青葙钾营养特性分析及其高亲和钾转运体基因克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青葙(Celosia argentea L.)是苋科一年生草本植物,同时也是一种高钾植物。随着分子生物学的发展,高亲和钾转运体基因的研究已越来越深入,但主要集中在一些模式植物中,如拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、大麦(Hordeum uhulgare)等。本试验针对作物钾素营养特性改良方面的迫切需要和利用钾素营养相关基因的现状,以野生高钾植物青葙为材料,对其钾营养特性进行了研究,克隆到青葙高亲和钾转运体基因,并对其表达和序列进行了分析。主要研究结果如下:
     1.在不同供钾水平下,青葙Km值随着外界K+浓度的升高而升高,且在高于0.20mmol/L时,其值急剧上升,很可能在高于此浓度时K+的吸收机制发生了改变。在低钾条件下,青葙对K+的亲和力更大,说明青葙是高亲和钾的植物。同时青葙低钾条件下根冠比值要大于在高钾条件下的比值,说明在低钾条件下青葙根系机能活性强。外界钾对青葙叶绿素含量影响不大,但是K+浓度过低或过高都会影响青葙的光合作用。
     2.正常供钾条件下青葙各部位钾含量大小为茎>根>叶,且含量都达50mg/g以上;外界K+浓度直接影响青葙体内钾含量的分布。
     3.利用RT-PCR和RACE法克隆得到青葙一个HAK基因,其全长cDNA长2498bp,共编码777个氨基酸,将该基因提交到GenBank,登录号为JF719837,并命名为CaHAK1。
     4.对CaHAK1进行Real-Time PCR的表达分析,结果显示其主要在根中表达,且在较低钾浓度下其相对表达量较正常钾浓度下的要高。说明低钾对青葙HAK基因具有诱导作用。
     5.进行同源性分析,结果显示CaHAK1核苷酸序列与其他植物中的HAK基因都具有较高的相似性,且其所编码的氨基酸序列与其他植物如冰叶日中花、商陆、棉花的HAK的相似性分别达87%、86%、79%。推测的蛋白质分子量为87.5518kD,等电点pI为7.89。经功能保守域和系统进化分析发现CaHAK1与其它植物的HAK基因的保守性高,亲缘关系很近,说明CaHAK1是青葙的高亲和钾转运体基因。
Celosia argentea L. is an amaranthaceae annual herb. And it is also a typical K-rich plant. More about genes of high affinity potassium transporters has been known with the development of molecular biology. But those reseaarch mainly focus on some model plants such as arabidopsis, rice, barley and other crops. In this study, in order to meet the need of potassium nutrition characteristic improvement for crop and use of potassium nutrition related gene. Celosia argentea as the material has been investigated about its k nutrition characteristics, and a high affinity potassium transporter gene has been cloned. And also CaHAKl gene expression and sequence have been analyzed. The main research results were as follows:
     1. Under the different potassium level, with K+ concentration increasing, the Km value of Celosia argentea was also increasing. And under K+ concentration higher than 0.20 mmol/L, its value has risen sharply. Probably in this concentration the K+absorption mechanism of Celosia argentea has been changed. Under low potassium condition, the affinity of K+ was greater than other plant, indicated that Celosia argentea was a high affinity potassium plant. Meanwhile under low potassium condition, the root/shoot ratio of Celosia argentea was higher than the ratio under high potassium condition, this showed that its root activity was strong in low potassium condition. The chlorophyll content of Celosia argentea did not change significantly in different K+ concentration. But the K+ concentration of solution would influence the photosynthesis when concentration was too low or too high.
     2. Under the normal potassium condition, the content of potassium in stem was higher than root and leaf. And the contents were 50 mg/g above. Potassium supply directly affects distribution of potassium in plants.
     3. A HAK gene from Celosia argentea has been cloned using RT-PCR and RACE. Its cDNA consisted 2498 bp and could encode 777 amino acids. This gene was submitted to GenBank with an accession number JF719837, and was designated as CaHAKl.
