干气直接氯化制备二氯乙烷的工艺开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氯乙烷(EDC)是生产聚氯乙烯的最基本的原料,传统石油路线生产二氯乙烷的方法有两种:直接氯化法和氧氯化法。无论哪种工艺,都是以纯乙烯作为基础原料。使用石油炼制过程产生的干气替代纯乙烯,可以变废为宝,同时降低对乙烯的依赖。而且经济价值非常显著,具有十分广阔的应用前景。
     本文对干气直接氯化制备二氯乙烷工艺进行开发。考察相应的反应特性以及传质对氯化反应的影响,研究确定中试反应器型式、以及不同干气组成条件下相应最优的工艺条件:反应器形式为管道反应器串联鼓泡塔反应器,反应温度为84℃,乙烯与氯气配比为1:1.2,催化剂用量占EDC总量的0.4%,管道内物料停留时间约为14秒。在此条件下,主产物的选择性达99.5%,乙烯的转化率在98%以上,产品EDC的浓度98.5%以上。
Dichloroethane (EDC) is the basic material for preparing polrvinyl chloride (PVC). Direct chloration and oxychlorination are the traditional two methods to produce EDC from oil route. But pure ethylene is required in both of the methods. We can reduce dependence on ethylene using dry gas as substitute. At the same time, the prospection will be exciting because of the significant economic value.
     Develop a new process for preparing EDC from direct chloration of dry gas. The influences on this reaction by characteristics of mass transfer have been studied. Finally, optimal technology conditions are determined as follows:Reactor form is pipe reactor connecting bubble reactor in series, reaction temperature is 84℃, ratio of ethylene and chlorine is 1:1.2, catalyst consumption is 0.4% of the total EDC, residence time is 14 seconds. On this condition, selectivity of ethylene is 99.5%, conversion of ethylene is more than 98%, and the concentration of EDC can reach to 98.5%.
引文
[1]崔小明.二氯乙烷的生产技术进展及市场分析[J].精细化工原料及中间体,2007,(7):30-38.
    [2]曲帅卿,姜立涛,邓雪峰.催化裂化干气制乙苯装置苯耗高的原因分析及改进措施探讨[J].中外能源,2008(02):29-30.
    [3]中国石油化工股份有限公司.利用炼厂干气制氯乙烯的方法[P].CN1743298A,2006.
    [4]魏旭光,王生奎,张凤丽.某油田富气混相驱最小混相组成MMC的确定[J].西南石油大学学报.2010,(05):12-13.
    [5]刘焕举,周双然,李海青.电石法氯乙烯生产技术总结[J].聚氯乙烯,2007,(2):46-47.
    [6]刘焕举,周双然,李海青.电石法氯乙烯生产技术总结[J].聚氯乙烯,2007,(2):45.
    [7]何睿.多因素促二氯乙烷进一步回落[J].中国化工信息,2006,(49):A8.
    [8]Anno. Ethylene dichloride[J]. Chemical Week,2005,167 (33):37.
    [9]Anno. Ethylene dichloride[J]. ICI Chemical Business,2006,270 (10):47.
    [10]Harth K, Schindler G-P, Walsdorff C, et al. Method for the production of 1, 2-dichloroethane[P]. US 20040267063,2004.
    [11]Shirai, Kenji. Mitsui Chemicals[M]. Tokyo Kagaku Dojin.1998,154-161.
    [12]李雅丽.氯乙烯生产技术进展概述[J].中国化工信息,2006,(9):A15.
    [13]高凤霞.直接氯化法生产二氯乙烷的节能降耗新技术[J].Chemical Engineering Progress,2004,100(9):7-8.
    [14]黄云翔,德国Hoechst和Vinnolit公司氯乙烯和聚氯乙烯生产技术[J].中国氯碱,1996,(8):25-27.
    [15]王俐.二氯乙烷/氯乙烯生产技术进展[J].化学工业,2007,25(4):31-35.
    [16]李淑杰,赵素梅,董淑芳.聚氯乙烯工业生产技术进展[J].聚氯乙烯,2005,(9):112-117.
    [17]LG Licenses Mitsui. vinyl technology[J]. chem,2005,83(34):15.
    [18]顾卫民.乙烯直接氯化生产二氯乙烷的技术进展[J].中国氯碱,2006,(3):21-24.
