锂离子电池纳米结构负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于锂离子电池采用锂离子存贮材料取代金属锂,改善了锂电池由于枝晶生成所造成的安全隐患及循环性能差的缺点,并保留了锂电池高电压的优点,同时还兼具能量密度大,重量轻,体积小,循环寿命长,无记忆效应,环境友好等优点,近来发展较快。本论文就锂离子电池负极材料锡氧化物和尖晶石Li4Ti5O12及其与碳纳米管的复合电极材料进行了研究。主要工作分为以下两部分:
     (一)本部分采用水热法制备了纯相SnO和SnO2纳米负极材料,采用水热法制备了不同摩尔比的SnO/MWCNTs和SnO2/MWCNTs纳米负极材料。运用X射线衍射(XRD)、红外光谱(FTIR)和透射电镜(TEM)及电化学性能测试对合成材料进行表征和电化学性能研究。主要内容如下:
     1.纳米SnO和SnO2电极材料水热法合成、表征和电化学测试。X射线衍射谱图分析可知, SnO为Romarchite. Syn型,SnO2为锡石型。TEM测试表明产物为纳米结构。电化学测试表明水热法合成过程中加入PEG-400制备得到的SnO和SnO2负极材料的循环性较未加PEG-400制备得到的SnO和SnO2要好。
     2.水热法合成不同摩尔比的纳米SnO/MWCNTs复合电极材料。X射线衍射谱图表明水热法成功合成了纳米SnO/MWCNTs复合材料。TEM测试表明复合材料中的SnO为纳米棒,并均匀附着在MWCNTs表面,电化学测试表明碳纳米管的加入可以改善SnO的电化学性能。
     3.水热法合成不同摩尔比的纳米SnO2/MWCNTs复合电极材料。X射线衍射谱图表明水热法成功合成了纳米SnO2/MWCNTs复合电极材料。TEM测试表明复合材料中的SnO2为纳米粒子,大部分均匀附着在MWCNTs表面,少量进入MWCNTs管内,电化学测试表明复合材料的循环性能较好。
     (二)本部分采用微波法成功制备尖晶石Li4Ti5O12,并在此基础上研究对其进行多壁碳纳米管的复合改性。采用X射线衍射(XRD)、红外光谱(FTIR)和透射电镜(TEM)系统地研究了微波功率、辐射时间、锂源和反应物配比对合成Li4Ti5O12的影响,并采用电化学测试手段研究了微波法合成Li4Ti5O12的电化学性能。主要内容如下:
     1.在功率为500W和700W,时间为10min和15min,分别以LiOH·H2O和Li2CO3为锂源(锂源过量8%)探讨微波法合成纳米尖晶石Li4Ti5O12电极材料的条件。对样品进行XRD和FTIR测试分析,发现在700W,15min条件下可以合成较纯的尖晶石Li4Ti5O12,但由于锂源过量,合成样品中有少量Li2TiO3生成。TEM照片表明合成的样品为30nm左右的纳米粒子。对以Li2CO3为锂源在功率500W和700W,15min条件合成的样品进行电化学测试,合成的样品具有良好的循环性能。
     2.以LiOH·H2O和Li2CO3为锂源,微波法合成纯相尖晶石结构Li4Ti5O12电极材料。反应条件为功率700W,时间为15min。样品的XRD和FTIR测试分析表明,在此条件下可以合成纯相尖晶石Li4Ti5O12。TEM照片表明合成的样品为小于50nm左右的纳米粒子。分别对在此条件合成的样品在不同电流密度下进行电化学测试,结果表明合成的样品具有良好的循环性能。
     3.微波法合成不同摩尔比尖晶石结构Li4Ti5O12/MWCNTs复合电极材料。反应条件为在功率700W,时间15min,以Li2CO3为锂源。
Instead of lithium metal, lithium-storage materials were adopted as negative electrode materials in lithium-ion batteries, the hidden insecurity and poor cyclic performance caused by the formation of lithium crystalline had been improved, and the high-voltage merit of lithium batteries was remained as well. At the same time, the lithium-ion batteries possessed other advantages such as high energy density, little weight, small volume, long cycle-life, little effect of memory and better environment benefits etc,so the lithium ion batteries had been developed rapidly during the past few years. This thesis concentrated on the tin-based oxide, spinel Li4Ti5O12, and their MWCNTs composite materials as anode material for lithium secondary batteries. The major work can be separated two parts.
