有机酸对磷矿粉的活化及其对溶液中铜的去除
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选取产自湖北的3利中低品位磷矿,采用几种低分子量有机酸(Low molecular weight organic acids,简称LMWOAs)和无机酸(盐酸、硫酸)进行磷矿活化试验,比较了不同酸的活化效果,探讨了有机酸的浓度、活化时间、活化温度、溶液pH、酸根、液固比、磷矿粉粒径大小等因素对磷释放的影响,以及磷矿粉释磷过程中Ca2+、Mg2+释放特点,并利用傅立叶转换红外光谱(FTIR)、拉曼光谱(Raman)、X-射线衍射(XRD)、扫描电子显微镜/能谱分析(SEM/EDS)和X-射线光电子能谱(XPS)等研究草酸与磷矿粉的作用机理。在此基础上,还研究了磷矿粉及草酸活化磷矿粉对水溶液中Cu2+的去除效果和影响因素,并应用Raman、XRD、XPS等手段研究Cu2+与磷矿粉、活化磷矿粉作用机理。主要研究结果有:
     (1)供试酸均能活化磷矿粉释放磷,不同酸活化释磷效果不同。本试验浓度范围内(0.10-0.50mol/L),酸活化磷矿释磷效果顺序为:硫酸>草酸>盐酸>柠檬酸>酒石酸>甲酸>苹果酸>琥珀酸>乙酸。有机酸活化磷矿粉释磷与酸的强弱有关,酸性越强,释磷量越高;供试有机酸对磷矿粉的活化效果为:三元酸>二元酸>一元酸;混合有机酸活化效果并不比单一酸的效果好。
     (2)磷矿粉释磷量与诸多因素有关。草酸和柠檬酸浓度越高,磷矿粉活化效果越好;磷矿粉中磷的释放量与溶液pH呈负相关;有机酸溶液和磷矿粉的液固比越高、磷矿粉粒径越小、全磷量越高,磷的释放量越大。
     (3)磷的释放也受有机酸浓度和活化时间影响,各阶段可用不同动力学方程描述。当草酸和柠檬酸浓度为0.50mol/L时,磷矿粉释磷量随时间的延长而增加,一级动力学方程可合理拟合全过程。24小时内,磷的释放可用Elovich方程拟合。之后,磷释放速率减缓,一级动力学方程较合理。而当草酸和柠檬酸浓度为20mol/L时,磷矿粉中磷的释放速率一直呈减小的趋势,线性方程可拟合保康和南漳磷矿粉释磷趋势,钟祥磷矿粉可用Elovich方程拟合。
     (4)磷矿粉释磷过程也伴随着Ca2+、Mg2+的释放,但不同浓度酸对钙、镁的释放有差异。0.10-0.50mol/L草酸和柠檬酸与磷矿粉作用后,3种磷矿粉中Ca2+的释放量差异显著,而释放的Mg2+无差异。0.01-0.05mol/L草酸和柠檬酸与磷矿粉作用后,3种磷矿粉中Ca2+的释放量无差异,Mg2+的差异显著。
     (5)有机酸根对磷矿粉释磷的影响各有不同。当草酸根浓度(1-20mol/L)增加时,不同浓度酸根间的释磷量差异显著(p<0.01);而不同浓度柠檬酸根间的磷释放量差异不大。当控制溶液pH,改变有机酸根的浓度时,磷的释放量随着酸根浓度的增加而增加,不同酸根浓度间的磷释放量差异显著(p<0.01)。
     (6) FTIR、Raman、XRD、SEM/EDS和XPS研究均表明:草酸与磷矿作用后,磷矿粉中的磷灰石和磷酸钙因溶解而减少,同时产生了磷酸二氢钙和大量草酸钙晶体,而柠檬酸与磷矿作用只生成磷酸氢钙。
     (7)磷矿粉和活化磷矿粉可以除去水溶液中的重金属Cu2+,去除效果与溶液pH有关,在pH3-5范围内,磷矿粉对Cu2+的吸附量随pH升高而逐渐升高。等温吸附方程显示,Freundlich方程能较好的拟合吸附曲线,高温利于Cu2+的固定。反应介质的离子强度和其他共存重金属Cd2+对磷矿粉去除Cu2+有影响,且随着离子强度的增加而减小,随共存离子Cd2+浓度的升高而降低,Cu2+和Cd2+在磷矿粉中存在竞争。活化磷矿粉去除Cu2+的效果大于磷矿粉。
     (8)Cu2+在磷矿粉和活化磷矿粉表面发生了吸附作用,FTIR、XRD、Raman和XPS的结果表明,Cu2+没有与磷矿粉和活化磷矿粉发生表面吸附而被固定,它们之间以物理吸附为主,兼有化学吸附。
Three medium-grade PRs were selected from Hubei province, experiments with several common low molecular weight organic acids (Low molecular weight organic acids, LMWOAs) and inorganic acid (hydrochloric acid, sulfuric acid) were carrie out. And comparison of the activation effectiveness between the acids was analyzised. The different effects of phosphorus(P) release, such as the concentration of organic acids, activation time, activation temperature, pH, acid ion, liquid-solid ratio, particle size of PR, on PRs were investigated. At the same time, the calcium (Ca) and magnesium (Mg) release were determined. The morden techniques, such as infrared spectroscopy (IR), Raman spectroscopy (Raman), X-ray diffraction (XRD), scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the mechanism between oxalic acid and PR. In this paper, the Cu2+removal from aqueous solution with PR and activated phosphate rock (APR) and its influencing factors were also investigated. The techniques of Raman, XRD and XPS were applied to analysis the reaction between Cu2+and PR (as well as APRs). The main results are as follows:
     (1) The results of PRs dissolution in the presence of acids showed that:inorganic acids and organic acids can activate the PRs, but the effects of P release from PRs vary different acids. In laboratory experiment, as the acids concentrations are ranged from0.10to0.50mol/L, the P release from PRs is as follows:sulfuric acid> oxalic acid> hydrochloric acid> citric acid> tartaric acid> formic acid> malic acid> succinic acid> acetic acid. In terms of the same type of organic acid, the effectiveness of the acids on the P release is as this order: oxalic acid> tartaric acid> malic acid> succinic acid, and formic acid> acetic acid. The results indicate that acids would activate the PRs, and the more th amount of P release are, the more the stronger the acids are. If the acidity of the LMWOAs are the similar, their activation effect on PRs are as follows:ternary-acid> dicarboxylic-acid> mono-acid. The effectiveness of mixed acids is not stronger than that of single acid
