智能空间中定位参考点的优化选择及误差分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能空间中的上下文感知为用户提供其所在环境的上下文相关信息,其中80%的信息和位置有关,因此定位问题在上下文感知中占据举足轻重的地位。智能空间中设备的许多行为都与其所在的位置相关联,如实时跟踪用户所处的位置、自动打开用户附近的灯或将来电转接到离用户最近的电话等,所有这些应用都需要判断用户在室内的位置,以及与其它设备之间的相对位置关系。定位信息的准确获取是完成定位服务的一个关键问题所在,那么如何简单、及时有效、准确地获取移动用户的定位信息,以便主动向用户提供所需定位服务是目前智能空间中需要研究的基础课题之一
     在智能环境未知节点进行定位的过程中,信号传播延迟、参考点之间的相对位置等都会对未知节点的定位误差产生影响。对于参考点位置所引起的定位误差,由于智能环境中未知节点定位需要通过多个定位参考点来计算其位置,那么如何在这些参考点中选择最优的参考点使定位误差最小是本文要研究问题。
     在二维空间定位服务中,在不存在定位误差情况下,提出了关于二维空间定位算子的两个定理,定位算子定理为未知节点的位置计算提供一种快捷的方法。对于定位过程存在误差情况下,通过对定位过程中产生的误差区域进行分析,提出了二维空间参考点优化选择定理,参考点优化选择定理表明在室内定位过程中有针对性选择参考点能使定位误差最小,为室内环境中布置和选择定位参考点提供了相应的理论基础。在此基础上,研究了未知节点被多次定位后定位误差极限问题,提出了定位误差极限定理,定位误差极限定理揭示了当有无限多个参考点参与对未知节点定位时,定位误差不会持续减小下去,而是最后趋于恒定值。基于参考点优化选择定理,通过对传统的定位算法进行改进,提出参考点优化选择算法(OSRN), OSRN算法以参考点与未知节点之间位置关系为基础,通过选择出合适的参考点来计算未知节点的位置,可以提供更准确的定位信息,并保证该算法具有较强的定位实时性,从而满足智能空间中移动用户定位服务的需求。以上这些定理为移动设备在二维空间定位过程中有针对减少由参考点引起的定位误差提供了依据。
     定位过程中不可避免地存在着误差,通过分析三维空间定位过程中产生的误差区域,提出了空间参考点优化选择第一定理(SOSRN1)和空间参考点优化选择第二定理(SOSRN2), SOSRN1定理和SOSRN2定理从理论上证明三维空间定位过程中当未知节点与定位参考点满足某种分布时,定位误差最小。在此基础上,对空间未知节点多次定位后的误差区域研究发现,随着定位单元数目增加,定位误差不断减小,但不会无限制减小,而是定位误差最后趋于一个常量。在智能空间中,由于设备的资源有限,并且它们所面临的任务一般都是时间敏感性较强的应用空间,传统的定位算法,无法在资源受限的普适设备上实现,同时又不能很好的保证时间约束,基于SOSRN定理,提出了空间参考点优化选择算法。空间参考点优化选择(SOSRN)算法为未知节点在空间定位提供更准确的位置信息,并且改进定位实时性,从而满足定位服务的需求。
     对于参考点位置所引起的定位误差进行定量分析,结果表明采用参考点优化选择算法定位能较大幅度提高定位精度,并且通过有限的几次定位就能使定位误差迅速趋于最小值,由此提出了二维空间快速参考点优化选择算法(FOSRN)和三维空间快速参考点优化选择算法(FSOSRN), FOSRN和FSOSRN在保证定位精度情况下实时性较好,特别适合应用于有较多参考点的智能空间定位中。
     利用仿真实验对本文提出的OSRN和SOSRN算法进行了仿真验证,通过对得到的实验数据进行的分析,并与传统的算法相比较,结果表明OSRN算法SOSRN算法能够在资源有限环境下的改进未知节点定位实时性,并使得在一定的范围内未知节点在定位过程中产生的误差较小,有效解决了智能空间中的移动用户的定位需求。
Context awareness can provide the user with important context information in smart space, which is about 80 percent mainly related to position. Consequently the problem of position is playing an important role in context awareness. Many behaviors of the device is related to its position, for example, track the user's position in real-time, turning on the light near the user automatically, or transferring the phone to the nearest user, and so on. All the application should be capable to determine the user's position in a room, and the relative position with other devices. To accurately obtain the position information is the key to finish the positioning service, therefore how to simply, efficiently, accurately acquire the user's position information, and being able to provide the positioning service to user, is one of the basis problems in smart space.