     (一) In this section, the SnO and SnO2 nanophase anode materials were prepared by hydrothermal method, the different mole ratio of SnO/MWCNTs and SnO2/MWCNTs anode nanomaterials were prepared by hydrothermal method. The characteristic and electrochemical property of samples were investigated by powder X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and electrochemical tests. The major contents as followed:
     (1) The SnO and SnO2 anode nanomaterials were prepared by hydrothermal method. The results of XRD showed that the Romarchite. Syn SnO and cassiterite SnO2 were synthesized by hydrothermal method. TEM showed that the microstucture of the sample was nanophase. the results of electrochemical tests showed that the cycliability of SnO and SnO2 which were added PEG-400 in preparing process were better than not added PEG-400.
     (2) The different mole ratio of SnO/MWCNTs nanocomposites anode materials were prepared by hydrothermal method. The results of XRD showed that the SnO/MWCNTs nanomaterials were successfully prepared by hydrothermal method. TEM photos showed that the SnO microstucture of the nanocomposites was nanorod and homogeneously dispersed on the MWCNTs surface. the results of electrochemical tests showed that MWCNTs could improve the cycliability of SnO.
     (3) The different mole ratio of SnO2/MWCNTs nanocomposites anode materials were prepared by hydrothermal method. The results of XRD showed that the SnO2/MWCNTs nanomaterials were successfully prepared by hydrothermal method. TEM images showed that the SnO2 microstucture of the nanocomposites were nanoparticles, most of particles were homogeneously dispersed on the MWCNTs surface and a few particles were in the hollow of MWCNTs. The results of electrochemical tests showed that the samples had excellent cycliability.
     (二) In this section, spinel Li4Ti5O12 has been synthesized by microwave synthesis method. The factors of the microwave power, radiation time, lithium source and reactant ratio which can effect on the final materials were investigated by means of XRD, FTIR, TEM, and electrochemical performances of Li4Ti5O12 were studied by electrochemical techniques. The major contents as followed:
     (1) The synthesis conditions of spinel Li4Ti5O12 were discussed, the discussed conditions were lithium source which were LiOH·H2O and Li2CO3 (Li excess 8%), microwave power which were 500W and 700W, radiation time which were 10min and 15min. The results of XRD and FTIR showed that the spinel Li4Ti5O12 could be synthesized when microwave power was 700W and radiation time was 15min, but a small amount of Li2TiO3 was found that may be caused by Li excess 8%. TEM showed that the microstucture of the sample were nanoparticles which diameter was about 30nm. The electrochemical performance of samples which were synthesized Li2CO3 as lithium source at 500W and 700W for 15min, the results of tests the samples have excellent cycliability.
     (2) The nonophase spinel Li4Ti5O12 was synthesized by microwave method. The condition of synthesis was that LiOH·H2O and Li2CO3 as lithium source at 700W for 15min. The results of XRD and FTIR showed that the nonophase spinel Li4Ti5O12 could be synthesized at 700W for 15min. TEM showed that the microstucture of the samples were nanoparticles which diameter was less than 30nm. the results of electrochemical tests showed that the samples had excellent cycliability.
     (3) The different mole ratio of Li4Ti5O12/MWCNTs nanocomposites anode materials were synthesized by microwave method. The nanocomposites were synthesized when Li2CO3 as lithium source at 700W for 15min.
引文
[1]吴宇平, 戴晓兵, 马军旗,等. 锂离子电池—应用与实践[M]. 北京:化学工业出版社,2004.
    [2]郭炳焜, 徐微, 王先友,等. 锂离子电池[M]. 长沙:中南大学出版社,2002.
    [3]J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359.