     (2) The amount of P release is related to various factors. In terms of oxalic acid and citric acid, the results that the results of effects on PRs activation show that:the higher the concentration of acids were, the better the activation effectiveness were; there was a better negative correlation between the pH and the amount of phosphorus release from PRs. The higher the ratios of liquid-solid (volume of acid solution to amss of PR) were, the smaller the particle size of PR was, the more the phosphorus content of PR was, the more the P release from PR was.
     (3) The amount of P release from PRs is related to the acids concentration and reaction time. The processes of PRs dissolution were described with different kinetic equations. When the concentrations of oxalic acid and citric acid were0.50mol/L, the amount of P release from PRs increased with time. Within24hours, the rate of P release was rapid, and the firrst-order equation would be described the tendency. After6days, the P release rate further slowed down, and the Elovich equation would be stated the next process. When the concentration of oxalic acid and citric acid was20mmol/L, the P release from PRs was shown a decreasing trend. The P release processes of BKPR and NZPR would be described with linear equation, and ZXPR with Elovich equation.
     (4) The Ca2+and Mg2+release from PRs was also accompanied with the process of P release, but there were differences in Ca2+and Mg2+release from PRs. While the concentration of oxalic acid and citric acid was0.10-0.50mol/L, the amount of Ca2+release were significantly different in concentrations; while the Mg2+release was no difference. While the concentrations of oxalic acid and citric acid were0.010-0.050mol/L, the results were on the contrary.
     (5) The effects of organic acids ion P release from PRs varied. When the concentration of oxalate increased, the difference of P release between various concentrations of acid ion were significant difference (p<0.01), but the difference of citrate was not significant (p>0.1). When the pH of solution was controlled, the P release increased with the acid ion concentration increasing, there were significantly different in P release between different concentrations.
     (6) The spectra of FTIR, XRD, Raman, SEM/EDS and XPS of the tested samples indicated that there were obviously significant differences between PRs and activated PRs. And the results stated that when the PRs reacted with oxalic acid and citric acid, some new substances calcium oxalate monohydrate and calcium hydrogen phosphate dihyrate in oxalic aicd, and only new material, calcium dihydrogen phosphate monohyrate, was in presence of citric acid.
     (7) The PR and APR could be a new passivating agent to remove the heavy metals Cu2+ in aqueous solution. The effectiveness of Cu2+removal with PR and APR was related with the pH of the solution. When pH ws ranged from3-5, the amount of Cu2+fixed in minerals gradually increased with pH increasing. Adsorption isotherm equation showed that the Freundlich equation could be better described the adsorption reaction, and the temperature was conducive to Cu2+removal. The ionic strength of the medium and other co-existed heavy metal Cd2+could influence Cu2+removal with PRs and APRs. With the increase in ionic strength decrease and the concentration of Cd2+ions increase, the amount of Cu2+removal decreased. There was competition and collaboration between the Cd2+and Cu2+. The amount of Cu2+adsorbed in APR was more than that of PR.
     (8) When the PR and APR were added into the Cu2+solution, the Cu2+adsorption occurred in the surface of PR and APR. The results of FTIR, Raman, XRD and XPS showed that the new copper salts were not found in the surface of PR and APR; there was mainly physical adsorption between the Cu2+and PR (APR), maybe was chemical adsorption.
