O_3和UV-B增加对大豆生长和产量影响的光合损伤机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,日益升高的地表O3浓度以及由于臭氧层损耗导致的UV-B辐射增强引起了各国政府的广泛关注,地表的O3和UV-B辐射对农作物的生理生态以及产量都产生了严重影响,直接威胁全球的粮食安全。因此,本文基于大田开顶式气室(OTC)大田试验,设置了CK、100nL·L-103(01)、150nL·L-103(02)以及UV-B增强10%(UV)、UV-B增强10%与100nL·L-103复合(UV+O1)、UV-B增强10%与150nL·L-103复合(UV+02)6个处理组,开展了地表O3浓度增加和UV-B辐射增强环境下大豆光合系统、生长、生理以及产量响应的研究,并从光合损伤角度分析UV-B辐射和03浓度增加影响大豆生长及产量的原因,为研究未来气候变化背景下UV-B辐射增强和03浓度增加胁迫对大豆的影响提供理论参考。主要结果如下:
     (1)UV-B和O3胁迫对大豆的生长生理有着明显的不利影响,生育期缩短,叶面积下降,植株老化提前。随着O3浓度的升高,大豆的株高、叶面积、根瘤数、根瘤重、干湿重等生长指标均显著降低。O3浓度越高,叶面积越小。高浓度O3情况下10%增强的UV-B辐射基本无影响。低O3浓度情况下,10%UV-B辐射增强后大豆的株高、叶面积、干重受显著影响。
     (2)O3浓度增加和UV-B辐射增强都会导致大豆产量下降。03浓度愈高,产量受影响愈严重,且O3胁迫对大豆产量影响的程度要高于UV-B辐射。
     (3)100nL·L-1浓度的O3和10%UV-B辐射增强及其复合处理下,O3对大豆叶绿素含量产生了显著影响,而UV-B辐射对大豆叶绿素含量的影响不显著,复合处理对大豆叶绿素含量的影响不仅存在协同作用,且O3因子在此过程中起了主导作用。
     (4)UV-B和O3胁迫处理大豆的净光合速率,不同处理组与对照组差异均显著,但两单因子处理组与复合处理组之间无显著差异,复合处理比单独作用的影响有所加深,但是小于两者单独影响的简单累加。影响叶片光合作用下降的主要原因都是非气孔因素。大豆叶片的光合过程对UV-B和O3胁迫的响应存在一定差异,对O3更敏感。
During the last several decades, significant reductions in the concentrations of stratospheric ozone (O3) have been reported. This reduced ozone concentration causes an increment in ultraviolet-B radiation approaching to the surface earth. The elevated UV-B radiation and increased tropospheric O3concentrations maybe occur together and cause reductions in physiological and biochemical characteristics of crops and economic plants. The effects of UV-B and O3on plant growth and productivity have been reported separately for a large number of species by filed experiment, but only few experiments have focused on their interaction, it is not clear whether UV-B and O3induced damages are brought about with similar mechanisms. In this paper, the responses of photosynthetic system, physiological features, growth and yield under elevated surface ozone and UV-B radiation in field experiment by open top chamber (OTC) had been presented comprehensivly.This will contrbute to the agricultural production and sustainable development. The results in the paper are as follows:
     (1) UV-B and O3stress adverse effects on soybean growth and physiological, shorten the growth period, decreased leaf area and plant aging. With increasing O3concentration, the soybean plant height, leaf area, nodule number, nodule weight, wet and dry weight growth indices were significantly reduced. On the high O3concentrations the case of enhanced UV-B radiation had no influence, and10%higher UV-B radiation affect the soybean plant height, leaf area and dry weight significantly on low O3concentrations.
     (2) Enhanced O3concentration and UV-B radiation will lead to the decline in soybean production. The higher O3concentration, the more serious production reduces of soybean, and the effect of O3stress on soybean yield is higher than the UV-B radiation.
     (3)100nL·L-1enhanced ozone,10%higher than control group UV-B radiation, separately and in combination, ozone caused significant decrease in chlorophyll content, but supplemental UV-B radiation had no impressive effect on it. Compared with UV-B and O3alone, UV-B and O3in combination enhanced the negative effects on soybean chlorophyll content, and ozone stress dominated the combination stress effect of O3and UV-B.
     (4) The net photosynthetic rate, treatment groups are significant different to control group, but no significant difference between the two single factors treated with the compound, deepened the impact of the combined treatment, but less than the simple accumulation of two separate impacts. The main reasons for decline of soybean leaf photosynthesis are non-stomatal factors. There are some differences of soybean photosynthetic process in response to UV-B and O3stress, more sensitive to O3.
