149
    [55] Joono C, Y Youm, Wang K C. Joint Tracking Controller for Multi-Link Flexible Robot Using Disturbance Obserber and Parameter Adaption Scheme. Journal of Robotic Systems, 2002, 19(8):401-417
    [56] 黄季妮,黄金泉.基于奇异摄动与神经网络的柔性臂控制.南京航空航天大学学报,2003,35(4): 420-423
    [57] 张友安,糜玉林,吕凤琳,孙富春.双连杆柔性臂自适应模糊滑模控制.吉林大学学报(工学版),2005,35(5): 520-525
    [58] Wang Z D, Zeng H Q, Ho D W C, H Unbehauen. Multiobjective Control of a Four-Link Flexible Manipulator: a Robust H ∞ Approach. IEEE Transactions on Control System Technology, 2002, 10(6): 866-875
    [59] Zhu G, Lee T H, Ge S S. Tip Tracking Control of a Single-Link Flexible Robot: a Backstepping Approach. Dynamics and Control, 1997, 7:341-360
    [60] Xu J X, Cao W J. Direct Tip Regulation of Single-Link Flexible Manipulator by Adaptive Variable Structure Control, International Journal of Systems Science, 2001, 32(1): 121-135
    [61] 张袅娜,冯勇,孙黎霞.双臂柔性机械手的终端滑模控制.控制与决策,2004,19(10): 1142-1146
    [62] 张袅娜,冯勇,王冬梅,于兰.柔性机械手的鲁棒控制器设计.控制与决策,2006,21(7): 750-754
    [63] Feng Y, Yu X H, Man Z H. Non-Singular Terminal Sliding Mode Control of Rigid Manipulators. Automatica, 2002, 38:2159-2167
    [64] Yu S H, Yu X H, B Shirinzadeh, Man Z H. Continuous Finite-Time Control for Robotic Manipulators with Terminal Sliding Mode. Automatica, 2005, 41:1957-1964
    [65] 高为炳. 变结构控制理论基础. 中国科学出版社, 1996
    [66] Sun F C, Zhang L B, Tang Y G, Zhang J W. Neural Network Plus Fuzzy PD Control of Tip Vibration for Flexible-Link Manipulators. Proceedings of 2004 IEEE/RSJ Conference on Intelligent Robots and Systems, 2004:2942-2947
    [67] Wai R J, Lee M C. Intelligent Optimal Control of Single-Link Flexible Robot Arm. IEEE Transactions on Industrial Electronics, 2004, 51(1): 201-220
    [68] Y Tang, F Sun, Z Sun. Neural Network Control of Flexible-Link Manipulators Using Sliding Mode. Neurocomputing, 2006, 70:288-295
    [69] Lin J, F L Lewis. Fuzzy Controller for Flexible-Link Robot Arm by Reduced-Order Techniques. IEE Proc. –Control Theory Appl., 2002, 147(3):177-187
    [70] M Z M Zain, M O Tokhi, Z Mohamed. Hybrid Learning Control Schemes with Input Shaping of a Flexible Manipulator System. Mechatronics, 2006, 16: 209-219
    [71] 张兵,张洪华.柔性空间机械臂的闭环方波序列控制.控制理论与应用,2001,18(5): 765-768
    [72] 胡庆雷,马广富. 基于滑模输出反馈与输入成形控制相结合的挠性航天器主动振动抑制方法.振动与冲击,2007,26(6): 133-138
    [73] Shan J J, Liu H T, Sun D. Modified Input Shaping for a Rotating Single-Link Flexible Manipulator. Journal of Sound and Vibration, 2005, 285:187-207
    [74] A Tzes, S Yurkovich. An Adaptive Input Shaping Control Scheme for Vibration Suppressionin Slewing Flexible Structures. IEEE Transactions on Control System Technology, 1993, 1(2): 114-121
    [75] Wang X Y, J K Mills. FEM Dynamic Model for Active Vibration Control of Flexible Linkage and Its Application to a Planar Parallel Manipulator. Applied Acoustics, 2005, 66:1151-1161
    [76] A Jnifene, W Andrews. Experimental Study on Active Vibration Control of a Single-Link Flexible Manipulator Using Tools of Fuzzy Logic and Neural Networks. IEEE Transactions on Instrumentation and Measurement, 2005, 54(3): 1200-1208
    [77] Sun D, J K Mills, Shan J J, S K Tso. A PZT Actuator Control of a Single-Link Flexible Manipulator Based on Linear Velocity Feedback and Actuator Placement. Mechatronics, 2004, 14:381-401
    [78] M Dadfarnia, N Jalili, Z Liu, D M Dawson. An Observer-based Piezoelectric Control of Flexible Cartesian Robot Arms: Theory andExperiment. Control Engineering Practice, 2004, 12:1041-1053