引文
1.陈世宝,朱永官,马义兵.磷对降低土壤中铅的生物有效性的x-衍射及电镜分析.环境科学学报,2006,26(6):924-929.
    2.谌书,连宾,刘丛强.一株胶质芽胞杆菌对磷矿石风化作用的实验研究.矿物学报,2008,28(1):77-73.
    3.程晓焜,黄志良.天然胶磷矿制备孔形CHAp及其表征.武汉工程大学学报,2008,30(2):70-73.
    4.董元彦.无机及分析化学(第三版).北京:科学出版社,2011.
    5.冯瑞章,姚拓,周万海,龙瑞军,齐文娟.溶磷菌和固氮菌溶解磷矿粉时的互作效应.生态学报,2006,26(8):2764-2769.
    6.郭荣发,廖宗文,陈爱珠.活化磷矿粉在砖红壤上的施用效果.湖南农业大学学报(自然科学版),2004,30(3):233-235.
    7.国家技术监督局.GB/T 1871-1995,磷矿石和磷精矿中五氧化二磷、氧化钙、氧化镁、氧化铝和氧化铁含量的测定.北京:中国标准出版社,1995.
    8.郝原芳,赵爱林.方解石、白云石定量分析X射线衍射法快速分析.有色矿冶,2005,21(5):58-60.
    9.胡华锋,刘世亮,介晓磊,李有田,王兴祥,李成亮.低分子量有机酸对矿物的溶解作用.中国农学通报,2005,21(4):105-110.
    10.黄芳,刘世荣,李军旗,陈义.磷尾矿中磷镁赋存状态及其矿物特征研究.矿物学报,2010,30(2):257-261.
    11.黄志良.磷灰石矿物材料.北京:化学工业出版社,2008.
    12.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3):58-66.
    13.李保强.壳聚糖/羟基磷灰石仿生骨材料的研究.[博士论文].杭州:浙江大学图书馆,2005.
    14.李冰,张学成,高美华,褚现明.钝顶螺旋藻藻蓝蛋白提取纯化新工艺.海洋科学,2007,31(8):48-52.
    15.李辉,连宾,龚国洪,杜开和.碳酸钙颗粒的细菌诱导形成.高校地质学报,2011,17(1):112-117.
    16.李俊艳,胡红青,李荣纪,陈守文,张素峰.改性磷矿粉对油菜幼苗生长和土壤性质的影响.植物营养与肥料学报,2009,15(2):441-446.
    17.李庆逵,蒋柏藩,鲁如坤.中国磷矿的农业利用.南京:江苏科学技术出版社,1992.
    18.李淑仪,廖新荣,蓝佩玲,梁雄才,彭少麟.有机活化剂对磷矿粉活化效果研究.生态科学,2001,20(2):51-55.
    19.李轩琦,孙康宁,卢志华,李政.载银羟基磷灰石复合抗菌材料的研究.硅酸盐通报,2008,27(1):12-15,25.
    20.李亚娟,杨翠红,陈博,邱慧珍.改性磷矿粉在石灰性土壤上的生物有效性及其机理研究.中国生态农业学报,2012,20(3):303-309.
    21.刘代俊,钟本和,张允湘.沉积型磷矿酸解过程的介微观反应机理.硫磷设计与粉体工程,2000,6:1-7.
    22.刘国栋,李继云,李振声.植物高效利用土壤磷营养的化学机理.植物营养与肥料学报,1995,3(3-4):72-78.
    23.刘进法,王鹏,罗园,谢亚超,万渊,夏仁学.低磷胁迫下AM真菌对枳实生苗吸磷效应及根系分泌有机酸的影响.亚热带植物科学,2010,39(1):9-13.
    24.刘丽,梁成华,王琦,杜立宇,吴玉梅,韩巍.低分子量有机酸对土壤磷活化影响的研究.植物营养与肥料学报,2009,15(3):593-600.
    25.刘树臣.中国矿产资源年报.北京:国土资源部,2008.
    26.刘羽.间接确定磷灰石中碳酸根含量的几种方法对比.岩矿测试,1994,1(2):109-112.
    27.吕阳,程文达,黄珂,李晓卿,曹卫东,申建波.低磷胁迫下箭筈豌豆和毛叶苕子根际过程的差异比较.植物营养与肥料学报,2011,17(3):674-679.
    28.罗惠华,程静,钱功明,钟康年.颗粒化磷矿物材料重金属吸附剂的研制.矿产综合利用,2007,5:20-24.
    29.南京农业大学.土壤农化分析.北京:中国农业出版社,1992.
    30.彭文世,刘高魁,柯丽琴.某些磷灰石矿物的红外吸收光谱.矿物学,1986,6(1):26-35.
    31.王爱娟,吕宇鹏,孙瑞雪.羟基磷灰石在生物活性物质分离与提纯领域中应用的研究进展.材料导报,2006,20(6):111-114,118.
