牛乳β-乳球蛋白的检测及茶多酚对其免疫反应性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牛乳是主要的食物过敏原,避免摄入牛乳过敏原成分是预防牛乳过敏有效途径。目前,我国国内尚未对食品进行过敏原标签化管理,急需建立牛乳过敏原检测的相关标准和方法。因此,开展牛乳过敏原成分检测的研究十分必要。
     β-乳球蛋白(β-lactoglobulin,βLG)是牛乳的主要过敏原,被认为是检测食品中牛乳过敏原的特异性标志蛋白。同时,目前用于消除βLG致敏性的方法都有一定的局限性,寻求一种有效降低βLG的致敏性并保持其功能的有效手段对开展低致敏乳制品的研究具有十分重要的意义。
     本研究以牛乳βLG作为研究对象,基于βLG的免疫反应性建立起检测食物中βLG的方法。同时将茶多酚的主要活性成分没食子儿茶素没食子酸酯(epigallocatechingallate,EGCG)和没食子儿茶素(epigallocatechin,EGC)与βLG结合,分析茶多酚的主要活性成分如何与βLG结合及其对蛋白构象产生的影响,评价βLG结合茶多酚的主要活性成分后蛋白免疫反应性的变化,探讨βLG结合茶多酚活性成分后免疫反应性发生改变的机理。主要研究结果如下:
     (1)制备获得了八株抗β-乳球蛋白的单克隆抗体。这八株抗体纯度较高、特异性强、效价高、没有交叉反应。
     (2)利用合成的4个βLG主要IgG抗原表位的多肽片段,通过间接法ELISA和免疫点杂交检测所获得的八株单抗与4个βLG主要IgG抗原识别的情况。结果表明,所制备单克隆抗体1G5识别的抗原表位为51Glu-64Asp;1H8识别的抗原表位为67Arg-88Asn;3D11和4C3均识别的抗原表位为与129Asp-144Pro。
     (3)通过抗体筛选和配对,将已知抗原表位的单克隆抗体1G5和1H8作为配对抗体,建立了四种检测方法(双抗体夹心ELISA法,时间分辨免疫荧光法、免疫胶体金法和免疫印迹法)系统性检测食物中的牛乳βLG成分。双抗体夹心ELISA法检出限约为1.6ng mL~(-1);时间分辨免疫荧光法灵敏度约为0.2ng mL~(-1);免疫胶体金法检出低限约为0.2ng mL~(-1),其比传统的ELISA方法相比更简便和快捷。
     (4)通过荧光滴定法实验推断EGCG淬灭βLG内部荧光过程是一个静态淬灭过程,EGC淬灭βLG内部荧光过程是动态淬灭和静态淬灭同时存在的过程。EGCG和EGC与βLG相互结合的过程都是自发过程,EGCG与βLG结合可能是以疏水作用为主,EGC与βLG结合可能是以氢键和范德华力为主。
     (5)通过多光谱技术对蛋白的构象变化进行分析可知:EGCG和EGC可结合βLG,覆盖在蛋白的表面并对βLG的构象产生影响,但影响有限,蛋白的α-螺旋结构和β-折叠结构有所增加,蛋白分子的球形结构保持完整,EGCG和EGC使蛋白更为紧凑,对蛋白的整体构象并未产生破坏。同时,蛋白结合EGCG和EGC后,蛋白与IgG和IgE的结合能力有所下降。推断βLG结合EGCG和EGC后免疫反应性降低主要不是由蛋白构象改变造成的,EGCG或EGC可能直接结合在抗原表位上或抗原表位附近,从而使抗体难以识别结合到抗原表位上,导致抗原和抗体结合时在空间上存在位阻。EGCG结合βLG后对蛋白构象和免疫反应性的影响比EGC大。
     (6)βLG预热处理后与EGCG结合,其结合能力增强,蛋白免疫反应性的降低程度大于单一的热处理蛋白。
     总之,本研究建立起检测牛乳主要过敏原βLG的系列方法,填补国内的检测牛乳过敏原的空白。同时通过探讨βLG结合茶多酚主要活性成分后免疫反应性发生改变的机理,将为低致敏乳制品的开发提供新的思路和理论支持。
Allergy to cow’s milk proteins is a common food allergy. Specific avoidance of cow milkis the only way to prevent milk allergies. However, there is yet no domestic food-labeling lawfor food allergens. It is necessary to establish methods for the detection of milk contaminationin food products.
     Bovine β-lactoglobulin (βLG) is a major allergen of cow milk and considered to be aspecific milk allergen marker in food products. The current widely used methods to diminishallergenicity of βLG all have limitations. It is crucial to develop new methods that wouldreduce the allergenicity without destroying functional properties of βLG.
     Our research focused on βLG. A series of detection methods for βLG in food productswere established based on the immunoreactivity of βLG. We prepared βLG-catechincomplexes by binding the protein with epigallocatechingallate (EGCG) and epigallocatechin(EGC), respectively. We explored how EGCG and EGC bound to βLG and the structurechanges of βLG before and after these catechins binding. Then we estimatedimmunoreactivity of these complexes. The present research aimed to perform a mechanisticstudy concerning immunoreactivity changes of βLG before and after catechins binding. Thefollowing six aspects of research are listed below:
     (1)Eght monoclonal antibodies (mAbs) against βLG allergen were prepared andidentificated. The results demonstrated that these mAbs were pure, specific without anycross-reactivity toward other food allergen sources.
     (2)Four major IgG epitopes of βLG were synthesized and probed by the mAbs throughindirect ELISA and immuno dot-blotting. The results showed that the epitopes recognized by1G5was located in the region51Glu-64Asp; for1H8,67Arg-88Asn; for3D11and4C3,129Asp-144Pro.