     In the process of the positioning of the unknown node in the smart space, time error and relative position of reference nodes are the main causes of affecting the unknown nodes' position error. With regards to the position error caused by the position of reference node, the position of unknown node in the smart space is decided by reference to several position reference nodes. Therefore the problem that how to choose the most optimum reference node among all the reference nodes in order to reduce the position error to the great extend becomes the main topic of this paper.
     In the positioning service of two dimensional space, two arithmetic operators theorems on two dimensional space are put forward on the basis of non-existence of position error. Arithmetic operators theorems provide a fast way of computing the position of unknown node. In the existence of position error in the process of positioning, reference nodes optimizing selection theorem in two dimensional space is proposed on the basis of analyzing the position error areas. This theorem shows that optimization selection of reference nodes will minimize the position error in the process of indoor positioning. Meanwhile this theorem builds up theoretical foundation for the layout and selection of reference nodes in indoor environment. Based on this, the research on the problem of position error limit caused by positioning the unknown nodes several times is conducted. Correspondingly the position error limit theorem is put forward, which reflects the fact that the position error can not be reduced gradually to zero when the positioning of unknown nodes involves limitless reference nodes, instead the position error will be reduced to a constant quantity. On the basis of reference nodes optimizing selection theorem and the improvement of the traditional positioning algorithm, optimization selection algorithm of reference nodes (OSRN) is produced. This algorithm is based on the relationship of the position of reference nodes and the position of unknown node. By the way of selecting optimum reference nodes in the process of calculating the unknown nodes'position, the more accurate position information can be delivered and the real-time sensitivity can be fulfilled. As a result, the requirements of positioning service from mobile users in the smart space are satisfied. All the above mentioned theorems are the basis for the mobile devices'specially reducing the position error caused by reference nodes in the process of positioning in two dimensional space.
     It is impossible to avoid any error in the process of positioning. On the basis of the research of positioning problem in three dimensional space, Arithmetic operators theorems are brought forward in three dimensional space, which are the theoretical foundation for the layout of position reference nodes. In the existence of position error, the study on the position error in the process of three dimensional space is conducted. According to the study results, the two theorems are produced:the first theorem of space reference nodes optimizing selection (SOSRN1) and the second theorem of space reference nodes optimizing selection (SOSRN2). These two theorems, in the respect of theory, prove that the position error is the least when the unknown nodes and position reference nodes are in certain layout in three dimensional space. Based on this, the research on the error areas caused by positioning the unknown codes several times is made and the fact is discovered that the position error gradually decreases with the number of position units increases, but the position error can not decrease unlimitedly while it will reach a constant quantity. In the smart space, due to limited resources of a ubiquitous device, the device is usually facing the application with real-time sensitivity. The traditional positioning algorithm can not be implemented for a ubiquitous device with limited resources. Meanwhile, it can not satisfy the time constrains. Therefore based on the SOSRN theorem, the position reference nodes algorithm is proposed. The space position reference nodes optimization selection (SOSRN) algorithm can promise more accurate information with positioning of unknown nodes and meet the requirement of real-time, which will make the requirements from positioning service fulfilled.
     Concerning the position error caused by the position reference nodes, it is mainly reduced by the optimization selection of position reference nodes. According to the results of analysing the position error caused by the relative position of reference nodes, the conclusion is made that the accuracy of position can be greatly improved by the adoption of reference nodes optimizing selection and the position error can be reduced to the least through only several times positioning. On the basis of this, the fast reference nodes optimization selection (FOSRN) algorithm and the fast space reference nodes optimization selection (FSOSRN) algorithm are brought forward. FOSRN and FSOSRN can guarantee the position accuracy and meet the requirement of real-time simultaneously, the two algorithms are especially suitable in the smart space positioning with the existence of many reference nodes.