    32.王光华,周德瑞,杨谦,周克琴,赵英.低分子量有机酸对磷矿粉的释磷效应.农 业环境科学学报,2004,23(1):80-84.
    33.工立群,罗磊,马义兵,华珞,郭海涛.不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响.农业环境科学学报,2009,28(6):1098-1105.
    34.王利,张卫峰,马文奇,高祥照,张福锁,齐焉.基于化肥生产的硫资源流动规律研究.自然资源学报,2005,20(6):900-909.
    35.王庆仁,李继云,李振声.柠檬酸与枸溶性磷肥对磷高效基因型小麦产量的影响.生态农业研究,1999,7(4):9-13.
    36.王树起,韩晓增,乔云发,严君,李晓慧.缺磷胁迫条件下大豆根系有机酸的分泌特性.大豆科学,2009,28(3):409-414.
    37.王涛,周健民,王火焰.固体废弃物及土壤中磷的形态分析技术.土壤学报,2011,48(1): 185-191.
    38.魏静,周恩湘,张桂银,姜淳,姚艳荣,毕淑琴.不同活化剂对磷矿粉的活化作用.河北农业大学学报,2001,24(1):13-15.
    39.吴鹏飞,张冬明,郝丽虹,漆智平.解磷微生物研究现状及进展.中国农业科技导报,2008,10(3):40-46.
    40.吴平霄,廖宗文,毛小云.改性磷肥的结构特征及其增效机理研究.植物营养与肥料学报,2000,6(3):287-292.
    41.胥焕岩,刘羽,彭明生.一种新型环境矿物材料在废水处理中的应用研究.环境污染治理技术与设备,2002,3(12):13-16.
    42.鄢正华.我国磷矿资源开发利用综述.矿冶,2011,20(3):21-25.
    43.杨慧.溶磷高效菌株筛选鉴定及其溶磷作用研究.[硕士学位论文].北京:中国农业科学院图书馆,2007.
    44.杨锦,何节玉,欧阳健明.不同类型尿石的XRD, FTIR和热释光谱分析.光谱与光谱分析,2011,31(8):2268-2273.
    45.曾庆冰,许家瑞,符若文,叶巧真.分离亲水气单胞菌外毒素的聚丙烯酰胺凝胶色谱填料.功能高分子学报,2000,13(1):343-348.
    46.张衡中.碳酸盐分解温度的变化规律.有色金属,1994,46(3):58-60
    47.张丽洁,张瑜,刘德辉.土壤重金属复合污染的化学固定修复研究.土壤,2009,41(3):420-424
    48.张清岑,杨华明.关于磷矿粉的有效利用问题.矿产综合利用,1996,2:11-15.
    49.张卫蜂,马文奇,张福锁,马骥.中国、美国、摩洛哥磷矿资源优势及开发战略比较分析.自然资源学报,2005,20(3):378-386.
    50.赵夫涛.超微细磷矿粉复合处理及其效应研究.[硕士学位论文].泰安:山东农业大学图书馆,2009.
    51.赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系.微生物学杂志,2003,23(3):5-7.
    52.郑少玲,陈琼贤,谭炽强,马磊,梅凤娴.解磷细菌对难溶性磷的有效化作用.华南农业大学学报,2007,28(4):38-41.
    53.钟传青,黄为一.磷细菌P17对不同来源磷矿粉的溶磷作用及机制.土壤学报,2004,41(6):931-936
    54.朱训主编.中国矿情·第三卷·非金属矿.北京:科学出版社,1999.
    55.邹璇,王德汉,李淑仪,李亮,李庆,文国来.木薯渣堆肥及其对难溶性磷的活化试验研究.生态环境学报,2010,19(1):81-85.
    56. Abdu YA, Hull SK, Fayek M, Hawthorne FC. The turquoise-chalcosiderite Cu(Al,Fe3+)6(PO4)4(OH)8·4H2O solid-solution series:A Mossbauer spectroscopy, XRD, EMPA, and FTIR study. American Mineralogist,2011,96(10):1432-1442.
    57. Aklil A, Mouflih M, Sebti S. Removal of heavy metal ions from water by using calcined phosphate as a new adsorbent. Journal of Hazardous Materials,2004,112(3):183-190.
    58. Alkan M, Dogany M. Adsorption of Copper (II) onto Perlite. Journal of Colloid and Interface Science,2001,243:280-291.
    59. Antonakos A, Liarokapis E, Leventouri T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials,2007,28:3043-3054.
    60. Arvieu JC, Leprince F, Plassard C. Release of oxalate and protons by ectomycorrhizal fungi in response to P-deficiency and calcium carbonate in nutrient solution. Annals of Forest Sciences,2003,60:815-821.
    61. Ashraf M, Zafar ZI, Ansari TM. Selective leaching kinetics and upgrading of low-grade calcareous phosphate rock in succinic acid. Hydrometallurgy,2005,80:286-292.