     4. Real-Time PCR showed that the CaHAK1 was detected in all tissue of Celosia argentea, but it was main expressed in roots. And under lower potassium concentration the relative expression of CaHAKl was higher than the relative expression under normal potassium concentration. These showed that CaHAKl could be induced expression under lower potassium concentration.
     5. For homology analysis, the results indicated that the nucleotides sequence of CaHAK1 has high similarity with other HAK genes. And the homology of amino acid sequence was high identity with other plants such as Mesembryanthemum crystallinum with 87%, Phytolacca acinosa with 86%, Gossypium hirsutum with 79%. Molecular weight of putative CaHAK1 protein is 87.5518 kD, and isoelectric pI is 7.89. By function conservative domain and phylogenetic analysis, CaHAKl has high conservation and closely relationship with other HAK genes, the results indicated that the CaHAKl gene was the high affinity potassium transporter gene of Celosia argentea.
引文
[1]Sheldrick WF, Syers JK, Lingardc J. Soil nutrient audits for China to estimate nutrient balances and output/input relationships[J]. Agriculture, Ecosystems & Environment,2003, 94(3):341-354.
    [2]孙波,潘贤章,王德建,韩晓增,张钰铭,郝明德,陈欣.我国同区域农田养分平衡对土壤肥力时空演变的影响[J].地球科学进展,2008,23(11):1201-1208.
    [3]严小虎,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997:1-17.
    [4]王利,陈防,万开元.植物钾效率及其评价的研究进展与展望[J].土壤,2010,42(2):164-170.
    [5]库文珍,彭克勤,张雪芹,童建华,周浩,肖浪涛.低钾胁迫对水稻苗期矿质营养吸收和植物激素含量的影响.植物营养与肥料学报[J],2009,15(1):69-75.
    [6]胡笃敬,董任瑞,葛口.之.植物钾营养的理论与实践[M].长沙:湖南科学技术出版社,1993.
    [7]王孝峰.我国与世界钾资源及开发利用现状[J].磷肥与复合肥,2005,20(1):10-13.
    [8]王孝峰.我国与世界钾资源及开发利用现状(续完)[J].磷肥与复合肥,2005,20(2):14-17.
    [9]高华军,林北森.生物钾肥对烤烟产质量影响的研究进展[J].中国烟草科学,2009,30(3):73-76.
    [10]朱毅,宋仪农.生物钾肥在黄金梨上的肥效试验[J].中国十壤与肥料,2007,(4):89-90.
    [11]彭志红,彭克勤,胡家金,肖浪涛.富钾植物DNA导入水稻变异后代苗期耐低钾种质的筛选[J].湖南农业大学学报(自然科学版),2002,28(6):463-466.
    [12]施卫明,王校常,严蔚尔,汤利,安志装,何锶洁,田文忠,曹志洪.外源钾通道基因在水稻中的表达及其钾吸收特征研究[J].作物学报,2002,28(3):374-378.
    [13]孙羲.植物营养原理[M].北京:中国农业出版社,1997,134-159.
    [14]Very AA, Sentenac H. Molecular mechanisms and regulation of K+ transport in higher plants[J]. Annual Reviews Plant Biology,2003,54:575-603.
    [15]张福锁.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社,1993,63-69.
    [16]周云龙.植物生物学[M].北京:高等教育出版社,2004.9.
    [17]邵岩.云南烟叶主要化学成分分析[M].北京:科学出版社,2007,153-156.
    [18]解文贵,周健红,陈家龙.钾素在烤烟不同生长期分布规律的初步研究[J].贵州农业科 学,1996,(1):12-14.
    [19]邓小华,陈冬林,周冀衡,赵松义,李晓忠.湖南烟区烤烟钾含量变化及聚类分析[J].烟草科技,2008,(12):52-56.
    [20]吴玉萍,陈萍,师君丽,赵立红,李应金,文大荣,邓建华.云南省不同品种和产区烤烟中钾含量的差异分析[J].云南大学学报(自然科学版),2010,32(S1):42-46.
    [21]杨铁钊,夏巍,范进华.不同供钾水平下烟草钾积累特性研究[J].河南科学,2005,23(3):375-378.