     The simulation is used to verify OSRN and SOSRN algorithm in this paper. After the analysis of the data acquired and the comparison with the traditional algorithm, the conclusion is drawn that OSRN and SOSRN algorithm can meet the requirement of real-time positioning of unknown nodes in the environment with limited resources, and make position error less than the traditional algorithm, therefore the algorithm can effectively solve the positioning problem for mobile users in the smart space.
引文
1. Weiser M. The computer for the twenty-first century. Scientific American,1999,265(3):94-104.
    2. 徐光佑,史元春,谢伟凯.普适计算[J].计算机学报,2003,26(9):1042-1052.
    3. Rhodes B J, Minar N, Weaver J. Wearable computing meets ubiquitous computing:reaping the best of both worlds[A]. In Proceedings of The Third International Symposium on Wearable Computers[C], San Francisco, USA, Oct 18-19,1999,141-149.
    4. Essa I A. Ubiquitous sensing for smart and aware environments[J].IEEE Personal Communication, 2000,7(5):47-49.
    5. Yau S S, Wang Y, Karim F. Development of situation-aware application software for ubiquitous computing environments [A]. In Proceedings 26th Annual International of Computer Software and Application Conference (COMPSAC)[C], Leicester, England,2002,233-238.
    6. Abowd G D, Schilit B N. Ubiquitous computing:The impact on future interaction paradigms and hci research [A]. In Proceedings of CHI'97 Workshop[C], Atlanta, USA, March 22-27,1997,221-222.
    7. Abowd G D. Software engineering issues for ubiquitous computing[A].In Proceedings of International Conference on Software Engineer (ICSE-99)[C], Los Angles, USA, May 16-22,1999,75-84.
    8. Weiser M. The future of ubiquitous computing on campus[J]. Communication of ACM,1998, 41(1):41-42.
    9. Hohl F, Kubach U, Leonhardi A, et al. Next century challenges:Nexus-an open global infrastructure for spatial-aware application[A].In Proceedings of Conference on Mobile Computing and Networking (MOBICOM'99)[C], Washington, USA, August 15-20,1999,249-255.
    10. KindBerg T, Fox A. System software for ubiquitous computing[J]. IEEE Pervasive Computing.2002, 1(1):70-81.
    11. Rosenthal L, Stanford V M. NIST smart space:Pervasive computing initiative[A]. In the Proceedings of the 9th IEEE International Workshops on Enabling Technologies:Infrastructure for Collaborative Enterprises[C], Maryland, USA, June 4-16,2000,6-11.
    12. Satyanarayanan M. Pervasive computing:Vision and challenges.[J]. IEEE Personal Communication, 2001,8(4):10-17.
    13. Jalal A M. Augmenting smart spaces with intelligent robots[A]. In Proceedings of 2007 2nd International Conference on Pervasive Computing and Application,(ICPCA'07)[C], Birmingham, United Kingdom, Jul 26-27,2007,505-511.
    14. Http://www.oxygen.lcs.mit.edu/E21.html.
    15. http://endeavour.cs.berkeley.edu.
    16. Portolano. An expedition into invisible computing[D]. Department of Computer Science & Engineering, University of Washington, Seattle,2002.
    17. Brumitt B, Meyers B, Krumm J. EasyLiving:Technologies for intelligent environments [A]. In Proceedings of Second International Symposium on Handheld and Ubiquitous Computing[C], Bristol, U K, September 25-27,2000,30-36.
    18. Garlan D, Siewiorek D P, Smailagic A, et al. Project aura:Toward distraction-free pervasive computing[J]. IEEE Pervasive Computing,2000,21(2):22~31.
    19. Sousa J P, Garlan D. Aura:an architectural framework for user mobility in ubiquitous enviroment[A]. In Proceedings of the 3rd Working IEEE/IFIP Conference on Software Architecture[C], Montreal, Canada, August 25-30,2002,29-43.
    20. Http://gaia.cs.uiuc.edu/.
    21. Http://www.research.ibm.com/natural/dreamspace/index.hmtl.
    22. Gu H L, Shi Y C, Xu G Y et al. A core model supporting location-aware computing in smart classroom[A]. In Proceedings of the 4th International Conference on Web-based Learning[C], Hong Kong, July 31-August 3,2005,1-13.