    [79] 邱成志,谢存禧,张洪华,吴宏鑫.压电柔性机械臂的主动振动控制.机器人,2004,26(1):45-48
    [80] Luo Z H. Direct Strain Feedback Control of Flexible Robot Arms: New Theoretical and Experiment Results. IEEE Transactions on Automatic Control, 1993, 38(11):1610-1622
    [81] Luo Z H, Guo B Z. Exponential Stability of Some Differential Equations Arising from Control of Flexible Arms. Proceedings of IEEE Conference on Decision and Control,, 1994:757-7861
    [82] Luo Z H, Guo B Z. Further Theoretical Results on Direct Strain Feedback Control of Flexible Robot Arms. IEEE Transactions on Automatic Control, 1995, 40(4):747-751
    [83] B Z Guo, Luo Z H. Initial-Boundary Value Problem and Exponential Decay for a Flexible Beam Vibration with Gain Adaptive Direct Strain Feedback Control. Nonlinear Analysis, Theory, Methods and Appl., 1996, 27(3):353-365
    [84] 宋谦,郭宝珠.负载Cartesian柔性臂非线性反馈控制.控制理论与应用,1995, 12(6): 673-680
    [85] Guo B Z, Song Q. Tracking Control of a Flexible Beam By Nonlinear Boundary Feedback. Journal of Applied Mathematics and Stochastic Analysis, 1995, 8(1):47-58
    [86] Luo Z H, Feng D X. Nonlinear Torque Control of a Single-Link Flexible Robot. Journal of Robotic Systems. 1999, 16(1): 25-35
    [87] Fumitoshi M, Takashi O, Yuri V O. Proportional Derivative and Strain (PDS) Boundary Feedback Control of a Flexible Space Structure with a Closed-Loop Chain Mechanism. Automatica, 2002, 38:1201-1211
    [88] Fumitoshi M, Kazutaka M. Passivity and PDS Control of Flexible Mechanical System on the Basis of Distributed Parameter System. IEEE SMC’99 Conference Proceedings, 1999:51-56
    [89] Fumitoshi M, Takahiro E. Dynamics Based Control of Two-Link Flexible Arm. 2004 IEEE/AMC, 2004:135-140
    [90] Fumitoshi M, Takashi O. Distributed Parameter Control of a Large Space Structure with Lumped and Distributed Flexibility. Proceedings of the 36thConference on Decision & Control, 1997: 269-274
    [91] Zhang X P, Xu W W, S S Nair, V Chellaboina. PDE Modelling and Control of a Flexible Two-Link Manipulator. IEEE Transactions on Control System Technology, 2005, 13(2): 301-312
    [92] M Dogan, O Morgul. Nonlinear PDE Control of Two-Link Flexible Arm with Nonuiform Cross Section. Proceedings of the 2006 American Control Conference, 2006:400-405
    [93] Ge S S, Lee T H, Zhu G. Non-Model-Based Position Control of a Planar Multi-Link Flexible Robot. Mechanical Systems and Signal Processing, 1997, 11(5):707-724
    [94] M S D Queiroz, D M Dawson, M Agarwal, F Zhang. Adaptive Nonlinear Boundary Control of a Flexible Link Robot Arm. IEEE Transactions on Robotics and Automation, 1999, 15(4): 779-787
    [95] Lee H H. A New Trajectory Control of a Flexible-Link Robot Based on a Distributed-Parameter Dynamic Model. Int. J. Control, 2004, 77(6):546-553
    [96] Ge S S, Lee T H, Zhu G, Hong F. Variable Structure Control of a Distributed-Parameter Flexible Beam. Journal of Robotic Systems. 2001, 18(1): 17-27
    [97] Ge S S, Lee T H, Hong F. Variable Structure Maneuvering Control of a Flexible Spacecraft. Proceedings of the American Control Conference, 2001:1599-1603
    [98] Yuan K, Liu L Y, On the Stability of Zero Dynamics of a Sngle-Link Flexible Manipulator for a Class of Parametrized Outputs. Journal of Robotic Systems. 2003, 20(10): 581-586
    [99] 魏立新,李二超,王红瑞.基于CMAC在线自学习模糊自适应控制的机器人力/位置鲁棒控制. 电工技术学报, 2005, 20(5): 40-44.