引文
1. Alexieva V, Sergiev I, Mapelli S,et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant Cell Environ. 2001,24:1337-1344.
    2. Al-Oudat M, Baydoun S A, Mohammad A. Effects of enhanced UV-B on growth and yield of two Syrian crops wheat (Triticum durum var. Horani) and broad beans(Vicia faba) under field conditions. Environ. Exp. Bot.,1998,40:11-16.
    3. Ambasht N K, M Agrawal. Effects of enhanced UV-B radiation and tropospheric ozone on physiological and biochemical characteristics of field grown wheat [J]. Biologia Plantarum,2003,47(4):625-628.
    4. Andersen C P. Source-sink balance and carbon allocation below ground in plants exposed to ozone [J]. New Phytologist,2003,157:213-228.
    5. Anil S, Grantz D A. Ozone impacts on competition between tomato and yellow nutsedge:Above and below ground effects [J].Crop Science,2005,45(4): 1587-1595.
    6. Ariyaphanphitak W, Chidthaisong A, Sarobol E,et al. Effects of elevated ozone concentrations on Thai jasmine rice cultivars(Oryza sativa L.)[J].Water, Air, and Soil Pollution,2005,167:179-200.
    7. Bergo E,Segalla A,Giacometti G M,et al.Role of visible light in the recovery of photosystem Ⅱ structure and function from ultraviolet-B stress in higher plants[J].Journal of Experimental botany,2003,54:1665-1673.
    8. Borowiak K, Drzewiecka K, Gasecka M, et al. Investigations of selected parameters of tobacco plants response to tropospheric ozone in ambient air conditions. Fres.Environ. Bull.2010,19:2480-2489.
    9. Brendley B W, Pell E J. Ozone-induced changes in biosynthesis of RuBPCO and associated compensation to stress in foliage of hybrid poplar [J]. Tree Physiology, 1998,18:81-90.
    10. Calatayud A, Iglesias D J, Talon M,et al. Effects of 2-month ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiol Biochem,2003,41:839-845.
    11. Calatayud A, Iglesias D J, Talon M,et al. Effects of long-term ozone exposure on citrus:chlorophyll a fluorescence and gas exchange [J]. Photosynthe,2006, 44(4):548-554.
    12. Caldwell M M, Robberecht R, Flint S D.Internal filters:Prospects for UV-acclimation in higher plants [J].Physiol Plant.1983, (58):445-450.
    13. Chameides W L, Kasibhatla P S, Yienger J Levy H. Growth of continental-scale metro-agro-plexus, regional ozone pollution, and world food production [J]. Science,1994,4:74-77.
    14. Elagoz V, Han S S, Manning W J. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity [J].Environmental Pollution,2006,140(3):395-405.
    15. Feng Zhaozhong, Kobayashi Kazuhiko. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis. Atmospheric Environment,2009,43:1510-1519.
    16. Feng Zongwei, Jin Minghong. Effects of ground-level ozone pollution on the yields of rice and winter wheat in Yangtze River Delta [J].Journal of Environmental science.2003,15(3):360-362.
    17. Fiscus E L, Booker F L, Burdey K O. Crop responses to ozone:uptake, modes of action, carbon assimilation and partitioning. Plant, Cell and Environment,2005, 28:997-1011.
    18. Fuhrer J, Booker F. Ecological issues related to ozone:agricultural issues [J]. Environment International,2003,29:141-154.
    19. Gonzalez R, Mepsted R, Wellburn A R,et al. Non-photosynthetic mechanisms of growth reduction in pea (Pisum sativum L.) exposed to UV-B radiation. Plant Cell Environ.1998,21:23-32.
    20. Grantz D A, Gunn S, Vu H B, et al.O3 impacts on plant development:a meta analysis of root/shoot allocation and growth [J]. Plant, Cell and Environment, 2006,29:1193-1209.
    21. Grulke N E, E Paoletti and R L Heath. Comparison of calculated and measured foliar O3 flux in crop and forest species. Environmental Pollution,2007,146: 640-647.
    22. Harmens H, Mills G, Emberson L D,et al. Implications of climate change for the stomatal flux of ozone:A case study for winter wheat [J]. Environmental Pollution,2007,146:763-770.
    23. Heath R L. Possible mechanisms for the inhibition of photosynthesis by ozone [J]. Photosynthesis Research.1994,39:439-451.