     (3)Two mAbs (1H8and1G5) with identified epitope regions were paired anddeveloped into detection methods of βLG allergen. The detection methods included doubleantibody sandwich ELISA (S-ELISA), time-resolved fluoroimmunoassay (TRFIA), goldimmunochromatography assay (GICA) and western blotting (WB). The detection limit ofS-ELISA, TRFIA and GICA were1.6ng mL~(-1),0.2ng mL~(-1)and0.2ng mL~(-1), respectively.GICA method described here is much simpler and faster than an ELISA assay.
     (4)The binding interactions between EGCG and EGC which βLG were thoroughlystudied by fluorescence quenching. It indicated that the nature of EGCG quenching was static,while the nature of EGC quenching involved a combined quenching (static and dynamic) process. The thermodynamic parameters of the interaction between EGCG and EGC withβLG indicated that the interactions process was spontaneous. The results suggested thathydrophobic forces play a major role in the binding between EGCG and βLG, Van der Waalsinteractions and hydrogen bonds play major roles between EGC and βLG.
     (5)The results of multi-spectroscopic experiments revealed that βLG bound by EGCGand EGC, which resulted in slight change of native conformation of βLG without apparentdisruption. It was found that the α-helical and β-sheet content of the protein were slightlyincreased. The conformation of βLG was little more compact after EGCG and EGC binding.The reduction of the binding affinity of βLG-catechins complexes with antibodies may due tothe shielding action of the βLG epitopes induced by the attachment of catechins to βLG.EGCG and EGC in βLG-catechins complex may be attached directly to the epitope(s) orregion(s) in the proximity, thereby preventing anti-βLG antibodies from accessing theantigens. The effect of EGCG was greater than EGC.
     (6)Thermal treatment on protein would increases binding affinity of EGCG with βLG.EGCG was attached on the preheat βLG,which can reduced the binding activities betweenantigen and antibodies greater than EGCG bingding βLG without preheat.
     In general, a series of detection methods for βLG in food products were established,which filled up domestic blank. At the same time, we examined the mechanismimmuoreativity changes of βLG before and after tea polypheols binding. We hope thatour research will provide new alternative and theoretic supports for development ofhypoallergenic milk products.
引文
[1] Ji K.M., Chen J.J., Li M., et al. Anaphylactic shock and lethal anaphylaxis caused byfood consumption in China[J]. Trends in Food Science and Technology,2009,20(5):227-231
    [2] Fox A.T., Du T.G., Lang A., et al. Food allergy as a risk factor for nurritional rickets[J].Pediatr Allergy Immunol,2004,15(6):566-569
    [3] Hendra T.. Passing the food allergen test[J]. Cereal Foods World,2003,48(1):20
    [4] Sampson H.A.. Update on food allergy[J]. Journal of Allergy and Clinical Immunology,2004,113(5):805–819
    [5] Sicherer S.H., Munoz-Furlong A, Sampson H.A.. Prevalence of seafood allergy in theUnited States determined by a random telephone survey[J]. Journal of Allergy andClinical Immunology,2004,114(1):159–165
    [6] Sampson H.A., What should we be doing for children with peanut allergy [J]. TheJournal of Pediatrics,2000,137(6):741–743.
    [7]胡燕,黎海芪.0-24个月儿童食物过敏流行病学研究[J].中华儿科杂志,2000,38(7):431-434
    [8] Poms R.E., Klein C.L., Anklam E.. Methods for allergen analysis in food: a review[J].Food Additives and Contaminants,2004,21(1):1–31
    [9] J rvinend K.M., Suomalaainen H.. Development of cow's milk allergy in breast-fedinfants[J]. Clinical and Experimental Allergy,2001,31:978-987
    [10] Sampson H.A.. Food allergy. part2: diagnosis and management[J]. Journal Journal ofAllergy and Clinical Immunology, l999,103(6):981-989
    [11] Pousen L.K.. Insearch of a new paradigm: mechanisms of sensitization and elicitation offood allergy[J]. Allergy,2005,60(5):549-558
    [12] Kagan R.S.. Food allergy: an overview[J]. Environ Health Perspect,2003,111(2):223-225
    [13] Food and Drug Administration (FDA). Food allergen labeling and consumer protectionact of Aug2,2004,2004.