    [100] Tsuji T, Tanaka Y. On-line Learning of Robot Arm Impedance Using Neural Networks. Robotics and Autonomous Systems, 2005, 52: 257-271
    [101] Chiu C S, Lian K Y, Wu T C. Robust Adaptive Motion/Force Tracking Control Design for Uncertain Constrained Robot Manipulators. Automatica, 2004, 40:2111-2119
    [102] N H McClamroch, Wang D W. Feedback Stabilization and Tracking ofConstrained Robots. IEEE Transactions on Automatic Control, 1988, 33(5): 419-426
    [103] Yiannis K, G Rovithakis, Z Doulgeri. Force/Position Tracking for a Robotic Manipulator in Compliant Contact with a Surface Using Neuro-Adaptive Control. Automatica, 2007, 43:1281-1288
    [104] Fumitoshi M, Shozaburo K. Modelling and Robust Force Control of Constrained One-Link Flexible Arms. Journal of Robotic Systems. 1998, 15(8): 447-464
    [105] 樊晓平,徐建闽,毛宗源.受限柔性机器人基于遗传算法的自适应模糊控制.自动化学报,2000,26(1): 61-67
    [106] 樊晓平,徐建闽,毛宗源,周其节.受限柔性机器人臂的鲁棒变结构混合位置/力控制.自动化学报,2000,26(2): 36-43
    [107] 樊晓平,徐建闽,毛宗源,周其节.受限柔性机器人臂的自适应模糊力/位置控制.机器人,1999,21(6): 455-465
    [108] 刘克平.柔性体振动控制及约束柔性机械臂系统鲁棒控制研究.吉林大学博士学位论文,2002
    [109] Takahiro E, Fumitoshi M. Dynamic Based Force Control of One-Link Flexible Arm. IEEE/SICE Annual Conference in Sapporo, 2004:2736-2741
    [110] Fumitoshi M, Toshio A, Yoshiyuki S. Modeling and Quasi-Static Hybrid Position/Force Control of Constrained Planar Two-Link Flexible Manipulators. IEEE Transactions on Robotics and Automation, 1994, 10(3): 287-297
    [111] 曹小涛,李元春. 受时变约束柔性臂鲁棒RBF神经网络力/位置控制.控制与决策,2007, 22( 9):977-983
    [112] L C Woon, Ge S S, Chen X Q, Zhang C. Adaptive Neural Network Control of Coordinated Manipulators. Journal of Robotic Systems, 1999, 16(4): 195-211
    [113] J Szewczyk, F Plumet, P Bidaud. Planning and Controlling Coperating Robots through Distributed Impedance. Journal of Robotic Systems, 2002, 19(6): 283-297
    [114] F Caccavale, P Chiacchio, S Chiaverini. Stability Analysis of a Joint Space Control Law for a Two-Manipulator System. IEEE Transactions on Automatic Control, 1999, 44(1):85-88
    [115] K G Tzierakis, F N Koumboulis. Independent Force and Position Control for Coperating Manipulators. Journal of Fransklin Institute, 2003, 340:435-460
    [116] W Gueaieb, F Karray, S A Sharhan. A Robust Adaptive Fuzzy Position/Force Control Scheme for Coperative Manipulators. IEEE Transactions on Control System Technology, 2003, 11(4): 516-528
    [117] M Kumar, D P Garg. Sensor-Based Estimation and Control of Forces and Movements in Multiple Cooperative Robots. ASME J. Dynamic Systems, Measurements and Control, 2004, 126:276-283
    [118] W Gueaieb, S A Sharhan, M Bolic. Robust Computationally Effient Control of Cooperative Closed-Chain Manipulators with Uncertain Dynamics. Automatica, 2007, 43:842-851
    [119] M Zivanovic, M Vukobratovic. Synthesis of Nominal Motion of the Multi-Arm Cooperating Robots with Elastc Interconnections at the Contact. ASME J. Dynamic Systems, Measurements and Control, 2004, 126:336-346
    [120] Fumitoshi M, K Yamamoto, S Kasa. Robust Cooperative Control of Two One-Link Flexible Arms, IEEE International Conference on Robotics and Automation, 1995: 925-930
    [121] Fumitoshi M. Modelling and Robust Cooperative Control of Two One-Link Flexible Arms Considering Bending and Torsional Vibrations. Proceedings of IEEE Conference on Decision & Control, 1998: 3611-3616