    62. Asri SE, Laghzizil A, Alaoui A, Saoiabi A, M'Hamdi R, Abbassi KE, Hakam A. Structure and thermal behaviors of Moroccan phosphate rock(Bengurin). Journal of Thermal Analysis and Calorimetry,2009,95(1):15-19.
    63. Asri SE, Laghzizil A, Coradin T, Saoiabi A, Alaoui A, M'hamedi R. Conversion of natural phosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueous solution. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2010,362:33-38.
    64. Badr MA, Taalab AS. Release of phosphorus from rock phosphate through composting using organic materials and its effect on corn growth. Bulletin of the National Research Centre (Cairo),2005,30(6):629-638.
    65. Bagyaraj DJ, Krishnaraj PU, Khanuja SPS. Mineral phosphate solubilization:Agronomic implications, mechanism and molecular genetics. PINSA-B,2000,66(2-3):69-82.
    66. Baker H. Characterization for the interaction of nickel (Ⅱ) and copper (Ⅱ) from aqueous solutions with natural silicate minerals. Desalination,2009,244:48-58.
    67. Barone G, Crupi V, Longo F, Majolino D, Mazzoleni P, Tanasi D, Venuti V. FT-IR spectroscopic analysis to study the firing processes of prehistoric ceramics. Journal of Molecular Structure,2011,993(1-3):147-150.
    68. Barreiro I, Casanova E, Castillo JR. Technology to produce partial acidulated phosphate rock (PAPR). Visoon Tecnologica,2002,9(2):119-132.
    69. Bengtsson A, Shchukarev A, Persson P, Sjoberg S. A solubility and surface complexation study of a non-stoichiometric hydroxyapatite.Geochimica et Cosmochimica Acta,2009 73:257-267.
    70. Betencourt E, Duputel M, Colomb B, Desclaux D, Hinsinger P. Intercropping promotes the ability of durum wheat and chickpea to increase rhizosphere phosphorus availability in a low P soil. Soil Biology & Biochemistry,2012,46:181-190.
    71. Biswas DR Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato-soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutrient Cycling in Agroecosystems,2011,89(1):15-30.
    72. Biswas DR, Narayanasamy G Rock phosphate enriched compost:An approach to improve low-grade Indian rock phosphate. Bioresource Technology,2006,97,18: 2243-2251.
    73. Boisson J, Ruttens A, Mench M, Vangronsveld J. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation. Environmental Pollution,1999,104:225-233.
    74. Brunner PH. Substance flow analysis as a decision support tool for phosphorus management. Journal of Industrial Ecology,2010,14(6):870-387.
    75. Cao X., Wahbi A, Ma L, Li B, Yang Y. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials,2009,164:555-564.
    76. Cao XD, Ma LQ, Rhue DR, Appel CS. Mechanisms of lead, copper and zinc retention by phosphate rock. Environmental Pollution,2004,131:435-444.
    77. Casarin V, Plassard C, Hinsinger P, Arvieu JC. Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytologist,2004,163:177-185.
    78. Cengiz S, Karaca AC, Cakir I, Uner HB, Sevindik A. SEM-EDS analysis and discrimination of forensic soil. Forensic Science International,2004,141:33-37.
    79. Chaturvedi PK, Seth CS, Misra V. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite). Chemosphere,2006,64:1109-1114.
    80. Chen SB, Xu MG, Ma YB, Yang JC. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 2007,67:278-285.
    81. Chen X, Wright J V, Concha J L, Peurrung L M. Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology,1997,31:624-631.
    82. Cooper J, Lombardi R, Boardman D, Carliell-Marquet C. The future distribution and production of global phosphate rock reserves. Resources Conservation and Recycling, 2011,57:78-86.
    83. Corami A, Mignardi S, Ferrini V. Cadmium removal from single- and multi-metal (Cd+ Pb+Zn+Cu) solutions by sorption on hydroxyapatite. Journal of Colloid and Interface Science,2008a,317:402-408.
    84. Corami A, Mignardi S, Ferrini V. Removal of lead, copper, zinc and cadmium from water using phosphate rock. Acta Geologica Sinica-English Edition,2008b,82:1223-1228.
    85. da Fonseca MG, de Oliveira MM, Arakaki LNH, Espinola JGP, Airoldi C. Natural vermiculite as an exchanger support for heavy cations in aqueous solution. Journal of Colloid and Interface Science,2005,285:50-55.
    86. De Toledo MCM, Lenharo S LR, Ferrari VC, Fontan F, De Parseval P, Leroy G. The compositional evolution of apatite in the weathering profile of the Catalao I alkaline-carbonatitic complex, Goias, Brazil. Canadian Mineralogist,2004, 42:1139-1158.
    87. Dogan M, Turkyilmaz A, Alkan M, Demirbas O. Adsorption of copper (II) ions onto sepiolite and electrokinetic properties. Desalination,2009,238:257-270.
    88. Duponnois R, Colombet A, Hien V, Thioulouse J. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biology & Biochemistry,2005,37: 1460-1468.