    23. Ichiro S.Location-aware communication in smart spaces[A]. In Proceedings of 2007 International Conference on Multimedia and Ubiquitous Engineering(MUE 2007) [C], Seoul, South Korea, Apr 26-28,2007,1027-1034.
    24. Lee D L, Xu J L, Zheng B H, et al. Data management in location-dependent information services[J]. IEEE Pervasive Computing,2002,1(3):65-72.
    25. Suo Y, Miyata N, Ishida T, et al. Open smart classroom:Extensible and scalable smart space using Web service technology [A]. In Proceedings of The 6th International Conference on Advances in Web Based Learning(ICWL 2007)[C], Edinburgh, United Kingdom, Aug 15-17,2007,428-439.
    26. Mcneff J G. The global positioning system[J]. IEEE Transaction on Microwave Theory and Techniques,2002,50(3):645-652.
    27. An X L, Prasad R V, Wang J, et al. OPT-online person tracking system for context-awareness in wireless personal network [A]. In Proceedings of The 2nd International Workshop on Multi-hop Ad Hoc Networks:From Theory to Reality[C], Florence, Italy. May 26,2006,47-54.
    28. Chan L W, Chang J R, Chen Y C, et al. Collaborative localization:Enhancing WiFi-based position estimation with neighborhood links in clusters[A]. In Proceedings of The 4th International Conference on Pervasive Computing[C], Dublin, Ireland, May 7-10,2006,50-66.
    29. Gu H, Shi Y, Chen Y, et al. Cicada:A highly-precise easy-embedded and omni-directional indoor location sensing system[A]. In Proceedings of The First International Conference on Grid and Pervasive Computing[C],Taichung, Taiwan, May 3-5,2006,385-394.
    30. Roy W, Andy H, Veronica F, et al. The active badge location system[J]. ACM Transaction on Information Systems,1992,10(1):91-102.
    31. Harter A, Hopper A, Steggles P. The anatomy of a context-aware application[J]. Wireless Networks, 2002,8(3):187-189.
    32. Bahl P, Padmanabhan V N. RADAR:An in-building RF-based user location and tracking system[A]. In Proceedings of the 19th Annual Joint Conference of the IEEE Computer and Communication Societies (INFOCOM 2000)[C]. Tel Aviv, Israel, March 26-30,2000,775-784.
    33. Priyantha N B, Chakraborty A, Balakrishnan H. The cricket location-support system[A].In Proceedings of the 6th ACM Annual International Conference on Mobile Computing and Networking[C], Boston, USA,2000:32-43.
    34. Krumm J, Harries S, Meyers B, et al. Multi-camera multi-person tracking for easy living[A]. In Proceedings of Third IEEE International Workshop Visual Surveillance[C], Dublin, Ireland,2000, 3-10.
    35. Orr R J, Abowd G D. The smart floor:A mechanism for natural user identification and tracking[A].In Proceedings of the 2000 Conference on Human Factors in Computing Systems(CHI 2000) [C],. Hague, Netherlands,2000,275-276.
    36. Bruno R, Delmastro F. Design and analysis of a bluetooth-based indoor localization system[J]. Personal Wireless Communication,2003,2775:711-725.
    37. Introduction toUbisee.Http://www.ubisee.net,2004-05.
    38. Ni L M, Liu Y H, Lau Y C, et al. LANDMARC:Indoor location sensing using active RFID[J]. Wireless Net-Works,2004,10(6):701-710.
    39. Jay W, Colin L. Designing a positioning system for finding things and people indoors[J]. IEEE Spectrum,1998,35(9):71-78.
    40. Cabri G, Leonardi L, Mamei M, et al. Location dependent services for mobile users[J]. IEEE Transaction on Systems Man and Cybernetics, Part A,2003,33(6):667-681.
    41. Ito S, Kawaguchi N.Bayesian based location estimation system using wireless LAN[C]. In Proceedings of Third IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom 2005)[C], Kauai Island, United States,2005,3:273-278.