    [14] Li M., Ji K.M., Liu Z.G., et al. Food allergen labeling during the2008Beijing Olympicsand Paralympics and beyond[J]. Trends in Food Science and Technology,2009,20:100-102
    [15] McKay, J.. Food industry and economic development in the Asia Pacific[J]. Asia PacificJournal of Clinical Nutrition,2007,16(Suppl1):80-84
    [16] Wu X. L., Wu H., Ji K.M., et al. Socio-technical innovations for total food chain safetyduring the2008Beijing Olympics and Paralympics and beyond[J]. Trends in FoodScience and Technology,2010,21:44-51
    [17]周淑红.国外关于食品过敏标签的现状及启示[J].世界农业,2007,6:67-68
    [18] Wal J.M.. Structure and function of milk allergens[J]. Allergy,2001,56(Suppl67):35-38
    [19] Mills E.N., Valovirta E., Madsen C., et al. Information provision for allergyconsumers-where are we going with food allergen labelling[J]. Allergy,2004,59(12):1262-1268
    [20] Brownlow S., Morais J.H, Cooper R., et al. Bovine β-lactoglobulin at1.8resolutionstill an enigmatic lipocalin [J]. Structure,1997(5):481-495
    [21] Pourpak Z., Motsafaie A., Hasan Z., et al. A lobotatory method for purification of majorcows milk allergens[J]. Immunoassay Immunochem,2004,25(4):385-397
    [22] Monaci L., Tregodt V., Hengel A. J. V., et.al. Milk allergens, their characteristics andtheir detection in food: A review[J]. European Food Research and Technology,2006,223:149–179
    [23] Crittenden R.G., Bennett L.E.. Cow’s milk allergy: a complex disorder[J]. Journal of theAmerican College of Nutrition,24(6):582–591
    [24] Bennett L., Wheatcroft R., Smithers G.A.. Review of allergic and intolerant reactions todairy protein experienced by non-infant consumers[J]. Australian Journal of DairyTechnology,2001,56:126
    [25] Fritsche R., Pahud J.J., Pecquet S., et al. Induction of systemic immunologic tolerance toβ-lactoglobulin by oral administration of a whey protein hydrolysate[J]. Journal ofAllergy and Clinical Immunology,1997,100(2):266-273
    [26] Hales B.J., Martin A.C., Pearce L.J., et al. IgE and IgG anti-housedust mite specificitiesin allergic disease[J]. Journal of Allergy and Clinical Immunology,2006,118(2):361-367
    [27] Jenmalm M.C., Bjorksten B.. Exposure to cow’s milk during the first3months of life isassociated with increased levels of IgG subclass antibodies to beta-lactoglobulin to8years[J]. Journal of Allergy and Clinical Immunology,1998,102(4Pt l):671-678
    [28]邹寒冰,许以平.32例过敏疾病患者血清14种食物过敏原特异性lgG抗体的检测[J].标记免疫分析与临床,2006,13(l):13-15
    [29] De B.D., Dupont C.. Diagnosis of non-IgE mediated digestive manifestations of cow’smilk allergy[J]. Journal of Pediatric,2004,45:716
    [30] Siltanen M., Kajossri M., Savilallti E. M., et al. IgG and IgA antibody levels tocow’s milk are low at age10years in children born preterm[J]. Journal of Allergy andClinical Immunology,2002,110(4):658-663
    [31] Saalman R., Carlsson B., Fallstrom S.P., et al. Antibody-dependent cell-mediatedcytotoxicity to beta-lactoglobulin-coated cells with sera from children with intolerance ofcow’smilk protein[J]. Journal of Allergy and Clinical Immunology,1991,85(3):446-452
    [32] Duehateau J., Miehils A., Lambert J., et al. Anti-betalactoglobulin IgG antibodiesbind to a specifie profile of epitopes when patients allergic to cow’s milk proteins[J].Clinical and Experimental Allergy,1998,28(7):824-833
    [33]刘晓艳,乔海灵. IgG抗体在过敏反应中的作用[J].细胞与分子免疫学杂志,2007,23(11):1096-1097
    [34]秦宜德,邹思湘.乳蛋自的主要组分及其研究现状[J].生物学杂志,2003,20(2):5-7
    [35]任雁,赵丹,张烨.乳清蛋白的功能成分及其主要应用[J].中国食品添加剂,2007,1:142-146
    [36] Garcia-Ara M. C.. Cow's milk-specific immunoglobulin E levels as predictors of clinicalreactivity in the follow-up of the cow's milk allergy infants[J]. Clinical and ExperimentalAllergy,2004,34:866-870
    [37] Docena G. H., Fernandez R, Chirdo F. G., et al. Identification of casein as the majorallergenic and antigenic protein of cow’s milk[J]. Allergy,1996,51:412-416
    [38] Agalmy E. I.. The challenge of cow milIk protein allergy[J]. Small Ruminant Research,2007(68):64-72
    [39] Chatchatee P., J rvinen K.M., Bardina L.. Identification of lgE and IgG bindingepitopeson alpha(s1)-casein: differences in patienis with persistent and transient cows[J].Journal of Allergy and Clinical Immunology,2001,107(2):379-383
    [40] Chatchatee P., Busse Kirsi M.J., Bardina L.. Identification of IgE and IgG bindingepitopes β-and γ-casein in cow milk allergy patients[J]. Clinical and ExperimentalAllergy,2001,31(8):1256-1262
    [41] Heine W.E., Klein P.D., Reeds R.J.. The importance of α-lactalbumin in infant nutriton[J].Journal of Nutrition,1991,121:227-283
    [42] Jarvinen K.M.,Chatehatee P., Bardina L., et al. IgE and IgG binding epitopesonaipha-lactalbumin and beta-lactoglobulin in milk’s allergy[J]. International Archives ofAllergy and Immunology,2001,126(2):111-118