    89. Edwards AC, Walker RL, Maskell P, Watson CA, Rees RM, Stockdale EA, Knox OGG. Improving bioavailability of phosphate rock for organic farming. sustainable agriculture reviews, V4, Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming, 2010.
    90. Egle K, Romer W, Keller H. Exudation of low molecular weight organic acids by Lupinus albus L., Lupinus angustifolius L. and Lupinus luteus L. as affected by phosphorus supply. Agronomie,2003,23(5-6):511-518.
    91. El Asri S, Laghzizil A, Coradin T, Saoiabi A, Alaoui A, M'hamedi R. Conversion of natural phosphate rock into mesoporous hydroxyapatite for heavy metals removal from aqueous solution. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2010,362(1-3):33-38.
    92. Elouear Z, Bouzid J, Boujelben N, Feki M, Jamoussi F, Montiel A. Heavy metal removal from aqueous solutions by activated phosphate rock. Journal of Hazardous Materials, 2008,156(1-3):412-420.
    93. Featherstone JDB, Pearson S, LeGeros RZ. An infrared method for quantification of carbonate in carbonated apatities. Caries Research,1984,18:63-66.
    94. Fisher JB. Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochimica Cosmochimica Acta,1987,51:2459-2468.
    95. Fixen PE, Johnston AM. World fertilizer nutrient reserves:a view to the future. Journal of the Science of Food and Agriculture,2012,92(5):1001-1005.
    96. Frost RL, Wain D, Martens WN, Locke AC, Martinez-Frias J, Rull F.Thermal decomposition and X-ray diffraction of sulphate efflorescent minerals from El Jaroso Ravine, Sierra Almagrera, Spain. Thermochimica Acta,2007,460:9-14.
    97. Frost RL, Weier ML. Raman spectroscopy of natural oxalates at 298 and 77 K. Journal of Raman Spectroscopy,2003,34(10):776-785.
    98. Fujii K, Aoki M, Kitayama K. Biodegradation of low molecular weight organic acids in rhizosphere soils from a tropical montane rain forest. Soil Biology & Biochemistry,2012, 47:142-148.
    99. Gadd GM. Fungal production of citric and oxalic acid:importance in metal speciation, physiology and biogeochemical processes. Advances Microbiology Physiology,1999,41: 47-92.
    100-Golubev SV, Bauer A, Pokrovsky OS. Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 degrees C. Geochimica et Cosmochimica Acta,2006,70(17): 4436-4451.
    101.Grayston SJ, Vaughan D, Jones D. Rhizosphere carbon flow in trees, in comparison with annual plants:the importance of root exudation and its impact on microbial activity and nutrient availability. Applied Soil Ecology,1996,5:29-56.
    102.Harris DL, Lottermoser BG. Evaluation of phosphate fertilizers for ameliorating acid mine waste. Applied Geochemistry,2006,21(7):1216-1225.
    103.Hoffland E, Findenegg GR, Nelemans JE. Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P-starvation. Plant and Soil,1989, 113:161-165.
    104.http://baike.baidu.com/view/131993.htm
    105.http://minerals.usgs.gov/minerals/pubs/commodity/phosphate_rock/
    106.http://www.ln.cn/资源网
    107.Imran M, Waqas R, Nazli ZIH, Shaharoona B, Arshad M. Effect of recycled and value-added organic waste on solubilization of rock phosphate in soil and its influence on maize growth. International Journal of Agriculture and Biology,2011,13(5):751-756.
    108.Ivanova RP, Bojinova DY, Gruncharov IN, Damgaliev DL. The solubilization of rock phosphate by organic acids. Phosphorus sulfur and Silicon and the Related Element,2006, 181(11):2541-2554.
    109.Jaitz L, Mueller B, Koellensperger G, Huber D, Oburger E, Puschenreiter M, Hann S. LC-MS analysis of low molecular weight organic acids derived from root exudation. Analytical and Bioanalytical Chemistry,2011,400(8):2587-2596.
    110.Jasinski S M. Phosphate Rock, Mineral Commodity Summaries. U.S. Geological Survey, 2006.
    111.Jasinski S M. Phosphate Rock, Mineral Commodity Summaries. U.S. Geological Survey, 2009.
    112.Jasinski SM. Phosphate Rock, Mineral Commodity Summaries. U.S. Geological Survey, 2011.
    113.Jeanjean J, Vincent U, Fedoroff M. Structural modification of calcium hydroxyapatite induced by sorption of cadmium ions. Journal of Solid State Chemistry,1994,108:68-72.
    114.Jones DL, Dennis PG, Owen AG, van Hees PAW. Organic acid behavior in soils misconceptions and knowledge gaps. Plant and Soil,2003,248(1-2):31-41.
    115.Jurinak JJ, Dudley LM, Allen MF, Knight WG. The role of calcium oxalate in the availability of phosphorus in soil of semiarid regions:a thermodynamic study. Soil Science,1986,142:251-261.