    42. Lee S Y, Park J T. NLOS error mitigation in a location estimation of object based on RTLS using kalman filter[A]. In Proceedings of 2006 SICE-ICASE International Joint Conference[C]. Busan, South Korea London, Oct 18-21,2006,2942-2946.
    43.谷红亮,史元春,申瑞民等.一种用于智能空间的多目标跟踪室内定位系统[J].计算机学报,2007,30(9):1603-1610.
    44. Kovavisaruch L, Ho K C. Alternate source and receiver location estimation using TDOA with receiver position uncertainties[C]. In Proceedings of ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing Proceedings[C], Philadelphia, United States,2005, 1065-1068.
    45. Welch G, Bishop GSCAAT:Incremental tracking with incomplete information[A]. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics[C], Los Angeles, CA, USA,1997,333-344.
    46. Goh E, Chieng D, Mustapha A K, et al. A context-aware architecture for smart space environment[A]. In Proceedings of 2007 International Conference on Multimedia and Ubiquitous Engineering(MUE 2007)[C], Seoul, Korea, April 26-28,2007,908-913.
    47. Schilit W N. A system architecture for context-aware mobile computing[Dissertation]. New York, Columbia University,1995,66-94.
    48. Schllit B N, Adams N, Want R. Context-aware computing application [A]. In Proceedings of the 1st International Workshop on Mobile Computing Systems and Application[C], Santa Cruz, USA,1994, 85-90.
    49. Brown P J, Bovey J D. Context-aware application:From the laboratory to the marketplace[J]. IEEE Personal Communication,2001,4(5),58-64.
    50. Franklin D, Flaschbart J. All gadget and no representation makes jack a dull environment [A]. In Proceedings of the AAAI 1998 Spring symposium on intelligent Environments[C], Palo Alto, CA, March 23-25,1998,155-160.
    51. Andy W, Alan J, et al. A new location technique for the active office[J]. IEEE Personal Communication,1997,4(5):42-47.
    52. Dey A K. Providing architectural support for building context-aware application[D].Georgia USA: Georgia Institute of Technology,2000.
    53. Abowd G D, Dey A K. Towards a better understanding of context and context-awareness [A]. In Proceeding of the Workshop on the What, Who, Where, When and How of context-awareness at CHI 2000[C], Hague, Netherlands, April 2000,304-307.
    54. Coutaz J, Crowley J L, Dobson S, et al. Context is key[J]. Communication of the ACM,2005, 48(3):49-53.
    55. Gregory D, Abowd, Mynatt E D. Charting past, present and future research on ubiquitous computing[J]. ACM Transaction on Computer-Human Interaction,2002,7(1):29-58.
    56. Choi W J, Tekinay S. Location based services for next generation wireless mobile networks [A]. In Proceedings of 57th IEEE Semiannual Vehicular Technology Conference(VTC 2003-Spring)[C], Orlando, USA,2003,3:1988-1992
    57. Harle R K. Maintaining a world model in a location-aware smart space[A]. In Proceedings of 2006 First European Conference on Smart Sensing and Context[C], Echede, Netherlands, October 25-27, 2006,128-42.
    58. Huang J D, Yeh C S, Chen C S, et al. Design and implementation of a wireless sensor network for smart living spaces [A]. In Proceedings of Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008[C], San Diego, United States, Mar 10-13,2008, 69323-69323.
    59. Lee H S, Song B, Youn H Y. A Study on the indoor real-time tracking system to reduce the interference problem[A]. In Proceedings of The 6th International Conference on Computational Science(ICCS2006)[C], Reading, England, May 28-31,2006:910-917.
    60. Nikolaos D, John S, Lazaros P. Perceptive middleware and intelligent agents enhancing service autonomy in smart spaces[A]. In Proceedings of 2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology[C], Hong Kong, China, Dec 18-22,2006,276-283.
    61. Varshavsky A, Lara E d, Hightower J, et al. GSM indoor localization[J].Pervasive and Mobile Computing,2007.3(6):698-720.
    62. TON G F, TSO S K, XU T Z. A high precision ultra-sonic docking system used for automatic guided vehicle[J]. Sensors and Actuators,2005,118 (A):183-189.