    [4]胡进, 锂离子电池纳米结构负极材料储锂性能研究[D]. 中国科学院物理研究所博士学位论文,2005.
    [5]A. Colin. Vincent, Lithium batteries: a 50-year perspective, 1959–2009[J]. Solid State Ionics. 2000.134:159–167
    [6]M. Armand, in Materials for Advanced Batteries (D. W. Murphy, J. Broodhead, B. C.H. Steele, Editors), Plenum Press, New York,1980.
    [7]Peter G. Bruce, Robert A. Armstrong, Robert L. Gitzendanner, New intercalation compounds for lithium batteries: layered LiMnO2[J]. J. Mater. Chem., 1999, 9: 193-198.
    [8]赵健, 杨维芝, 赵佳明, 锂离子电池的应用开发[J]. 电池工业, 2000,1:31-36.
    [9]何则强, SnO2 基锂离子电池负极材料的研究[D].中南大学,博士学位论文,2004.
    [10]Yucheng Sun, Yuki Shiosaki, Yonggao Xia,et al. The preparation and electrochemical performance of solid solutions LiCoO2-Li2MnO3 as cathode materials for lithium ion batteries[J]. J.Power Sources 2006,159:1353–1359.
    [11]吕罡, 刘心宇, 敖敏,等. 锂离子电池正极材料的研究进展[J]. 电工材料 2006 , 1.30-34.
    [12]陈白珍, 胡拥军, 李义兵,等. 锂离子电池聚合物正极材料的研究进展[J]. 电池, 2005, 35(5) :406-407.
    [13]Alexander Burukhin , Oleg Brylev , Pascal Hany , et al. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries[J]. Solid State Ionics 2002,151: 259- 263.
    [14]魏晓, 韩高荣, 锂离子电池正极材料研究进展以及水热法制备 LiCoO2 超细粉体[J].材料 科学与工程学报.2006,1;118-123.
    [15]李运姣, 王晨生, 孙召明, 锂离子电池正极材料 LiCoO2和 LiNiO2的研究进展[J].稀有金属与硬质合金.2002,1:38-42.
    [16]E.D.Jeong, M.S. Won, Y.B. Shim, Cathodic properties of a lithium-ion secondary battery using LiCoO2 prepared by a complex formation reaction [J]. Journal of Power Sources, 1998 ,70:70 - 77.
    [17]She-huang Wu, Ming-tlau Yu, Preparation and characterization of o-LiMnO2 cathode materials[J]. J.Power Sources 2007,165: 660–665
    [18]申海燕, 锂离子电池正极材料 LixMn2O4 的研究进展[J]. 湖南冶金, 2005,6:4-7.
    [19]钟盛文, 梅佳, 李培植,等. 锂离子电池层状 LiMnO2 正极材料的研究进展[J]. 精细与专用化学品,2005,13(17):21-24.
    [20]刘建睿, 王猛, 尹大川,等. 锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术, 2001,4:308-311.
    [21]刘善科, 董全峰, 孙世刚,等. 锂离子电池正极材料 LiFePO4 研究进展[J].电源技术2006.5:424-428.
    [22]任丽, 成国祥, 朱嫦娥,等. 锂二次电池聚吡咯基复合正极材料的研究[J]. 精细化工.20005,2:88-90.
    [23]王立新,安颢瑗,任丽,张福强, 锂电池聚吡咯复合正极材料的研究[J].电池.2006, 2:129-131.
    [24] 冯传启 , 聚二巯化合物正极材料的合成及性质的初步研究 [J]. 化学研究与应用.1998,5:547-549.
    [25]In-Chul Kim, Dongjin Byun, Sangwha Lee, et al.Electrochemical characteristics of copper silicide-coated graphite as an anode material of lithium secondary batteries[J]. Electrochimica Acta .2006,52 :1532–1537.
    [26] 颜 剑 , 苏 玉 长 , 苏 继 桃 , 等 . 锂 离 子 电 池 负 极 材 料 的 研 究 进 展 [J]. 电 池 工业.2006,4:277-281.