    24. Hidema J, Kumagai T. Sensitivity of rice to ultraviolet-B radiation. Ann. Bot. 2006,97,933-942.
    25. Kakani V G, Reddy K R, Zhao D, et al. Field crop responses to ultraviolet-B radiation:a review [J].Agricultural and Forest Meteorology,2003,120: 191-218.
    26. Keller F, Bassin S, Ammann C,et al. High-resolution modeling of AOT40 and stomatal ozone uptake in wheat and grassland:A comparison between 2000 and the hot summer of 2003 in Switzerland [J].Environmental Pollution.2007,146: 671-677.
    27. Kivimaenpaa M, Sellden G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics [J]. Environmental Pollution,2005,137(3):466-475.
    28. Klaudia Borowiak, Agnieszka Wujeska. Effect of tropospheric ozone on morphological characteristics of Nicotiana tabacum L., Phaseolus vulgaris L. and Petunia x hybrida L. in ambient air conditions [J]. Acta Biologica Hungarica.2012,63(1):71-84.
    29. Kobayashi K, Okadab M, Nouchi Ⅰ. Effects of ozone on dry matter partitioning and yield of Japanese cultivars of rice (Oryza sativa L.)[J]. Agriculture, Ecosystems and Environment,1995,53(1):109-122.
    30. Krupa S, McGrath M T, Andersen C P, et al. Ambient ozone and plant health [J]. Plant Disease,2001,85(1):4-12.
    31. Lee D S, Holland M R, Falla N. The potential impact of ozone on materials in the UK [J]. Atmospheric Environment,1996,30(7):1053-1065.
    32. Leipner J, Oxborough K, Baker N R.Primary sites of ozone induced perturbations of photosynthesis in leaves:identification and characterization in Phaseolus vulgaris using high resolution chlorophyll fluorescence imaging. Journal of Experimental Botany,2001,52:1689-1696.
    33. Li Y, Zu Y Q, Chen H Y. Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions [J]. Field Crops Res.2000,67:25-33.
    34. Mazza, C A, Boccalandro, H E, Giordano, C V, et al.Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops.Plant Physiol.2002,122:117-125.
    35. Meyer U, Kollner B J, Willen brink J, et al. Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat [J]. Agriculture. Ecosystems and Environment,2000,78 (1):49-55.
    36. Miller J D, Arteca R N, Pell E J. Senescence-associated gene expression during ozone-induced leaf senescence in Arabidopsis [J]. Plant physiology,1999,120: 1015-1023.
    37. Mirecki R M, Teramura A H. Effect of ultraviolet-B irradiance on soybean [J]. Plant physiol,1984,74:475-480.
    38. Morgan P B, Mies T A, Bollera G A, et al. Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean [J].New Phytologist,2006,170:333-343.
    39. Neale P J, Hayes D R, Goodrich V R, et al. Biologically effective UV-B in the mid-Atlantic region 1975-1997[A]. In:Abstract 27th Annual Meeting of Am Soc Photobiol Photochem Photobiol[C]. Am Soc Photobiol Photochem Photobiol,1999.69-79.
    40. Nogues S, Allen D J, Morison J I L, et al. Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants [J]. Plant Physiol.1998,117:173-181.
    41. Nogues S, Allen D J, Morison J I, et al. Characterization of stomatal closure caused by ultraviolet-B radiation[J].Plant Physiol.1999.121(2):489-49
    42. Rai R M, Agrawal, S B. Assessment of yield losses in tropical wheat using open top Chambers [J]. Atmospheric Environment,2007,41:9543-9554.
    43. Rech M, Mouget J L, Manceau A M, et al. Long-term acclimation to UV radiation:effects on growth, photosynthesis and carbonic anhydrase activity in marine diatoms [J]. Botanica Marina,2005,48(5):407-420.
    44. Pleijel H, Danielsson H, Ojanper K, et al. Relationships between ozone exposure and yield loss in European wheat and potato:A comparison of concentration and flux-based exposure indices [J]. Atmospheric Environment,2004,38: 2259-2269.
    45. Portmann R W, Daniel J S, Ravishankara A R. Stratospheric ozone depletion due to nitrous oxide:influences of other gases [J]. Philosophical Transactions.2012,367:1256-1264.
    46. Ros J, Tevini M. UV-radiation and indole-3-acetic acid:interaction during growth of seedlings and hypocotyl segments of sunflower [J]. Plant Physiol., 1995,146:295-305.