    [43] Fefuuna O. R..食品化学[M].北京:中国轻工业出版社,2003
    [44] Qin B.Y., Bewley M.C., Creamer L.K., et al. Strucural basis of the tranford transition ofbovine beta lactoglobulin[J]. Biochemtry,1998,37:14014-14023
    [45]高学飞,王志耕. β-乳球蛋白应用研究进展[J].中国乳业,2005,5:41-44
    [46] Pèrez, M. D., Calvo. M.. Interaction of β-lactoglobulin with retinol and fatty acids and itsrole as a possible biological function for this protein[J]. Journal of Dairy Science,1995,78:978-988
    [47] Exlb M., Fritsche R.. Cow's milk protein allergy and possible means for its prevention[J].Nutrition,2001,17:642-651
    [48] Wal J.M.. Bovine milk allergenicity[J]. Annals of Allergy, Asthma and Immunology,2004,93(5Suppl3):2-11
    [49] Selo I., Clement G., BernardH., et al. Allergy to bovine beta-lactoglobulin: specificity ofHuman IgE to tryptic peptides[J]. Clinical and Experimental Allergy,1999,29:1055-1063
    [50] Kurisaki J., Nakamura S., Kaminogawa S., et al. The antigenic properties ofβ-lactoglobulin examined with mouse IgE antibody. Agricultural and biologicalchemistry,1982,46:2069-2075
    [51] Poms R.E., Anklam E., Kuhn M.. Polymerase chain reaction techniques for food allergendetection [J]. AOAC International,2004b,87:1391-1397
    [52] Merz B.. Studying peanut anaphylaxis[J]. New England Journal of Medicine,2003,348(11):975-976
    [53] Makinen-Kiljunen S., Palosuo T.. Measurement of natural rubber latex allergen levels inmedical gloves by allergen-specific IgE-ELISA inhibition, RAST inhibition, and skinprick test[J]. Allergy,1992,47:347-352
    [54] Negroni L., Bernard H., Clement G., et al. Two-site enzyme immunometric assays fordetermination of native and denatured beta-lactoglobulin[J]. Journal of ImmunologicalMethods,1998,220:25-37
    [55] Hefle S.L., Taylor S.L.. Diagnostic tests for food allergy[J]. Current Allergy andAsthma Reports,2004,4:55-59
    [56] Restani P., Plebani A., Velona T., et al. Allergens of Animal Origin: stability andallergenicity of processed foods[J]. Clinical and Experimental Allergy,1996,26:1182-1187
    [57] Haasnoot W., Smits N.G., Kemmers-Voncken A.E., et al. Fast biosensor immunoassaysfor the detection of cows' milk in the milk of ewes and goats[J]. Journal of DairyResearch,2004,71:322-329
    [58] Dupont D., Rolet-Repecaud O., Muller-Renaud S.. Determination of the heat treatmentundergone by milk by following the denature[J]. Journal of Agricultural and FoodChemistry,2004,52:677-681
    [59] Minh Hiep H., Endo T., Kerman K., et al. Commercialized rapid immunoanalytical testsfor determination of allergenic food proteins: an overview[J]. Science and Technology ofAdvanced Materials,2007,8:331
    [60] Malmheden Y. I., Eriksson A., Everitt G., et al. Analysis of food proteins for verificationof contamination or mislabeling[J]. Food Agriculture and Immunology,1994,6:167–172
    [61] Fremont S., Kanny G., Bieber S., et al. Identification of a masked allergen,alpha-lactalbumin, in baby-food cereal flour guaranteed free of cow's milk protein[J].Allergy,1996,51:749-754
    [62] Makinen-Kiljunen S., Palosuo T.. A sensitive enzyme-linked immunosorbent assay fordetermination of bovine β-lactoglobulin in infant feeding formulas and in human milk [J].Allergy,1992,47:347-352
    [63] Hefle S.L., Lambrecht D.M.. Validated sandwich enzyme-linked immunosorbent assayfor casein and its application to retail and milk-allergic complaint foods[J]. Journal ofFood Protection,2004,67:1933-1938
    [64] Anguita G., Martin R., Garcia T., et al. A competitive enzyme-linked immunosorbentassay for detection of bovine milk in ovine and caprine milk and cheese using amonoclonal antibody against bovine β-casein[J]. Journal of Food Protection,1997,60:64-66
    [65] Karamanova L., Fukal L., Kodicek M., et al. Milk allergens, their characteristics and theirdetection in food: a review[J]. Food and Agricultural Immunology,2003,15:77-91
    [66] Mariager B., Solve H., Eriksen H., et al. Two-site enzyme immunometric assays fordetermination of native and denatured β-lactoglobulin[J]. Food and AgriculturalImmunology,1994,6:73-75
    [67] Muller-Renaud S., Dupoint D., Dulieu P.. Quantification of kappa casein in milk by anoptical immunosensor[J]. Food and Agricultural Immunology,2003,15:265-277
    [68] Indyk H., Filonzi E.L.. Determination of lactoferrin in bovine milk, colostrum and infantformulas by optical biosensor analysis[J]. International Dairy Journal,2005,15:429-438
    [69] Schubert-Ullrich P., Rudolf J., Ansari P., et al.. Commercialized rapid immunoanalyticaltests for determination of allergenic food proteins: an overview[J]. Analytical andBioanalytical Chemistry,2009,395:69-81
    [70] Poms R. E., Klein C. L., Anklam E.. Methods for allergen analysis in food: a review[J].Food Additives and Contaminants,2004,21(1):1-31.