    [19]赵新来.直接氯化法生产氯乙烯的新工艺[J].齐鲁石油化工2003,31(1):37-40
    [20]Ethylene Dichloride[J]. Chem Week2005,167(33):37.
    [21]钱伯章,朱建芳.二氯乙烷和氯乙烯单体的生产技术与市场分析[J].中国氯碱,2008,(2):1-3.
    [22]王宏宇,马铁柱,刘景忠等.直接氯化装置工艺参数的调整与安全、高负荷生产[J].聚氯乙烯,2004,(2):14-15.
    [23]Wang Li. Boiling reactor boosts efficiency of direct chlorination technology [J]. Chem Eng Progress,2004,110(11):7-8.
    [24]Mohapatra. A new EDC plant[J]. Chemical Engineering,2004,111(10):15.
    [25]Bauer M, Alda M, Priller J. Uhde to supply EDC plant with new reactor process[J]. Eur Chem News,2004,81(2116):34.
    [26]Morgan M. Alkane Aims[J]. Eur Chem News,2002,77 (2030):26-28.
    [27]Barbero, Margherita, Bazzi. EDC via oxygen lean oxychlorination[J]. Hydrocarbon Processing,2003,(3):91.
    [28]程铁欣,杨向光,吴越.La(n+1)NinO(3n+1)(n=1~4)复合氧化物的制备、表征和催化性能的研究[J].中国科学院上海冶金研究所;材料物理与化学(专业)博士论文2000年度.
    [29]吕学举,刘杰,周光栋等.CuCl2-KCl-LaCl3对乙烷氧化反应的催化性能[J].催化学报,2005,26(7):587-590.
    [30]胡妹华,袁向前,谢声礼.乙烯直接氯化制二氯乙烷反应特性分析[J].中国氯碱,2001,5(5):20-30.
    [31]张旭之,王松汗.氯乙烯生产工艺[M].化学工业出版社,1995,67-72.
    [32]Hundeck, Joachim, Scholz. Process for the preparation of 1,2-dichloroethane[P]. EP0112544,1984.
    [33]Hundeck, Joachim, Scholz. Process for the preparation of 1,2-dichloroethane[P]. EP0080098,1983.
    [34]荣国斌.有机化学[M].北京高等教育出版社,2006,36-37.
    [35]孙伟,王跃,王培建.1,2-二氯乙烷的气相色谱分析[J].氯碱工业,2005,7(7):27-31.
    [36]刘岭梅.乙烯中温直接氯化技术改进[J].聚氯乙烯,2008,36(10):45-47.
    [37]吴建华,郭瓦力,龚斌等.管式乙烯直接氯化反应制取二氯乙烷生产装置及生产方法[P].CN1834076A,2006.
    [38]Satoru Asait, Hidemi Nakamura, Yasuhiro Konishi. KINETICS OF ABSORPTION OF HYDROGEN SULFIDE INTO AQUEOUS Fe(Ⅲ) SOLUTIONS[J]. Korean J of Chem Eng.1997,14(5):307-311.
    [39]熊慧欣,周立祥.不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J].岩石矿物学杂质,2008,27(6):37-39.
    [40]沙琦.乙烯直接氯化反应催化剂国产化实验总结[J].中国氯碱,1996,(11):18-20.
    [41]Jiang Juncheng, Wang Zhirong, Cui Yiqing. System for testing explosion limit of combustible gas under nonstandard condition[J]. Faming Zhuanli Shenqing (2011)
    [42]Brandes, Elisabeth, Milde. Highly flammable gases and vapors[J]. Extension of the European Standard.2011,121(1):16-20.
    [43]张英华,黄志安.燃烧与爆炸学[M],冶金工业出版社,2001,152.
    [44]Chen Xin, Bi Sheng-shan, Wu Jiangtao. The explosion limit of dimethyl ether, methane and their mixtures[J]. Gongcheng Rewuli Xuebao,2009,30(8):1267-1270.
    [45]李怡.通过技术改造提高直接氯化生产能力[J].上海氯碱化工,2003,(5):15-19.
    [46]吴建华.单管多旋静态混合管式乙烯氯化反应装置及其方法[P].CN1817831A,2006
    [47]水喷射冷凝器和抽气器[M],轻工业出版社,1967,41-65
    [48]董瑞峰.直接氯化反应器喷嘴冲蚀原因浅析[J].中国氯碱,2008,(10):38-39.