    47. Ruhland C T, Xiong F S, Clark W D, et al. The influence of ultraviolet-B radiation on growth, hydroxycinnamic acids and flavonoids of Descham psia antarctica during spring time ozone depletion in Antarctica [J]. Photochemistry and Photobiology,2005,81(5):1086-1093.
    48. Santos I, Almeida J M, Salema R. Plants of Zea mays L. developed under enhanced UV-B radiation. Ⅰ. Some ultrastructural and biochemical aspects [J]. Plant Physiol.1993,14:450-456.
    49. Savitch L V, Pocock T, Krol M, et al. Effects of growth under UV-A radiation on CO2 assimilation, carbon partitioning, PSⅡ photochemistry and resistance to UV-B radiation in Brassica napus cv. Topas [J]. Aust. J. Plant Physiol.2001, 28:203-212.
    50. Strid A, Porra R J. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant Cell Physiol.,1992,33: 1015-1023.
    51. Teramura A H, Ziska L H, Sztein A E. Changes in growth and photosynthetic capacity of rice with increased UV-B radiation [J]. Physiol. Plant,1991,83: 373-380.
    52. Thornley J H M. Mathematical models in plant physiology [M]. Beijing: Academic Press,1983.107-129.
    53. Vandermeiren K, C Black, H Pleijel, et al. Impact of rising tropospheric ozone on potato:effects on photosynthesis, growth, productivity and yield quality [J]. Plant Cell and Environment.2005,28:982-996.
    54. Wahid A. Influence of atmospheric pollutants on agriculture in developing countries:A case study with three new wheat varieties in Pakistan [J]. Science of the Total Environment,2006,371:304-313.
    55. Weber J A, Scott Clark C, Hogsett W E. Analysis of the relationships among O3 uptake, conductance, and photosynthesis in needles of Pinus ponderosa [J]. Tree Physiol,1993,13:157-172.
    56. Zeuthan J, Mikkelsen T N, MOller G P, et al. Effects of increased UV-B radiation and elevated levels of tropospheric ozone on physiological processes in European beech (Fagus sylvatica) [J]. Physiol Plant.1997,100:281-290.
    57. Zhao D, Reddy K R., Kakani V G., et al. Growth and physiological responses of cotton (Gossypium Hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environment conditions. Plant Cell Environ.2003: 771-782.
    58.安黎哲,王勋陵.臭氧熏气下春小麦叶片脂质过氧化作用的研究[J].植物生态学报,1994,18(2):171-176.
    59.白月明,王春乙,温民,等.臭氧浓度和熏气时间对菠菜生长和产量的影响[J].中国农业科学,2004,37(12):1971-1975.
    60.陈展,王效科,冯兆忠,等.臭氧对生态系统地下过程的影响[J].生态学杂志,2007,26(1):121-125.
    61.冯兆忠,小林和彦,王效科,等.小麦产量形成对大气臭氧浓度升高响应的整合分析[J].科学通报,2008,53(24):3080-3085.
    62.郭建平,王春乙,温民,等.大气臭氧浓度变化对水稻影响的试验研究[J].生态学报,2001,27(6):822-826.
    63.侯扶江,责桂英,韩发.田间增加紫外线(UV-B)辐射对大豆幼苗生长和光合作用的影响[J].植物生物学报,1998,22(3):256-261.
    64.胡莹莹,赵天宏,徐玲,等.臭氧浓度升高对小麦光合作用和产量构成的影响[J].农业现代化研究,2008,29(4):498-502.
    65.祭美菊,冯虎元,安黎哲,等.增强的UV-B辐射对植物影响的研究[J].应用生态学报,2002,13(3):359-364.
    66.金东艳,赵天宏,付宇,等.臭氧浓度升高对大豆光合作用及产量的影响[J].大豆科学,2009,28(4):632-635.
    67.金明红,冯宗炜.臭氧对冬小麦叶片膜保护系统的影响[J].生态学报,2000,20(3):444-447.
    68.金赛花,樊曙先,王自发.青海瓦里关地面臭氧浓度的变化特征[J],中国环境科学,2008,28(3):198-202.
    69.李彩虹,李勇,乌云塔娜,吴光磊,蒋高明.高浓度臭氧对大豆生长发育及产量的影响.应用生态学报,2010,21(9):2347-2352.