    [71]张涛,庞广昌.酶联免疫法快速测定原料乳中αs-酪蛋白质量浓度[J].中国乳品工业,2006,34(2):56-58
    [72] Mchaela V., Pavel R., Ladislav F.. Optimisation of indirect competitive ELISA of α-, β-,and κ-caseins for the thermal and proteolytic treatment of milk and milk products[J].Czech Journal of Food Science,2002,20(2):53-62
    [73] Karasov L., Rauch P., Fukal L.. Construction of competitive enzyme immunoassay fordetermination of α-lactalbumin and β-lactoglobulins of cow’s milk[J]. Czech Journal ofFood Science,1999,17:5-14
    [74] Rolland M. P., Besancon P.. Polyclonal antibodies with predetermined specifity againstbovine αs1-casein: application to the detetion of bovine milk in ovine milk and cheese[J]. Journal of Dairy Research,1993,60:413-420
    [75] Borkova M., Snaselova J.. Possibilities of different animal milk detection in milk anddairy products a review[J]. Czech Journal of Food Science,2005,23:41-50
    [76] Golfo M., Emmanuel A.. Recent developments in antibody-based analytical methods forthe differentiation of milk from different species[J]. International Journal of DairyTechnology,2003,56(3):133-138
    [77] Croguennec T. O., Kennedy B., Mehra R.. The internet forempowerment of minority andmarginalized users[J]. International Dairy Journal,2004,14:399-409
    [78] Marion A.M.H., Sebastianus P.F.M.R., Marleen V., et al. Aggregation of β-lactoglobulinstudied by in situ light scattering[J]. The Journal of Dairy Research,1996,63:423-440
    [79] Iametti S, De Gregori B, Vecchio G, Bonomi F. Modifications occur at differentstructural levels during the heat denaturation of beta-lactoglobulin[J]. European Journalof Biochemistry,1996,237(1):106-112
    [80] de la Fuente M.A., Singh H., Hemar Y.. Recent advances in the characterization ofheat-induced aggregates and intermediates of whey proteins[J]. Trends in Food Scienceand Technology,2002,13:262-274
    [81] Kim S.B., Ki K.S., Khan M.A.. Peptic and tryptic hydrolysis of native and heated wheyprotein to reduce its antigenicity[J]. Dairy Science.2007,90(9):4043-4050
    [82] Lamettil S., Rasmussen P., Froliaer H., et al. Proteolysis of bovine β-lactoglobulin duringthermal treatment in subdenaturing conditions highlights some structural features of thetemperature-modified protein and elds fragments with low immunoreactivity [J].European Journal of Biochemistry,2002,269:1362-1372
    [83] Del V.G., Yee B.C., Lozano R.M., et al. Thioredoxin treatment increases digestibility andlowers allergenicity of milk[J]. Journal of Allergy and Clinical Immunology,1999,103:690-697
    [84] Anema SG., tockmann R., Owe E K.. Enaturation of β-lactoglobulin in pressure treatedskim milk[J]. Journal of Food Chemistry,2005,53:7783-7791
    [85] Huppertz T., Fox PF., Kelly AL.. High pressure-induced denaturation of α-lactalbuminand β-lactoglobulin in bovine milk and whey: a possible mechanism[J]. Journal ofDairy Research,2004,71:489-495
    [86]韩雪,孙冰.乳清蛋白的功能特性及应用[J].中国乳品工业,2003,(4):28-30
    [87] Caessens P.W., Visser S., Gruppen H., et al. β-lactoglobulin hydrolysis peptidecomposition and functional properties of hydrolysates obtained by the action of plasmin,trypsin, and Staphylococcus aureus protease[J]. Journal of Agricultural and FoodChemistry,1999,47(8):73-79
    [88] Kim S.B., Seo I.S., Khan M.A.. Enzymatic hydrolysis of heated whey: iron-bindingability of peptides and antigenic protein fractions[J]. Journal of Dairy Science,2007,90(9):4033-4042
    [89] Meltretter J., Seeber S., Humeny A.. Site-Specific formation of Maillard, Oxidation, andCondensation Products from Whey proteins during reaction with lactose [J]. Journal ofAgricultural and Food Chemistry,2007,55(15),6096-6103
    [90] Hattori M., Oichi N., kio A., et al. Functional changes β-laetoglobulin by conjugationwith cathoxymethyl dextran[J]. Journal of Agricultural and Food Chemistry,1994,42:2120-2125
    [91] Hattori M., Iehi N., kio A., et al. Functional changes in β-laetoglobulin by conjugationwith cationic saccharides[J]. Journal of Agricultural and Food Chemistry,2000,48:2050-2056
    [92] Hattori M.. Functional improvements in food proteins in multiple aspects by conjugationwith saceharides: case studies of β-laetoglobulin-acidic polysaeeharides conjugates[J].Food Science and Technology Research,2002,8:291-299
    [93] Hattori M., Iyakawa S., Ohama Y.. Reduced immunogenicity of β-lactoglobulin byconjugation with acidic oligosaccharides[J]. Journal of Agricultural and Food Chemistry,2004,52:4546-4553
    [94] Hattori M.. Functional improvements in food proteins in multiple aspects by conjugationwith saccharides: Case studies of β-lactoglobulin-acidic polysaccharides conjugates[J].Food Science and Technology Research,2002,8:291-299
    [95] Hattori M., Nagasawa K., Ametani A., et al. Functional Changes in β-Lactoglobulin byConjugation with Carboxymethyl Dextran[J]. Journal of Agricultural and FoodChemistry,1994,42:2120-2125
    [96] Hattori M., Numamoto K., Kobayashi K., et al. Functional changes in β-Lactoglobulin byconjugation with cationic saccharides[J]. Journal of Agricultural and Food Chemistry,2000,48:2050-2056