    [27]Isao Kuribyashi, Mika Yokoyama, Masataka Yamashita. Battery characteristics with various carbonaceous materials [J].J Power Sources,1995,54(1):1.
    [28]仇卫华, 张刚, 卢世刚,等. 锂离子电池负极材料---树脂包覆石墨的性能[J].电源技术,1999,23(1):7.
    [29]杨瑞枝, 张东煜, 张红波,等. 树脂炭包覆石墨作为锂离子电池负电极的研究[J].无机材料学报,2000,15(4):711.
    [30]C.Menachem, E.Peled, L.Burstein, et al.Characterization of modified NG7 graphite as an improved anode forlithium-ion batteries [J].J Power Sources,1997,68(2):277.
    [31]潘钦敏, 郭坤琨, 王玲治,等. 离子聚合物包覆的锂离子电池炭负极材料[J].电池,32(S1):38.
    [32]周向阳, 胡国荣, 李庆余,等. 化学镀银鳞片石墨作锂离子电非石墨类碳材料池负极材料[J].电池,2002,32(5):255.
    [33]A. Mabuchi, K. Tokumitsu, H Fujimoto, et al. Charge-discharg characteristics of the mesocarbon microbead sheat-treated a different temperatures[J].J. Electrochem Soc, 1995, 142 (4):1041.
    [34]李宝华, 李开喜, 吕春祥,等. 热处理时间对锂离子电池阳极用中间相炭微球充放电性能的影响[J].石油大学学报 2001,25(6):81.
    [35]C. Kim, T. Fujino, K. Miyashita, et al. Microstructure and Electrochemical Properties of Boron-Doped Mesocarbon Microbeads [J]. J. Electrochem. Soc.,2000,147(2):1257.
    [36]董桑林, 刘人敏, 锂离子电池碳阳极材料的研究进展[J].电源技术,1996,20(2):84.
    [37]徐炳, 徐徽, 王先有,等. 锂离子电池[M]. 中南大学出版社,2002.
    [38]唐致远,庄新国,翟玉梅,等. 锂离子电池酚醛树脂裂解碳负极材料的研究[J].电化学,2000,6(2):218.
    [39]李宝华, 李开喜, 吕永根,等. 掺磷酚醛树脂炭嵌锂性能研究[J].电化学,2002,8(4):415.
    [40]吴宇平,万春荣,方世壁,等. 锂离子蓄电池负极材料的研究---以丙烯腈-苯乙烯共聚物为基体[J].电源技术,1999,23(增刊):56.
    [41]K. Sato, M. Noguchi, A. Demachi, et al. A mechanism of lithium storage in disordered carbons [J]. Science,1994,264(22):556.
    [42] 董健 , 李晓锋 , 严磊 , 等 . 锂离子 电池 碳 阳极 材 料 的研 究进 展 [J]. 新型 碳 材料,1998,13(3):55.
    [43]Giselle Sandi, Randall E Winans, Kathleen A Carrado, New carbon electrodes for secondary lithium batteries [J]. J. Electrochem. Soc, 1996,143(5):L95.
    [44]Q. Wang, H. Li, L.Q. Chen, et al. Novel spherical microporous carbon as anode material for Li-ion batteries [J]. Solid State Ionics , 2002 , 152-153 ∶43-50.
    [45]J. Hu, H. Li, X.J. Huang. Influence of micropore structure on Li-storage capacity in hard carbon spherules [J]. Solid State Ionics, 2005, 176:1151-1159.
    [46]G.T.K. Fey, C.L. Chen. High-capacity carbons for lithium-ion batteries prepared from rice husk [J].J Power Sources, 2001, 97-98:47-51.
    [47]T. Shodai, Y. Sakurai, T. Suzuki, Reaction mechanisms of Li2.6Co0.4N anode material [J]. Solid State Ionics, 2005,122:85–93.
    [48] 孙杨正 , 廖小珍 , 马紫峰 , 锂离子电池硅基负极材料研究进展 [J]. 电池 ,2004, 34(3):194-195.