    [22]刘丹.水分胁迫下小麦幼苗呼吸及渗透调节物质积累变化[J].云南农业大学学报,1990,5(1):30-37.
    [23]孟繁霞,张蜀秋,娄成后.气孔功能的结构基础[J].植物学通报,2000,17(1):27-33.
    [24]Graham RD, UlrichA. Potassium deficiency induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L[J]. Plant Physiology,1972, 49:105-109.
    [25]魏永胜,梁宗锁.钾与提高作物抗旱性的关系[J].植物生理学通讯,2001,37(6):576-581.
    [26]郝艳淑,姜存仓,夏颖,王晓丽,陈防,鲁剑巍.植物钾的吸收及其调控机制研究进展[J].中国农学通报,2011,27(01):6-10.
    [27]Epstein E and Hagen CE.A kinetic study of the absorption of alkali cations by barley roots[J]. Plant Physiol,1952,27(3):457-474.
    [28]Maathuis F J M and Sanders D. Mechanism of high-affinity potassium uptake in roots of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences,1994, 91:9272-9276.
    [29]Epstein E, Rains DW, Elzam OE. Resolution of dual mechanismsm of potassium absorption by barly roots[J]. Proceedings of the National Academy of Sciences USA,1963,49:684-692.
    [30]Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis JM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology,2001,12(6):1646-1667.
    [31]Maathuis Frans JM, Verlin Dawn, Smith F Andrew, Sanders Dale, Fernandez Jose A, Walker N Alan.The physiological relevance of Na+-coupled K+transport[J]. Plant Physiology,1996, 11(2):1609-1616.
    [32]王毅,武维华.植物钾营养高效分子遗传机制[J].植物学报,2009,44(1):27-36.
    [33]Leon V, Kochian, Jiao XZ, William JL. Potassium transport in corn roots:IV. Characterization of the linear component[J]. Plant Physiology,1985,79:771-776.
    [34]吴平,印莉萍,张立平.植物营养分子生理学[M].科学出版社,2001,163-227.
    [35]鲁黎明,杨铁钊.高凳子植物K+吸收转运体蛋白及其分子调节[J].西北植物学报,2006,26(11):2402-2410.
    [36]Schroeder JI, Ward JM, Gassmann W. Perspectives on the physiology and structure of inward-rectifying K" uptake[J]. Annual Review of Biophysics and Biomolecular Structure, 1994,23:441-447.
    [37]Gierth M,Maser P. Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis[J]. Federation of Biochemical Societies Letters,2007, 581(12):2348-2356.
    [38]Shabala S. Regulation of potassium transport in leaves:from molecular to tissue levelfJ]. Annals Botany,2003,92:627-634.
    [39]Czempinski K, Zimmermann S, Ehrhardt T, Muller-Rober B. New structure and function in plant K+channels:KCOl, an outward rectifier with a steep Ca2+ dependency[J]. The EMBO Journal,1997,16:2565-2575.
    [40]邱全胜.植物质膜钾离子转运体研究进展[J].植物学通报,2000,17(1):34-38.
    [41]Kim EJ, Kwak JM, Uozumi N, Schroeder JI. AtKUPl:an Arabidopsis gene encoding high-affinity potassium transport activity[J]. Plant Cell,1998,10:51-62.
    [42]Schachtman DP. Molecular insights into the structure and function of plant K+transport mechanisim[J]. Biochimica et Biophysica Acta,2000,2465:127-139.
    [43]Chen YF, Wang Y, Wu WH. Membrane transporters for nitrogen,phosphate and potassium uptake in plants[J]. Journal of Integrative Plant Biology,2008,50(7):835-848.
    [44]马小娟,戚金亮.植物钾离子转运相关蛋白及基因研究进展[J].首都师范大学学报(自然科学版),2004,25(2):41-45.
    [45]Sentenac H, Bonneaud N, Minet Metal. Cloning and expression in yeast of a plant potassium ion transport system[J]. Science,1992,256:663-665.