    [97] Hattori M., Ogino A., Nakai H.,et al. Functional improvement of β-Lactoglobulin byconjugating with alginate lyase-lysate[J]. Journal of Agricultural and Food Chemistry,1997,45:703-708
    [98]付莉,李铁刚.简述美拉德反应[J].食品科技,2006,12:9-11
    [99]边世平.茶叶的化学成分及其保健作用[J].青海大学学报(自然科学版),2004,22(4):64-65
    [100]凌关庭.天然食品添加剂手册[M].北京:化学工业出版社,2000
    [101]吉卯祉,彭松.有机化学[M].北京:科学出版社,2002
    [102]杨贤强,王立新.营养保健品之管见[J].茶叶,1997,23(4):45-48
    [103]杨贤强,曹明富,贾之慎,等.茶多酚(TP)清除自由基和抗氧化作用的机理及应用基础研究[J].中国茶叶加工,1994,(1):41-44
    [104]姜爱莉.茶多酚对几种油脂抗氧化活性的研究[J].中国食品添加剂,2000,4:18-20
    [105]陈志华,李湛静.粉状脂溶性茶多酚在色拉油中的性能试验[J].中国油脂,2000,25(2):55-57
    [106]贾之慎,杨贤强.茶多酚的抗氧化作用的研究与应用[J].食品科学,1990,19(11):1-5
    [107]黄圣基,万青等.茶多酚的制备及其在食品工业中的应用[J].食品研究与开发,1996,17(1):14-16
    [108]瞿执谦,唐玉凤等.茶多酚在中国香肠保鲜中的应用[J].肉类工业,1995(4):26-27
    [109]蒋建平,陈小文,陈洪等.茶多酚保鲜新技术在延长冷却肉货架寿命中的应用[J].肉类工业,2004(10):16-18
    [110] Athina P. Richard A.F.. Characterization of protein-polyphenol interactions[J]. Trends ofFood Science and Technology,2004,15:186-190
    [111] Asquith T., Butler L.. Interactions of condensed tannins with selected proteins[J].Phytochemsitry,1986,25(7):1591-1593
    [112] Shi B., He X.Q., Haslam E.. Polyphenol-gelation interaction[J].Journal of the AmericanLeather Chemists Association,1994,89(4):98-104
    [113] Haslam E., Lilley T., Cai Y., et aL. Traditional herbal medicines. The role ofpolyphenols[J]. Planta Medica,1989,55:1-3
    [114] Hay D. I., Oppenheim F. G.. The isolation from human parotid saliva of a further groupof proline-rich proteins[J]. Archives of Oral Biology,1974,19:627-632
    [115] Svetli D., Guy S., Heidar-Ali T.. Dual effect of milk on the antioxidant capacity of green,darjeeling, and english breakfast teas[J]. Food Chemistry,2010,122:539-545
    [116] Zerrin Y., Elif A., Yasar K. E.. Characterization of binding interactions between green teaflavanoids and milk proteins[J]. Food Chemistry,2010,121:450-456
    [117] Fox P. F.. Milk proteins as food ingredients[J]. International Journal of Dairy Technology,2001,54:41-55
    [118] Saker D.K., Wiled P.J., Clark D.C.. Control of surfactant-induced destabilization offoams through polypheolmediated[J]. Journal of Agricultural and Food Chemistry,1995,43:295-300
    [119] Wu W.G., Clifferd M., Howell N.K..The effect of instant green tea on the foaming andtheological properties of egg albumen proteins[J]. Science of Food and Agricuture,2007,87:1810-1819
    [1]赵郭存,张强,邹菊,等.平榛主要过敏原Cor h1的单克隆抗体的制备与鉴定[J].免疫学杂志,2011,5(27):93-97
    [2]刘秀梵.单克隆抗体在农业上的应用[M].合肥:安徽科学技术出版社,1994
    [3] Wal J. M.. Structure and function of milk allergens[J]. Allergy,2001,56(Suppl67):35-38
    [4] Monaci, L., Tregodt, V., Hengel, et al. Milk allergens, their characteristics and theirdetection in food: A review[J]. European Food Research and Technology,2006,223,149-179.
    [1] Jarvinen K.M., Chatehatee P., Bardina L., et al. IgE and IgG binding epitopes onalphaLActalbumin and betaLActoglobulin in cow’s milk allergy[J]. InternationalArchives of Allergy and Immunology,2001,126:111-118
    [2]曹佐武.小分子肽的Tricine-SDS-PAGE分离方法[J].生物学通报,2003,38(3):55-56
    [3] Ji K.M., Chen J.J., Gao, C., et al. A two-site monoclonal antibodyimmunochromatography assay for rapid detection of peanut allergen Ara h1in Chineseimported and exported foods[J]. Food Chemistry,2011,129(2):541-545
    [1] Brownlow S., Morais J. H., Cooper R., et al. Bovine β-lactoglobulin at1.8resolutionstill an enigmatic lipocalin [J]. Structure,1997(5):481-495
    [2] Pourpak Z., Motsafaie A., Hasan Z., et al. A lobotatory method for purification of majorcows milk allergens[J]. Immunoassay Immunochem,2004,25(4):385-397
    [3] Schubert-Ullrich P., Rudolf J., Ansari P., et al.. Commercialized rapid immunoanalyticaltests for determination of allergenic food proteins: an overview[J]. Analytical andBioanalytical Chemistry,2009,395:69-81
    [4] Hsiao-Wei W., Wlodzimierz B.W., Thomas R. D., et al. Peanut allergy, peanut allergensand methods for the detection of peanut contamination in food products[J].Comprehensive Reviews in Food Science and Food Safety,2007,6(2):47-58
    [5] Paul A. W.. Some properties and applications of monoclonal antibodies[J]. BiochemicalJournal,1981,200:1-10
    [6] Fefuuna O. R..食品化学[M].北京:中国轻工业出版社,2003
    [7] Shimizu M., Saito M., Yamauchi K.. Emulsifying and structural properties ofβ-Lactoglobulin at different pHs[J]. Agricultural Biology and Chemistry,1985,49:189-194
    [8] Koritz T.N., Suzuky S., Coombs R.R.. Antigenic stimulation with proteins of cow’s milkvia the oral route in guinea pigs and rats:1.Measurement of antigenically intact betalactoglobulin and casein in the gastrointestinal contents of duodenum, jejunum andileum[J]. International Archives of Allergy and Immunology,1987,82:72-75
    [9] Monaci L., Tregodt V., Hengel A. J. V., et al. Milk allergens, their characteristics andtheir detection in food: a review[J]. European Food Research and Technology,2006,223,149-179.