    [49]Hunjoon Jung, Min Park, Yeo-Geon Yoon, et al. Amorphous silicon anode for lithium-ion rechargeable batteries[J]. J.Power Sources, 2003,115:346–351.
    [50]Tsutomu Takamura, Shigeki Ohara, Makiko Uehara, et al. A vacuum deposited Si film having a Li extraction capacity over 2000mAh/g with a long cycle life[J]. Journal of Power Sources, 2004,129 :96–100.
    [51]伏萍萍, 宋英杰, 张宏芳,等. 锂离子电池用非晶硅薄膜负极材料的研究[J].无机化学学报,2006,22(10):1823-1827.
    [52]Masaki Yoshio, Satoshi Kugino, Nikolay Dimov. Electrochemical behaviors of silicon based anode material[J]. J.Power Sources, 2006,153:375–379.
    [53]Robert A. Huggins, Lithium alloy negative electrodes[J]. J.Power Sources 1999,81-82:13-19.
    [54]任建国, 王科, 何向明, 锂离子电池合金负极材料的研究进展[J].化学进展,2005,17(4):597-603.
    [55]D. Larcher, L.Y. Beaulleu, D.D. MacNeil, et al. In situ X-ray study of the electrochemical reaction of Li with η’-Cu6Sn5[J]. J. Electrochem. Soc, 2000 ,147(5):1658-1662.
    [56]D. G. Kim, H. Kim , H. J. Sohn , et al. Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries[J]. J. Power Sources , 2002 ,104 : 221-225
    [57]N. Tamura, R. Ohshita, M. Fujimoto, et al. Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes[J]. J. Power Sources,2002, 107: 48 -55
    [58]Young-Lae Kim, Heon-Young Lee, Serk-Won Jang, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries[J]. Solid State Ionics, 2003,160:235– 240.
    [59]M. Barth, B. Wei, D.M. Herlach, Dendritic growth velocities of the intermetallic compounds Ni2TiAl, NiTi, Ni3Sn, Ni3Sn2 and FeAl[J]. Materials Science and Engineering,1997, A226-228:770-773.
    [60]H. Li , G. Zhu, X. Huang, et al. synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by Co-precipitation in alcohol solution at low temperature[J]. J . Materials Chemistry,2000,10:693 -696.
    [61]H. Li, L. Shi, W. Lu, et al. Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries[J ]. J. Electrochemical Society,2001,148(8):A915-A922.
    [62]李泓, 李晶泽, 师丽红,等. 锂离子电池纳米材料研究[J].电化学, 2000 , 6(2) : 131-145.
    [63]M. Wachtler, J.O. Besenhard, M. Winter, Tin and tin-based intermetallics as new anodematerials for lithium-ion cells [J]. J. Power Sources , 2001 ,94 : 189 -193.
    [64]M. Wachtler, M. Winter, J.O. Besenhard, Anodic materials for rechargeable Li-batteries[J]. J. Power Sources , 2002 ,105 : 151-160.
    [65]王忠, 田文怀, 李星国, Sn-Sb 合金的氢电弧等离子体法制备及其电化学性能[J]. 物理化学学报,2006,22(6):752-755.
    [66]Ge Zhang, Kelong Huang, Suqin Liu, Comparison of the electrochemical performance of mesoscopic Cu2Sb, SnSb and Sn/SnSb alloy powders[J]. Journal of Alloys and Compounds, 2006,426: 432–437.
    [67]T. Sarakonsri, C.S. Johnson, S.A. Hackney, et al. Solution route synthesis of InSb, Cu6Sn5 and Cu2Sb electrodes for lithium batteries[J]. Journal of Power Sources,2006 153: 319–327.
    [68]Jianguo Ren, Xiangming He, Weihua Pu, et al. Chemical reduction of nano-scale Cu2Sb powders as anode materials for Li-ion batteries[J]. Electrochimica. Acta, 2006, 52:1538–1541.
    [69]J.T. Vaughey, L. Fransson, H.A. Swinger, et al. Alternative anode materials for lithium-ion batteries: a study of Ag3Sb[J]. Journal of Power Sources, 2003,119–121:64–68.