    116.Kaloustian J, El-Moselhy TF, Portugal H. Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid:the use of simultaneous thermal analysis in urinary calculi. Clincia Chimica Acta,2003,334(1-2): 117-129.
    117.Kandah MI. The potential use of low-grade phosphate rocks as adsorbent. Chemical Engineering & Technology,2002,25(9):921-924.
    118.Keles E, Ozer AK. Yoruk S. Removal of Pb2+ from aqueous solutions by rock phosphate (low-grade). Desalination,2010,253(1-3):124-128.
    119.Khan MS, Zaidi A, Wani PA. Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review. Agronomy for Sustainable Development,2007,27(1): 29-43.
    120.Kim KY, McDonald GA, Jordan D. Solubilisation of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biology and Fertility of Soil, 1997,24:347-352.
    121.Knox AS, Kaplan DI, Paller MH. Phosphate sources and their suitability for remediation of contaminated soils. Science of the Total Environment,2006,357:271-279.
    122.Kong WG, Wang A, Freeman JJ, Sobron P. A comprehensive spectroscopic study of synthetic Fe2+, Fe3+, Mg2+and Al3+copiapite by Raman, XRD, LIBS, MIR and vis-NIR. Journal of Raman Spectroscopy,2011,42(5):1120-1129.
    123.Kpomblekou K, Tabatabai MA. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils. Agriculture Ecosystems & Environment,2003,100(2-3):275-284.
    124.Kpomblekou K, Tabatabai MA. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science,1994,158:442-453.
    125.Kucey RMN, Janzen HH, Leggett ME. Microbially mediated increases in plant-availability of phosphorus. Advances in Agronomy,1989,42:199-228.
    126.Kurniawan TA, Chan GYS, Lo W, Babel S. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment,2006, 366(2-3):409-426.
    127.Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ. Root structure and functioning for efficient acquisition of phosphorus:Matching morphological and physiological traits. Annals of Botany,2006,98:693-713.
    128.Landi E, Tampieri A, Celotti G, Vichi L, Sandri M. Influence of synthesis and sintering parameters on the characteristics of carbonate apatite. Biomaterials,2004,25:1763-1770.
    129.Larkin PJ. IR and Raman spectroscopy principles and spectral interpretation. Elsevier, 2011.
    130.Li J, Hu J, Sheng G, Zhao G, Huang Q. Effect of pH, ionic strength, foreign ions and temperature on the adsorption of Cu2+from aqueous solution to GMZ bentonite. Colloid surface A:Physicochemica Engineering Aspects,2009,349:195-201.
    131.Liu Y, Mi GH, Chen FJ, Zhang JH, Zhang FS. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability. Plant Science,2004,167(2):217-223.
    132.Lucas GJA, Barbas C, Probanza A, Barrientos ML, Gutierrez Manero FJ. Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochemical Analysis,2001,12(5):305-311.
    133.Ma L Q, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environmental Science and Technology,1995, 29:1118-1126.
    134.Manna MC, Ghosh PK, Ghosh BN, Singh KN. Comparative effectiveness of phosphate-enriched compost and single superphosphate on yield, uptake of nutrients and soil quality under soybean-wheat rotation. Journal of Agricultural Science,2001,137(1): 45-54.
    135.Manning DAC. Phosphate Minerals, Environmental Pollution and Sustainable Agriculture.Element,2008,4:105-108.
    136.Marchat D, Bernache-Assollant D, Champion E. Cadmium fixation by synthetic hydroxyapatite in aqueous solution-thermal behaviour. Journal of Hazardous Materials, 2007,139:453-460.
    137.Marschner P, Crowley D, Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods. Soil Biology & Biochemistry,2011,43(5):883-894.
    138.McClellan GH & Lehr JR. Crystal chemical investigation of natural apatite. Journal of American Mineralogist,1969,54:1374-1391.
    139.Mendes A, Gates WP, Sanjayan JG, Collins F. NMR, XRD, IR and synchrotron NEXAFS spectroscopic studies of OPC and OPC/slag cement paste hydrates. Materials and Structures,2011,44(10):1773-1791.
    140.Middelburg J J, Comans R N J. Sorption of cadmium on hydroxyapatite. Chemical Geology,1991,90:45-53.
    141.Mignardi S, Corami A, Ferrini V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn。 Chemosphere,2012,86:354-360.
    142.Miretzky P, Fernandez-Cirelli A. Phosphates for Pb immobilization in soils:a review. Environmental Chemistry Letter,2008,6:121-133.
    143.Misra V, Chaturvedi PK. Plant uptake/bioavailability of heavy metals from the contaminated soil after treatment with humus soil and hydroxyapatite. Environmental Monitoring and Assessment,2007,133,(1-3):169-176.
    144.Murphy V, Hughes H, McLoughlin P. Cu(II) binding by dried biomass of red, green and brown macroalgae. Water Research,2007,41:731-740.