    [10] Ji K.M., Chen J.J., Gao C., et al. A two-site monoclonal antibodyimmunochromatography assay for rapid detection of peanut allergen Ara h1in Chineseimported and exported foods[J]. Food Chemistry,2011,129(2):541-545
    [11] Kuroki M., Wakisaka M., Murakami M., et al. Determination of epitope specificities of alarge number of monoclonal antibodies by solid-phase mutual inhibition assays usingbiotinylated antigen[J]. Immunological Investigations,1992,21:523-538
    [12]吉坤美,李盟,吴序栎,等.时间分辨免疫荧光法测定食物中鸡蛋过敏原蛋白成分[J].食品工业科技,2009,30(8):323-326
    [13] Arjon J.H., Claudia C., Marcel B., et al. Validation of Two Commercial Lateral FlowDevices for the Detection of Peanut Proteins in Cookies[J]. Interlaboratory Study,2006,89(2):462-468
    [14] Lynn N., Steve L., Taylor, et al. Detection of Walnut Residues in Foods Using anEnzyme-Linked Immunosorbent Assay[J]. Institute of Food Technologists,2009,74(6):51-57
    [15] Sander I., Neuhaus-Schr der C., Borowitzki G., et al. Development of a two-siteenzyme-linked immunosorbent assay for alpha-amylase from Aspergillus oryzae basedon monoclonal antibodies[J]. Journal of Immunological Methods,1997,210:93-101
    [16] Barreto P.L.M., Pires A.T.N., Soldi V.. Thermal degradation of edible films based onmilk proteins and gelatin in inert atmosphere[J]. Polymer Degradation and Stability,2003,79:147-152
    [17] Poms R.E., Klein C.L., Anklam E. Methods for allergen analysis in food: a review[J].Food Additives and Contaminants,2004,21(1):1-31
    [18] Negroni L., Bernarda H., ClementG., et al. Two-site enzyme immunometric assays fordetermination of native and denatured β-lactoglobulin[J]. Journal of ImmunologicalMethods,1998,220:25-37
    [19] Mariager B., Solve M., EriksenH., et al. Bovine beta-lactoglobulin in hypoallergenic andordinary infant formulas measured by an indirect competitive ELISA using monoclonaland polyclonal antibodies[J]. Food and Agricultural Immunology,1994,6:73-83
    [20] M kinen-Kiljunen S., Palosuo T.. A sensitive enzyme-linked immunosorbent assay fordetermination of bovine β-lactoglobulin in infant feeding formulas and in human milk[J].Allergy,1992,47:347-352
    [21] Stephan O., M ller N., Lehmann S., et al. Development and validation of two dipsticktype immunoassays for determination of trace amounts of peanut and hazelnut inprocessed foods[J]. European Food Research and Technology,2002,215:431-436
    [22] Scientific Committee on AIDS. Recommended principles on the application of the HIVantibody rapid test in Hong Kong[R], December2003, Available fromhttp://www.aids.gov.hk
    [23] Chen J. J., Xia L. X., Wu X.L., et al. A practical test system for sensitive, rapid screeningand authentication of peanut allergens in imported and exported food products in ChineseCustoms [J]. Food Control,2012,23(1):154-158
    [1] Watanabe M., Suzuki T., Ikezawa Z., et al. Controlled enzymatic treatment of wheatproteins for production of hy-poallergenic flour[J]. Bioscience, Biotechnology andBiochemistry,1994,58:388-390.
    [2] Ishizaka K., Okudaira H., King T.. Immunogenic properties of modified antigen ability ofurea-denatured antigen and apolypeptide chain to prime T cells specific for antigen[J].Journal of.Immunology,1975,114:110-115.
    [3] Del Val G., Yee B.C., Lozano R. M., et al. Thioredoxin treatment increases digestibilityand lowers allergenicity of milk[J]. Journal of Allergy and Clinical Immunology,1999,103:690-697
    [4] Jaziri I., Slama M. B., Mhadhbi H., et al. Effect of green and black teas (Camellia sinensisL.) on the characteristic microflora of yogurt during fermentation and refrigerated storage[J].Food Chemistry,2009,112:614-620
    [5] Sharma U.K., Bhattacharya A., Kumar A., et al. Health benefits of tea consumption[J].Tropical Journal of Pharmaceutical Research,2007,6:785-792
    [6] Wang Z. Y., Cheng S. J., Zhou Z. C., et al. Antimutagenic activity of green teapolyphenols[J]. Mutation Research,1989,223:273-285
    [7] Chen Z. P., Schell J.B., Ho C.T., et al. Green tea epigallocatechin gallate shows apronounced growth inhibitory effect on cancerous cells but not on their normalcounterparts[J]. Cancer Letter,1998,129:173-179
    [8] Kilmartin P.A., Hsu C. F.. Characterisation of polyphenols in green, woolong, and black teas,and in coffee, using cyclic voltammetry[J]. Food Chemistry,2003,82:501-512
    [9]宛晓春.茶叶生物化学[M].北京中国农业出版社,2003
    [10] Athina P., Richard A.F.. Characterization of Protein-Polyphenol Interactions[J]. Trends ofFood Science and Technology,2004,15:186-190
    [11] Svetli D., Guy S., Heidar-Ali T.. Dual effect of milk on the antioxidant capacity of green,Darjeeling, and English breakfast teas[J]. Food Chemistry,2010,122:539-545
    [12] Fox P. F.. Milk proteins as food ingredients[J]. International Journal of Dairy Technology,2001,54:41-55
    [13] Yuksel Z., Avci E., Ereem Y. K.. Characterization of binding interactions between green teaflavanoids and milk proteins[J]. Food Chemistry,2010,121:450-456
    [14] Batra A., Saxena R. K.. Potential tannase producers from the genera Aspergillus andPenieillium[J]. Process Biochemistry,2010,40,1553-1557