    63. Nguyen T V, Lee D G, Seol D G, et al. Ubiquitous access to home appliance control system using infrared ray and power line communication[A]. In Proceedings of 2007 the 3rd IEEE/IFIP International Conference in Central Asia on Internet[C], Tel Aviv, Israel, Sept 26-28,2007,1-4.
    64. Arunabh C, Ayyangar R H. Analysis of UHF passive RFID tag behavior and study of their application in low range indoor location tracking[A]. In Proceedings of 2007 IEEE Antennas and Propagation Society International Symposium, AP-S[C], Honolulu, United States, Jun 10-15,2007,1217-1220.
    65. Pittet S, Renaudin V, Merminod B, et al. UWB and MEMS based indoor navigation[J]. Journal of Navigation,2008,61(3):369-384.
    66. Kuo S P, Kuo H J, Tseng Y C, et al. Detecting movement of beacon in location-t racking wireless sensor networks[A]. In Proceedings of 2007 IEEE 66th Vehicular Technology Conference[C], Baltimore, USA,2007,362-366.
    67. Hile H, Borriello G. Positioning and orientation in indoor environments using camera phones[J]. IEEE Computer Graphics and Application 2008,28(4):32-39.
    68. Nguyen T V, Lee D G, Seol Y H, et al. Ubiquitous access to home appliance control system using infrared ray and power line communication[A]. In Proceedings of The 3rd IEEE/IFIP International Conference in Central Asia on Internet[C], Tashkent, Uzbekistan, Sept 26-28.2007,1-4.
    69. Patil A P, Kim D J, Ni L M. A study of frequency interference and indoor location sensing with 802.11b and bluetooth technologies[J].International Journal of Mobile Communication, 2006,4(6):621-644.
    70. Gonzalez-Castano F J, Garcia-Reinoso J, Gil-Castineira F, et al. Bluetooth-assisted context-awareness in educational data networks[J].Computers & Education,2005,45(1):105-121.
    71. Hexamite. Local Positioning System. http://www.hexamite.com/.July 2002.
    72. Gezici S, Giannakis Z T, Giannakis G B, et al. Localization via ultra-wideband radios:a look at positioning aspects for future sensor networks[J]. IEEE Signal Processing,2005,22(4):70-84.
    73. Win M Z, Scholtz R A. Characterization of ultra-wide bandwidth wireless indoor channels:A communication-theoretic view[J]. IEEE Journal on Selected Areas in Communication,2002, 20(9):1613-1627.
    74. Lottici V, D'Andrea A, Mengali U. Channel estimation for ulrta-wideband communication [J]. IEEE Journal on Selected Areas in Communication,2002,20(9):1638-1645.
    75. Kgen Y, LAN O. Performance of UWB position estimation based on time of arrival measurements [A]. In Proceedings of 2004 International Workshop on Ultra Wide Band Systems and Technologies [C], Kyoto, Japan,2004,400-404.
    76. Park C, Rappaport T S. Short-range wireless communication for next-generation networks:UWB,60 GHz millimeter-wave WPAN, and ZigBee[J]. IEEE Wireless Communication,2007,14(4):70-78.
    77. Hightower J, Borriello G. Location systems for ubiquitous computing [J]. IEEE Computer,2001, 34(8):57-66.
    78. Bulusu N, Heidemann J, Estrin D. GPS-less low-cost outdoor localization for very small devices[J].IEEE Personal Communication,2000,7(5):28-34.
    79. Nafarieh A, How J. A testbed for localizing wireless LAN devices using received signal strength[A]. In Proceedings of CR 2008.6th Annual Communication Networks and Services Research Conference[C], Halifax, Nova Scotia, Canada, May 2008,481-487.
    80. Brumitt B, Krumm J, Meyers B, Shafer S. Ubiquitous computing and the role of geometry [J]. IEEE Personal Communication,2000,7(5):41-43.
    81. Bulusu N, Heidemann J, Estrin D. GPS-less Low-Cost Outdoor Localization for Very Small Devices[J]. IEEE Personal Communication,2000,28-34.