    [46]Anderson JA, Huprikar SS, Kochian LV, Lucas WJ. Functional expression of a probable Arabidopsis thaliana potassium channel in Sccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences USA,1992,89:3736-3740.
    [47]Xu J, Li HD, Chen LQ, Wang Y, Liu LL, Liu H, Wu WH. A Protein kinase,interacting with two calcineurin B-like protein, regulates K+ transporter AKT1 in Arabidopsis[J]. Cell,2006, 125(7):1347-1360.
    [48]Schachtman DP,Schroeder J1.Structure and transport mechanism of a high-affinity potassium up take transporter from higher plants[J]. Nature,1994,370:655-658.
    [49]Rubio F, Gassmann W, Schroeder JI. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science,1995,270:1660-1663
    [50]Horie T,Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A. Two types of HKT transporters with different properties of Na+ and K transport in Oryza saliva. Plant Journal, 2001,27(2):129-138.
    [51]Fairbairn DJ, Liu WH, Schachtman DP, Gomez-Gallego S, Day SR, Teasdale RD. Characterisation of two distinct HKT 1-like potassium transporters from Eucalyptus camaldulensis[J]. Plant Molecular Biology,2000,43(4):515-525.
    [52]Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao CS, Pantoja O, Bohnert HJ. Expression of the cation transporter McHKTl in a haiophyte[J]. Plant Molecular Biology, 2003,52:967-980.
    [53]Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI. The Arabidopsis HKT1 gene homolog mediates inward Na+currents in Xenopus laevis Oocytes and Na+ uptake in Sacharomyces cerevisiae[i]. Plant Physiology, 2000,122:1249-1260.
    [54]Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI. Rice OsHKT2;1 transporter mediates large Na+influx component into K+-starved roots for growth[J]. The EMBO Jouranl,2007,26(12):3003-3014.
    [55]Haro R, Banuelos MA, Rodriguez-Navarro A. High-affinity sodium uptake in land plants[J]. Plant and Cell Physiology,2010,51 (1):68-79.
    [56]Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB., Lin HX, Gao JP, Luan S. A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel[J]. Proceedings of the National Academy of Sciences USA,2010,107(15):7089-7094.
    [57]Haro R, Banuelos MA, Senn ME, Barrero-Gil J, Rodriguez-Navarro A. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast[J]. Plant Physiology, 2005,139:1495-1506.
    [58]Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH,Matsumoto TK, Koiwa H, Zhu JK, Bressan RA, Hasegawa PM. AtHKT1 is a salt tolerance determinant that controls Na+entry into plant roots[J]. Proceedings of the National Academy of Sciences USA,2001,98(24):14150-14155.
    [59]Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Sacio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F. Functional analysis of AtHKTl in Arabidopsis shows that Na(?)recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal,2003,22:2004-2014.
    [60]Yao X, Horie T, Xue SW, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI. Differential sodium and potassium transport selectivities of the rice OsHKT2;l and OsHKT2;2 transporters in plant cells[J]. Plant Physiology,2010,152(1):341-355.
    [61]Fu HH, Luan S. AtHUPl:adual-affinity K transporter from Arabidopsis[J]. Plant Cell,1998, 10:63-73.
    [62]Santa-Maria GE, Danna CH, Czibener C. High-affinity potassium transport in barley roots. Ammonium sensitive and insensitive pathways[J]. Plant Physiology,2000,123(1):297-306.
    [63]Senn MS, Rubio F, Banuelos MA, Rodriguez-Navarro A. Comparative functional features of plant potassium HvHAKl and HvHAK2 transporters[J].The Journal of Biological Chemistry, 2001,276:44563-44569.
    [64]Su H., Golldack D, Zhao CS, Bohnert HJ.The expression of HAK-type K+transporters is regulated in response to salinity stress in common ice plant[J]. Plant Physiology,2002, 129:1482-1493.
    [65]Gupta M, Qiu X, Wang L, Xie W, Zhang C, Xiong L, Lian X, Zhang Q. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in r\ce(Oryza sativa)[J]. Molecular Genetics and Genomics,2008,280(5):437-452.