    70.李雪梅,何兴元,张利红,等.紫外辐射对菜豆不同叶位光合及保护酶活性的影响[J].生态学杂志,2006,25(5):517-520
    71.李元,岳明.紫外辐射生态学[M].中国环境科学出版社.2000.
    72.刘敏,李荣贵,范海,等.UV-B辐射对烟草光合色素和几种酶的影响[J].西北植物学报,2007,27(2):291-296.
    73.彭倩,周青.La(Ⅲ)对UV-B辐射胁迫下大豆叶绿体合成与降解影响的机理[J].中国农业气象,2007,28(3):285-288.
    74.师生波,贲桂英,赵新全,等.增强UV-B辐射对高山植物麻花艽净光合速率的影响[J].植物生态学报,2001,25(5):520-524.
    75.孙林,黄海山,赵秀勇.UV-B辐射增强对冬小麦生长发育及产量的影响.农村生态环境.2004,20(2):24-27.
    76.谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J].热带气象学报,2007,23(5):515-520.
    77.王春乙,白月明.臭氧和气溶胶浓度变化对农作物的影响研究[M].北京:气象出版社.2007.1-59.
    78.王小菁,潘瑞炽.UV-B对高等植物生长和产量及某些生理代谢过程的影响.植物生理学通讯,1995,31(5):385-389.
    79.王勋陵.增强紫外B辐射对植物及生态系统影响研究的发展趋势[J].西北植 物学报,2002,22(3):670-681.
    80.吴杏春,林文雄,黄忠良等.增强UV-B辐射对两种不同抗性水稻叶片光合生理及超显微结构的影响[J].生态学报,2007,27(2):554-566.
    81.吴荣军,郑有飞,赵泽,胡程达,王连喜.基于气孔导度和臭氧吸收模型的冬小麦干物质累积损失评估[J].生态学报,2010,30(11):2799-2808.
    82.谢居清,郑启伟,王效科,等.臭氧对原位条件下水稻叶片光合、穗部性状及产量构成的影响[J].西北农业学报,2006,15(3):27-30.
    83.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    84.许宏,杨景成,陈圣宾,等.植物的臭氧污染胁迫效应研究进展[J].植物生态学报,2007,31(6)1205-1213.
    85.杨开放,杨连新,王云霞,等.近地层臭氧浓度升高对杂交稻颖花形成的影响[J].应用生态学报,2009,20(3):609-614.
    86.杨连新,王云霞,朱建国,等.十年水稻FACE研究的产量响应[J].生态学报,2009,29(3):1486-1497.
    87.杨鹏辉,李贵全.环境生态对大豆生长发育的影响[J].山西农业科学,2004,32(1):18-21.
    88.姚芳芳,王效科,等.臭氧对农业生态系统影响的综合评估:以长江三角洲为例.生态毒理学报,2008,3(2):189-195.
    89.姚芳芳,王效科,陈展等.农田冬小麦生长和产量对臭氧动态暴露的响应[J].植物生态学报,2008,32(1):212-219.
    90.张立军,樊金娟.植物生理学实验教程[M].北京:中国农业大学出版社,2007,98-101.
    91.张其德,卢从明,刘丽娜.C02倍增对不同基因型大豆光合色素含量和荧光诱导动力学参数的影响.植物学报,1997,39(10):946-950.
    92.张静,王进,田丽萍.紫外线(UV-B)辐射增强对植物生长的研究进展[J].中国农学通报,2009,25(22):104-108.
    93.赵春生,彭丽,孙爱东,等.长江三角洲地区对流层臭氧的数值模拟研究[J].环境科学学报,2004,24(3):157-165.
    94.郑有飞,胡程达,吴荣军,等.臭氧胁迫对冬小麦光合作用、抗氧化系统和膜脂过氧化作用的影响[J].环境科学,2010a,31(7):233-241.
    95.郑有飞,胡程达,吴荣军,等.地表臭氧浓度升高对冬小麦光合作用的影响[J].生态学报,2010b,30(4):0847-0855.
    96.郑有飞,刘建军,王艳娜,等.增强UV-B辐射与其它因子复合作用对植物生长的影响研究[J].西北植物学报,2007,27(8):1702-1712.
    97.郑启伟,王效科,冯兆忠,等.臭氧对原位条件下冬小麦叶片光合色素、脂质过氧化的影响[J].西北植物学报,2005,25(11):2240-2244.
    98.周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社.2004.
    99.朱鹏锦,尚艳霞,师生波,等.植物对UV-B辐射胁迫响应的研究进展[J].热带生物学报,2011,2(1):89-96.