    [70]X.B. Zhao, G.S. Cao, C.P. Lv, et al. Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries[J]. Journal of Alloys and Compounds, 2001,315:265–269.
    [71]J.T. Vaughey, C.S. Johnson, A.J. Kropf, et al. Structural and mechanistic features of intermetallic materials for lithium batteries[J]. J. Power Sources, 2001,97–98: 194.
    [72]Costana Mihaela Ionica, Pierre Emmanuel Lippens, Josette Olivier Fourcade, et al. Study of Li insertion mechanisms in transition metal antimony compounds as negative electrodes for Li-ion battery[J]. Journal of Power Sources.2005, 146:478–481.
    [73]J. Xie, X.B. Zhao, G.S. Cao, et al. Electrochemical Li-uptake properties of nanosized NiSb2 prepared by solvothermal route[J].Journal of Alloys and Compounds, 2005,393: 283–286.
    [74]L. J. Zhang, X. B. Zhao, X. B. Jiang, et al. Study on the insertion behaviors of Lithium-ions into CoFe3Sb12 based electrodes[J]. Journal of Power Sources.2001, 94: 92-96.
    [75]Hong Li, Lihong Shi, Qing Wang, et al. Nano-alloy anode for lithium ion batteries[J]. Solid State Ionics, 2002,148:247– 258.
    [76]Y. Idota, T. .Kubota, A. Matsufuji, et al. Tin-based amorphous oxide: Ahigh-capacity lithium- ion-storage material[J]. Science, 1997,276:1395.
    [77]I.A. Courtney, J. R. Dahn, Electrochemisal and in situ X- ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J Electrochem Soc, 1997, 144 : 2045- 2052.
    [78]R.A. Huggins. Lithium alloy negative electrodes formed from convertible oxides[J]. Solid State Ionics, 1998 , 57 : 113- 115.
    [79]H. Li, X. Huang, L. Chen, Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable bateries[J]. Electrochemical and Solid-State Letters, 1998,1(6):241-243.
    [80]J.Z. Li, H. Li, Z.X. Wang, et al. The interaction between SnO and electrolytes[J].Journal of Power Sources,1999,81-82:346-351
    [81]H. Li, X.J. Huang, L.Q. Chen, Electrochemical impedance spectroscopy study of SnO and nano–SnO anodes in lithium rechargeable batteries[J].J.Power Sources ,1999 ,81- 82:340-345.
    [82]T. Brousse, R. Retoux, U. Herterich, et al. Thin-film crystalline SnO2- Lithium electrodes [J]. J. Electrochem. Soc., 1998, 145(1):l-4.
    [83]A. Sivashanmugam, T. Premkumar, S. Gopukumar, Synthesis and electrochemical behaviour of tin oxide for use as anode in lithium rechargeable batteries[J]. J. Applied Electrochemistry, 2005, 35(11):1045-1050.
    [84]D. Aurbach, A. Nimberger, B. Markovsky, Nanoparticles of SnO Produced by Sonochemistry as Anode Materials for Rechargeable Lithium Batteries[J]. Chem. Mater,2002, 14(10): 4155- 4163.
    [85]Y.N. Li, S.L. Zhao, Q.Z. Qin, Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J] .J Power Sources, 2003,114 (1) :113 – 120.
    [86]M. Mohamedi, Seo-Jae Lee, D. Takahashi, et al. Amorphous tin oxide films: preparation and characterization as an anode active material for lithium ion batteries[J]. Electrochimica. Acta, 2001, 46(8): 1161-1168.
    [87]J.Z. Li, H.Li,X.W.Zhao, et al. The study of surface films formed on SnO anode in lithium rechargeable batteries by FTIR spectroscopy[J]. J. Power Sourse, 2002, 107:1-4.
    [88]H.W. Ha, K.Kim, D.B. Mervyn. Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries[J]. J. Solid State Chemistry, 2006,179:702-707.
    [89]N.C. Li, Charles R. Martin, Bruno Scrosati. Nanomaterial-based Li-ion battery electrodes[J]. J. Power Sourse, 2001, 97-98: 240 -243.