    82. Reyero L, Delisle Y. Always best located, a pervasive positioning system [A]. In Proceedings of 2007 ISWPC'07.2nd International Symposium on Wireless Pervasive Computing[C], San Juan, Puerto Rico, Feb 5-7,2007,572-576.
    83. Merrit R. Location apps find their place[J]. Electronic Engineering Times,2005,1357:32-42.
    84. Pan J, Kwok T, Qiang Y, et al. Multidimensional vector regression for accurate and low-cost location estimation in pervasive computing [J]. IEEE Transaction on Knowledge and Data Engineering,2006, 18(9):1181-1193.
    85. Savvides A, Han C, Srivastava M. Dynamic fine-grained localization in ad-hoc networks of sensors[A]. In Proceedings of 7th ACM Int. Conf on Mobile Computing and Networking (Mobicom)[C], Rome, Italy,2001,166-179.
    86. Pham T L, Schneider G, Goose S. Exploiting location-based composite devices to support and facilitate situated ubiquitous computing[A].In Proceedings of 2nd International Symposium on Handheld and Ubiquitous Computing, HUC 2000[C], Bristol, UK, Springer Verlag,2000,143-156.
    87. Kitasuka T, Nakanishi T, Fukuda A. Location estimation system using wireless ad-hoc network[A]. In Proceedings of 5th International Symposium on Wireless Personal Multimedia Communication[C], Bangalore, India, Jan 7-12,2002,1:305-309.
    88. Lee S Y, Yang W C. A non-coherent UWB direct chaotic indoor positioning system using fuzzy logic algorithm [A]. In Proceedings of 9th International Conference on Advanced Communication Technology, ICACT 2007[C], Gangwon-Do, South Korea, Feb 12-14,2007,3:2021-2025.
    89. Anon. Local positioning system:A cost effective and accurate alternative/enhancement to GPS[J]. Research Disclosure,2006,506:705-706.
    90. Dix A, Rodden T, Davies N. Exploiting space and location as a design framework for interactive mobile systems[J]. ACM Transaction on Computer-Human Interaction (TOCHI),2000,7(3):285-321.
    91.黄廷祝.线性代数与空间解析几何[M].北京:高等教育出版社,2003.
    92.吴光磊.解析几何简明教程[M].北京:高等教育出版社,2003.
    93. Xiu J J, He Y. Location error analysis of direction finding location system [A]. In Proceedings of IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communication[C], Beijing, China, Aug 8-12,2005,1484-1487.
    94. Doherty L. Algorithms for position and data recovery in wireless sensor networks[D].Master's thesis, UC Berkeley,2000.
    95. Doherty L, Pister K S J, Ghaoui L E. Convex position estimation in wireless sensor networks[A]. In Proceedings of 20th Annual Joint Conference of the IEEE Computer and Communication Societies[C], Anchorage, USA, Apr 24-26,2001,3:1655-1663.
    96. Dearman D, Varshavsky A, De L Eyal, et al. An exploration of location error estimation [A]. In Proceedings of 9th International Conference on Ubiquitous Computing(UbiComp 2007) [C], Inbruck, Austria, Sep 16-19,2007,181-198.
    97. Savarese C, Rabaey J, Beutel J. Locationing in distributed ad-hoc wireless sensor networks[A]. In Proceedings of IEEE Intel Conf on Acoustics, Speech, and Signal Processing(ICASSP)[C], Salt Lake City, UT, May 2001,2037-2040.
    98. Priyantha N B, Chakraborty A, Balakrishnan H. The cricket location-support system[A]. In Proceedings of ACM MOBICOM[C], Boston, MA, August 2000,32-43.
    99. Kim S B, Park C, Kang D Y, et al. An efficient positioning algorithm using ultrasound and RF[J]. International Journal of Control, Automation and Systems,2008,6(4):544-550.
    100.赵海.普适计算[M],北京:东北大学出版社,2005.
    101. Han G J, Zhao H, Wang J D, et al. Webit:A minimum and efficient internet server for non-PC devices[A].In Proceedings of the IEEE Global Telecommunication Conference (IEEE GLOBECOM'03) [C], San Francisco, California, USA, Dec 1-5,2003,5:2928-2931.