    [15] O'Connell J. E., Fox P. F.. Effect of extracts of oak (Quercus petraea) bark, oak leaves, aloevera (Curacao aloe), coconut shell and wine on the colloidal stability of milk andconcentrated milk[J]. Food Chemistry,1999,66,93-96
    [16] Zerrin Y., Elif A., Yasar, K. E.. Characterization of binding interactions between green teaflavanoids and milk proteins[J]. Food Chemistry,2010,121,450-456
    [17] Lakowicz J. R.. Principles of Fluorescence Spectroscopy,2nd ed., KluwerAcademic/Plenum Publishers: New York,1999
    [18] Lakowicz J. R., Weber G.. Quenching of fluorescence by oxygen: a probe for structuralfluctuation in macromolecule[J]. Biochemistry,1973,12:4161-4170
    [19] Jiang C. Q., Gao M. X., He J. X.. Study of the interaction between terazosin and serumalbumin synchronous fluorescence determination of terazosin[J]. Analytica Chimica Acta,2002,452:185-189
    [20] Wang C., Wu Q. H., Wang Z., et al. Study of the interaction of carbamazepine with bovineserum albumin by fluorescence quenching method[J]. Analytical Sciences,2006,22:435-438
    [21] Yu X. Y., Liu R., Yang F.X., et al. Study on the interaction between dihydromyricetin andbovine serum albumin by spectroscopic techniques[J]. New Comprehensive Biochemistry.2011,985(2):407-412
    [22] Xiao J. B., Shi J., Cao H., et al. Analysis of binding interaction between Puerarin and bovineserum albumin by multi-spectroscopic method[J]. Journalof Pharmaceutal and BiodediaAnalysis,2007,45(4):609-615
    [23] Ross P.D., Subramanian S.. Thermodynamics of protein association reactions: forcescontributing to stability[J]. Biochemistry,1981,20:3096-3102
    [24] Miller J.N.. Recent advances inmolecular luminescence analysis[J]. Proceedings of theAnalytical Division of the Chemical Society,1979,16(7):203-208
    [25] Venyaminov S.Y., Vesilenko K S.. Determination of protein tertiary structure class fromcircular dichroism spectra[J]. Analytical Biochemistry,1994,222:176-184
    [26] Kelly S.M., Price N.C.. The use of circular dichroism in the investigation of proteinstructure and function[J]. Current Protein and Peptide Science,2000,1(4):349-384
    [27] Tantipolphan R., Rades T., McQuillan A. J., et al. Adsorption of bovine serum albumin(BSA) onto Llecithin studied by attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectroscopy[J]. International Journal of Pharmaceutics,2007,337:40-47
    [28] Kanakis C.D., Imed H., Philippe B.P.A., et al. Milk β-lactoglobulin complexes with teapolyphenols[J]. Food Chemistry,2011,127:1046–1055
    [29] Pèrez M. D., Calvo M.. Interaction of β-lactoglobulin with retinol and fatty acids and itsrole as a possible biological function for this protein[J]. Journal of Dairy Science,1995,78:978-988
    [30] Fugate R., Song P.. Spectroscopic Characterization of β-lactoglobulin retinol complex[J].Biochimica and Biophysica Acta,1980,625,28-42.
    [31] Hattori M., Nagasawa K., Ametani A., et al. Functional Changes in β-Lactoglobulin byConjugation with Carboxymethyl Dextran[J]. Journal of Agriculture and Food Chemistry,1994,42:2120-2125
    [32] Hattori M., Nagasawa K., Ohgata K., et al. Reduced immunogenicity of β-Lactoglobulin byConjugation with Carboxymethyl Dextran[J]. Bioconjugate Chemisty,2000,11:84-93
    [33] Besler M., Steinhart H., Paschke A.. Stability of food allergens and allergenicity ofprocessed foods[J]. Journal of Allergy and Clinical Immunology B,2001,756:228-238
    [34] Kurisaki J., Nakamura S., Kaminogawa S., et al. The antigenic properties of β-lactoglobulinexamined with mouse IgE antibody[J]. Agricultural and biological chemistry,1982,46:2069-2075
    [35] Selo I., Clement G., Bernard H., et al. Allergy to bovine beta-lactoglobulin: specificity ofHuman IgE to tryptic peptides[J]. Clinical and Experimental Allergy,1999,29:1055-1063
    [36] Haslam E., Lilley T., Cai Y., et aL. Traditional herbal medicines. The role of polyphenols[J].Planta Medica,1989,55:1-3
    [1] Marion A.M.H., Sebastianus P.F.M.R., Marleen V., et al. Aggregation ofβ-lactoglobulin studied by in situ light scattering[J]. The Journal of Dairy Research,1996,63:423-440
    [2] Iametti S, De Gregori B, Vecchio G, Bonomi F. Modifications occur at differentstructural levels during the heat denaturation of beta-lactoglobulin[J]. EuropeanJournal of Biochemistry,1996,237(1):106-112
    [3] de la Fuente M.A., Singh H., Hemar Y.. Recent advances in the characterization ofheat-induced aggregates and intermediates of whey proteins[J]. Trends in FoodScience and Technology,2002,13:262-274
    [4]吴序栎,成小娟,朱倩倩,等.牛乳β-乳球蛋白热稳定与免疫原性关系的光谱学研究[J].光谱学与光谱学分析,2011,31(8):2205-2209
    [5] Kim S.B., Ki K.S., Khan M.A.. Peptic and tryptic hydrolysis of native and heatedwhey protein to reduce its antigenicity[J]. Dairy Science.2007,90(9):4043-4050
    [6] Wal J. M. Structure and function of milk allelgens[J]. Allergy,2001,56(Suppl67):35-38
    [7] Dannenbrg F.. Reaction kinetics of the denaturation of whey proteins in milk[J].Journal of Food Science,1998,53(1):258-263
    [8] Monaci L., Tregodt V., Hengel A. J. V., et al. Milk allergens, their characteristics andtheir detection in food: A review[J]. European Food Research and Technology,2006,223:149-179