    [90]V. Subramanian, K.I. Gnanasekar, B. Rambabu. Nanocrystalline SnO2 and In-doped SnO2 as anode materials for lithium batteries[J]. Solid State Ionics. 2004, 175: 181-184.
    [91]S.M. Hasanaly, A.Mat, K.S. Sulaiman.Silica doped tin oxide composite anodes for lithium-ion batteries[J]. Ionics, 2005, 11:393-396.
    [92]J. Santos-Pena, T. Brousse, L. Sánchez, et al. Antimony doping effect on the electrochemical behavior of SnO2 thin film electrodes[J]. J. Power Sourse, 97-98: 232-234.
    [93]Y. Wang, J.Y. Lee, Preparation of SnO2–graphite nanocomposite anodes by urea-mediated hydrolysis[J]. Electrochemistry Commnication, 2003, 5:292-296.
    [94]齐智,吴锋, SnO2/石墨复合材料作为锂离子电池负极材料研究[J].无机化学学报,2005,2,257-260.
    [95]袁正勇, 黄峰, 孙聚堂,等. 非晶态氧化亚锡基锂离子电池负极材料的合成及电化学性质研 究[J].武汉大学学报(理学版),2002,48(4),417-419.
    [96]A. Hayashi, M. Nakai, H. Morimoto, et al. [J]. J. Materials Science. 2004, 39:5361-5364.
    [97]T. Ohzuku, A.Ueda, N.Yamamoto, Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells[J].Journal of Electrochem. Soc. 1995,142(5):1431–1436.
    [98]杨晓燕, 华寿南, 张树永, 锂钛复合氧化物锂离子电池负极材料的研究[J].电化学, 2000,6(3):350-356.
    [99]苏岳峰, 吴锋, 陈朝锋, 纳米微晶 TiO2 合成 Li4Ti5O12 及其嵌锂行为[J].物理化学学报, 2004, 20(7):707-711.
    [100]A. Guerfi, S. Sevigny, M. Lagace, Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators[J]. Journal of Power Sources, 2003,119–121:88–94.
    [101]Kiyoshi Nakahara, Ryosuke Nakajima, Tomoko Matsushima, et al. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells[J]. Journal of Power Sources, 2003, 117: 131–136.
    [102]S. Bach, J.P. Pereira-Ramos, N. Baffier, Electrochemical properties of sol–gel Li4/3Ti5/3O4[J]. Journal of Power Sources,1999, 81–82: 273- 276.
    [103]C.M. Shen, X.G. Zhang, Y.K. Zhou, et al. Preparation and characterization of nanocrystallines Li4Ti5O12 by sol–gel method[J]. Materials Chemistry and Physics, 2002, 78:437–441.
    [104]A.D. Robentson, L. Trevino, H. Tukamoto, et al. New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries[J]. J.Power sources,1999, 81-82: 352-357.
    [105] 华兰 , 杨晓燕 , 康石林 , 等 . 掺杂 Li4Ti5O12 作为锂离子电池负极材料 [J]. 电池,2001,31(5):218-221.
    [106]C.H. Chen, J.T. Vaughey, A. N. Jansen, et al. [J].Studies of Mg- substituted Li4-xMgxTi5O12 (0≤x≤1) spinel electrodes for lithium batteries Journal of the Electrochemical Society, 2001,148(1):102–104.
    [107]Daotan Liu, Chuying Ouyang, Jie Shu, et al. Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12[J].Phys. stat. sol. (b), 2006,1-7.
    [108]Y.K. Sun, D.J. Jung, Y.S. Lee, et al. Synthesis and electrochemical characterization of spinel Li[Li(1?x)/3CrxTi(5?2x)/3]O4 anode materials [J]. J. Power sources, 2004, 125: 242-245.
    [109]I. Belharouak, K. Amine, Li2MTi6O14 (M=Sr, Ba): new anodes for lithium-ion batteries[J]. Electrochemistry Communications, 2003,5: 435–438.