    102.韩光洁,赵海,王金东,等Embedded Internet环境下Webit 2.0体系结构的研究与实现[J].通讯学报,2004,25(9):62-68.
    103. Petrovski I, Surouvtcev I, Petrovskaia T. Precise navigation indoor[A]. In Proceedings of SICE Annual Conference 2004[C], Sapporo, Japan, Aug 4-6,2004,1521-1526.
    104. Mark F, Nel S, Alexandre V P.3D indoor velocity vector determination using GS based repeaters[A]. In Proceedings of 18th International Technical Meeting of the Satellite Division of The Institute of Navigation, ION GS 2005[C], Long Beach, US, Sep 13-16,2005,2811-2819.
    105. Dalla R A, Raizer A, Pichon L Optimal indoor transmitters location using TLM and Kriging methods[J]. IEEE Transaction on Magnetics,2008,44(6):1354-1357.
    106. Candy Y, Suresh S. Tracking people in indoor environments [A]. In Proceedings of 5th International Conference on Smart Homes and Health Telematics, ICOST 2007[C], Nara, Japan, Jun 21-23,2007, 44-53.
    107. Brumitt B, Krumm J, Meyers B, Shafer S. Ubiquitous computing and the role of geometry [J]. IEEE Personal Communication,2000,7(5):41-43.
    108.黄廷祝.线性代数与空间解析几何[M].北京:高等教育出版社,2003.
    109. Dongjin Son, Helmy A, Krishnamachari B. The effect of mobility-induced location errors on geographic routing in ad hoc networks:analysis and improvement using mobility prediction [A]. In Proceedings of IEEE Wireless Communication and Networking Conference[C],2004,1:189-194.
    110. Krizman K J, Biedka T E, Rappaport T S. Wireless position location:Fundamentals, implementation strategies, and sources of error[A].In Proceedings of IEEE 47th Vehicular Technology Conference[C], 1997,2:919-923.
    111. Shu H C, Si D J, Ge Y Z, Chen X Y. A least error squares method for locating fault on coupled double-circuit HV transmission line using one terminal data[A]. In Proceedings of PowerCon 2002 International Conference on Power System Technology[C],2002,4:2101-2105.
    112. Ber H G, Burnett T H, Gran R, Wilkes R J. GPS time synchronization in school-network cosmic ray detectors[J]. IEEE Transaction on Nuclear Science,2004,51(3):848-853.
    113. He L X, Sun Z K, Xie X G. Location error analysis and a tracking algorithm in a bistatic system [A].In Proceedings of the IEEE 1992 National Aerospace and Electronics Conference [C],1992,2:592-597.
    114. Izquierdo F, Ciurana M, Barcelo F, et al. Performance evaluation of a TOA-based trilateration method to locate terminals in WLAN[A]. In Proceedings of 2006 1st International Symposium on Wireless Pervasive Computing[C], Phuket, Thailand, Jan 16-18,2006,1-5.
    115. Feng K T, Chen C L, Chen C H. GALE:An enhanced geometry-assisted location estimation algorithm for NLOS environments [J].IEEE Tran. On Mobile Computing,2008,7(2):199-213.
    116. Elson J, Romer K. Wireless Sensor Networks:A new regime for time synchronization[A].In Proceedings of ACM SIGCOMM Computer Communication Review (CCR)[C],2003,33(1):149-154.
    117. Romer K. Time synchronization in Ad hoc networks[A].In Proceeding of MobiHoc 2001 [C], Long Beach, USA,2001,76-80.
    118. Sivrikaya F, Yener B. Time synchronization in sensor networks:a survey[J]. IEEE Network,2004, 18(4):45-50.
    119. Ber H G, Burnett T H, Gran R, Wilkes R J. GPS time synchronization in school-network cosmic ray detectors[J]. IEEE Transaction on Nuclear Science,2004,51(3):848-853.
    120. Johannessen S. Time synchronization in a local area network[J]. IEEE Control Systems Magazine, 2004,24(2):61-69.
    121. Zhong E J, Huang T Z. Geometric dilution of precision in navigation computation [A].In Proceedings of 2006 International Conference on Machine Learning and Cybernetics(ICMLC 2006)[C], Dalian, China, Aug 13-16,2006,4116-4119.