    [66]Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A. Inventory and functional characterization of the HAK potassium transporters of rice[J]. Plant Physiology,2002, 130:784-795.
    [67]Ahn SJ, Shin R, Schachtman DP. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake[J]. Plant Physiology,2004,134:1135-1145.
    [68]Gierth M, Maser P, Schroeder JI. The potassium transporter AtHAK.5 functions in K+ deprivation induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+uptake kinetics in Arabidopsis roots[J]. Plant Physiology,2005,137:1105-1114.
    [69]Wang TB, Gassmann W, Rubio F, Schroeder JI, Glass A DM.Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium[J]. Plant Physiology,1998,118(2):651-656.
    [70]Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI. Enhancement of Na+ uptake currents, time dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+starvation in wheat root cells[J]. Plant Physiology,2000,122:1387-1397.
    [71]高媛媛,张保龙,杨郁文,沈新莲,倪万潮.海蓬子高亲和钾离子转运体SbHKTl基因的克隆、表达及生物信息学分析[J].基因组学与应用生物学,2010,29(4):646-652.
    [72]谢成科.药用植物学[M].北京:人民卫生出版社,1986,217.
    [73]朱笃,徐曲,青葙籽粒油脂酸组成的分析[J].江西师范大学学报(自然科学版),2002,26(2):110-112.
    [74]李廷轩,马国瑞.籽粒苋富钾基因型的根系形态和生理特[J].作物学报,2004,30(11):1145-1151.
    [75]赵学强,介晓磊,李有田,许仙菊,谭金芳,化党领.不同基因型小麦钾离子吸收动力学分析[J],2006,12(3):307-312.
    [76]彭克勤,胡笃敬.空心莲子草K+吸收的动力学研究[J].植物生理学报,1986,12(2):187-193.
    [77]蒋廷惠,郑绍建,石锦芹,胡霭堂,史瑞和.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-17.
    [78]萧浪涛,王三根.植物生理学实验技术[M].中国农业出版社,2005,110-114.
    [79]王永锐,余款经.应用营养水培法筛选水稻耐低钾基因型品种[J].江西农业大学学报,1996,18(2):193-198.
    [80]萧浪涛,王三根.植物生理学[M].中国农业出版社,2005,126-136.
    [81]胡娟,邱慧珍,何秀成,张文明,李亚娟,张春红.施钾水平对甘肃烤烟钾含量及经济效益的影响[J].2010,19(5):156-160.
    [82]李廷轩,马国瑞.籽粒苋不同富钾基因型矿质营养元素含量的研究[J].土壤通报,2004,35(5):583-587.
    [83]郭雯,李丙智,张林森,韩明玉,王桂芳,李敏复,张海燕.不同施钾量对红富士苹果叶片光合特性及矿质营养的影响[J].西北农业学报,2010,19(4):192-195.
    [84]邓小波,湖尚连,曹颖,卢学琴,任鹏,段宁.绿竹与毛竹纤维合成酶(CesA)的生物信息学分析[J].福建林学院学报,2011,31(1):84-90.
    [85]鲁黎明.烟草钾转运体基因TPK1的电子克隆及生物信息学分析[J].中国农业科学,2011,44(1):28-35.
    [86]肖杰,吴序栎,王琳琳,LU Jun,徐宏.花生profilin蛋白的生物信息学分析[J].免疫学杂志,2011,27(2):158-161.
    [87]丁忠涛,张锐,郭三堆.棉花抗逆相关基因GhDr1的克隆及生物信息学分析[J].生物技术通报,2011,(1):99-106.
    [88]郭志云,张怀渝,梁龙.生物信息学技术进展[J].生物技术通讯,2004,15(3):313-317.
    [89]Thompson J, Higgins D, Gibson T. CLUSTAL W:improving the sensitivity of progressive multiple sequence alignment through sequence weighting position specific gap penalties and weight matrix choice[J]. Nucleic Acids Research,1994,22:4673-4680.
    [90]Mountain V. Astex, Structural Genomix, and Syrrx. I can see clearly now:structural biology and drug discovery[J]. Chemistry and Biology,2003,10(2):95-98.