    [110]A. Guefi, P. Charest, K. Kinoshita, et al. Nano electronically conductive titanium-spinel as lithium ion storage negative electrode[J]. J. Power sources, 2004, 126:163-168.
    [111]Young Ho Rho, Kiyoshi Kanamura, Minori Fujisaki, et al., Preparation of Li4Ti5O12 and LiCoO2 thin film electrodes from precursors obtained by sol–gel method[J]. Solid State Ionics 2002,151:151– 157.
    [112]Chunhai Jiang, Yong Zhou, Itaru Honma, et al., Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material[J]. J.Power Sources 2007, 166: 514-518.
    [113]L. Kavan, M. Gratzel, J. Rathousky, et al., Nanocrystalline TiO2(Anatase) Electrodes: Surface Morphology, Adsorption and Electrochemical Properties[J]. J. Electrochem. Soc., 1996, 143 (2):394.
    [114]Fattakhova L. D., Krtil P., Lithium Insertion into Mesoscopic and Single-Crystal TiO2(Rutile) Electrodes[J]. J. Electrochem.Soc.,1999,14 6(4):1375
    [115]S.W. Oh, S.H. Park, Y.K. Sun, Hydrothermal synthesis of nano-sized anatase TiO2 powders for lithium secondary anode materials[J]. J. Power Sources 2006, 161: 1314-1318.
    [116]A. R. Armstrong, G. Armstrong, J. Canales, et al. Lithium-Ion Intercalation into TiO2-B Nanawires[J]. Adv. Mater, 2005, 17(7):862-865.
    [117]A. R. Armstrong, G. Armstrong, J. Canales, et al. TiO2-B nanowires as negative electrodes for rechargeable lithium batteries[J]. J.Power Sources 2005,146:501–506.
    [118]聂茶庚, 龚正良, 孙岚,等. 软化学法合成 TiO2(B)纳米带及其储锂性能研究[J].电化学,2004,10(3):330-333.
    [119]Wei-Yang Li, Li-Na Xu, Jun Chen, Co3O4 Nanomaterials in Lithium-Ion batteries and Gas Sensors[J]. Adv. Funct. Mater, 2005,15(5):851-857.
    [120]Yong-Mook Kang, Min-Sang Song, Jin-Ho Kima, et al. A study on the charge – discharge mechanism of Co3O4 as an anode for the Li ion secondary battery[J]. Electrochimica Acta , 2005,50:3667-3673.
    [121]Ying Wang, Zheng-Wen Fu, Qi-Zong Qin, A nanocrystalline Co3O4 thin film electrode for Li-ion batteries[J]. Thin Solid Films, 2003, 441: 19-24.
    [122]P.A.Connor ,J. T. S. Irvine Novel tin oxide spinel-based anodes for Li-ion batteries, Journal of Power Sources,2001,97-98:223-225.
    [123]T. Brousse, R. Retoux, U. Herterich, D. M. Schleich, Thin-Film Crystalline SnO2 Lithium Electrodes[J]. J. Electrochem.Soc.,1998,145(1):l-4.
    [124]李子荣, 氧化锡及其掺杂纳米材料水热法制备与表征[D]. 合肥工业大学硕士学位论文, 2006.
    [125]叶 茂, 周 震, 卞锡奎,等. CoO 填充多壁碳纳米管作为锂离子电池负极材料[J]. 无机化学学报,2006,22(7),1307-1311.
    [126] 刘 福 萍 , 陆 明 , 微 波 有 机 合 成 及 反 应 器 研 究 新 进 展 [J]. 精 细 化 学 中 间体,2004,34(2):1-4.
    [127]杨华明, 黄承焕, 宋晓岚,等. 微波合成无机纳米材料的研究进展[J]. 材料导报,2003, 17(11):36-39.
    [128]Y. Wang, J. Y. Lee, Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications[J]. Journal of Power Sources,2005,144:220-225.
    [129]Y.J. Hao, Q. Y. Lan, Z.H. Xu, et al. Synthesis by TEA sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery[J]. Solid State Ionics,2005,176: 1201-1206.