    [122] Yamano M, Kim J S, Uchiyama M. Hybrid Position/Force Control of Two Cooperative Flexible Manipulators Working in 3D Space. Proceedings of IEEE International Conference on Robotics and Automation, 1998: 1110-1115
    [123] Yamano M, Konna A, Uchiyama M. Experiments on Capturing a Floating Object by Two Flexible Manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 2000: 482-487
    [124] Yamano M, Kim J S, K A Konno, M Uchiyama. Cooperative Control of a 3D Dual-Flexible-Arm Robot. Journal of Intelligent and Robotic Systems, 2004, 39:1-15
    [125] C J Damaren. An Adaptive Controller for Two Cooperating FlexibleManipulators. Journal of Robotic Systems, 2003, 20(1): 15-21
    [126] 窦建武, 余跃庆.两柔性机器人协调操作的动力学模型及其逆动力学分析.机器人, 2000, 22(1): 39-47
    [127] 张成新, 余跃庆.柔性机器人协调操作的动力学建模和轨迹跟踪.机械科学与技术,2003, 22(2): 31-34
    [128] 岳瑛, 余跃庆. 柔性机器人协调操作系统动力特性分析.机械设计与研究, 2004, 22(5): 26-29
    [129] Sun Q. Control of Flexible-Link Multiple Manipulators. ASME J. Dynamic Systems, Measurements and Control, 2002, 124:67-75
    [130] Fumitoshi M, M Hatayama. PDS Cooperative Control of Two One-Link Flexible Manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 2000, 1490-1495
    [131] Yoshifumi M, Fumitoshi M, Motohisa I, Hiroyuki U, Hisashi K. PDS Cooperative Control of Two One-Link Flexible Arms Considering Bending and Torsional Deformation. The 29th Annual Conference of the IEEE Industrial Electronics Society, 2003: 466-471
    [132] Fumitoshi M, M Hatayama. Robust Coperative Control of Two Two-Link Flexible Manipulators on the Basis of Quasi-Static Equations. Journal of Robotic Systems, 1999, 18(4): 414-428
    [133] 张启敏,聂赞坎.一类随机人口发展系统的指数稳定性.控制理论与应用,2004,21(6): 907-910
    [134] 申建中,徐宗本.时变人口系统的适定性及关于生育率的最优控制.系统科学与数学,2001,21(3): 274-282
    [135] 张伟,陈立群.轴向运动弦线横向振动控制的Lyapunov方法.控制理论与应用,2006,23(4): 531-535
    [136] 周鸿兴,王连文.线性算子半群理论与应用. 山东科学技术出版社,1994
    [137] R F Curtain, H Zwart. An Introduction to Infinite-Dimensional Linear System Theory. Springer-Verlag, 1995
    [138] A Pazy. Semigroups of Liner Operators and Applications to Partial Differential Equations. Springer-Verlag, 1983
    [139] D Henly. Geometric Theory of Semilinear Parabolic Equations: Lecture Notes in Mathematics. Springer-Verlag, 1981
    [140] I D Chueshov. Introduction to the Theory of Infinite-Dimensional Dissipative Systems. ACTA Scientific Publishing House, 2002
    [141] Meriovitch L. Analytical Methods in Vibrations. Macmillan, New York, 1967
    [142] P Kokotovic, M Arcak. Constructive Nonlinear Control: a Historical Perspective. Automatica, 2001, 37: 637-662
    [143] Sepulchure R, Jankovic M, P Kokotovic. Constructive Nonlinear System. Springer-Verlag, London, 1997
    [144] Ezal, Pan Z, P Kokotovic. Locally Optimal Backstepping Design. IEEE Transactions on Automatic Control, 2000, 45(2): 260-271
    [145] F Zeodler. Applied Functional Analysis: Applications to Mathematical Physics. Springer-Verlag, New York, 1995
    [146] T Kato. Perturbation theory for linear operators. Springer-Verlag, New York, 1980
    [147] I Gohberg, S Goldberg, M A Kaashoek. Classes of Linear Operators. Basel Germany: Birkhauser, 1990, vol 1
    [148] Zhao Z X, Feng D X, Zhu G T. Controllability for a Class of Infinite Dimensional Linear Systems. J Syst Sci Math Sci, 1987, 7: 47-54