    145.Narsian V, Abu Samaha ASM, Patel HH. Rock phosphate dissolution by specific yeast. Indian Journal of Microbiology,2010,50(1):57-62.
    146.Nezat CA, Blum JD, Yanai RD, Hamburg SP. A sequential extraction to determine the distribution of apatite in granitoid soil mineral pools with application to weathering at the Hubbard Brook Experimental Forest, NH, USA. Applied Geochemistry,2007,22,11: 2406-2421.
    147.Nishanth D, Biswas DR. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresource Technology,2008,99(9):3342-3353.
    148.O'Day PA, Vlassopoulos D. Mineral-Based Amendments for Remediation. Elements, 2010,6:375-381.
    149.Odongo NE, Hyoung-Ho K, Choi H C, van Straaten P, McBride BW, Romney DL.Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresource Technology,2007,98,15:2911-2918.
    150.Oelkers EH, Valsami-Jones E. Phosphate Mineral Reactivity and Global Sustainability. Element,2008,4:83-87.
    151.Ogut M, Er F, Neumann G. Increased proton extrusion of wheat roots by inoculation with phosphorus solubilising microorganism. Plant and Soil,2011,339(l-2):285-297.
    152.Ok YS, Yang JE, Zhang YS, Kim SJ, Chung DY. Heavy metal adsorption by a formulated zeolite-Portland cement mixture. Journal of Hazardous Materials,2007,147: 91-96.
    153.Oliva J, De Pablo J, Cortina JL, Cama J, Ayora C. Removal of cadmium, copper, nickel, cobalt and mercury from water by apatite Ⅱ (TM):Column experiments. Journal of Hazardous Materials,2011,194:312-323.
    154.Ostrooumov M, Hernandez-Bernal MDS. Mineralogical composition of the meteorite El Pozo (Mexico):A Raman, infrared and XRD study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2011,83(1):437-443.
    155,Ostrooumov M. A Raman, IR and XRD analysis of the deterioration on historical monuments:Case study from Mexico. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(3):498-504.
    156.Palomoa L, Claassenb N, Jones DL. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biology& Biochemistry,2006,38: 683-692.
    157. Pasteris JD, Wopenka B, Valsami-Jones E. Bone and tooth mineralization:Why apatite? Elements,2008,4(2):97-104.
    158.Peld M, Tonsuaadu K, Bender V. Sorption and desorption of Cd2+and Zn2+ions in apatite-aqueous systems. Environmental Science& Technology,2004, 38(21):5626-5631.
    159.Peld M, Tonsuaadu K, Bender V. Sorption and desorption of Cd2+and Zn2+ions in apatite-aqueous systems. Environmental Science and Technology,2004,38:5626-5631.
    160.Pickering HW, Menzies NW, Hunter MN. Zeolite/rock phosphate-a novel slow release phosphorus fertiliser for potted plant production. Scientia Horticultrae,2002,94(3-4): 333-343.
    161.Piga G, Santos-Cubedo A, Brunetti A, Piccinini M, Malgosa A, Napolitano E, Enzo S, A multi-technique approach by XRD, XRF, FTIR to characterize the diagenesis of dinosaur bones from Spain. Palaeogeography, Palaeoclimatology, Palaeoecology,2011,310(1-2): 92-107.
    162.Prasad M, Xu HY, Saxena S. Multi-component sorption of Pb(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) onto low-cost mineral adsorbent. Journal of Hazardous Materials,2008,154:221-229.
    163.Prinsloo LC. Rock hyraces:a cause of San rock art deterioration? Journal of Raman Spectroscopy,2007,38(5):496-503.
    164.Ramos EM, Cappelli C, Rozalen M, Fiore S, Huertas FJ. Effect of lactate, glycine, and citrate on the kinetics of montmorillonite dissolution. American Mineralogist,2011, 96(5-6):768-780.
    165.Reyes I, Valery A, Valduz Z. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant and Soil,2006,287(1-2):69-75.
    166.Ribeiro CC, Gibson I, Barbosa MA. The uptake of titanium ions by hydroxyapatite particles-structural changes and possible mechanisms. Biomaterials,2006,37(9): 1749-1761.
    167.Rodriguez H, Fraga R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances,1999,17:319-339.
    168.Rzepa G, Bajda T, Ratajczak T. Utilization of bog iron ores as sorbents of heavy metals. Journal of Hazardous Materials,2009,162:1007-1013.
    169.Sagoe CI, Ando T, Kouno K, Nagoaka T. Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids. Soil Science and Plant Nutrition,1998,44:617-625.
    170.Santos RV, Clayton R. The carbonate content in high-temperature apatite:An analytical method applied to apatite from the Jacupiranga alkaline complex. American Mineralogist, 1995,80:336-344.
    171.Saxena S, D'Souza SF. Heavy metal pollution abatement using rock phosphate mineral. Environment International,2006,32:199-202.
    172.Scervino JM, Mesa MP, Monica ID, Recchi M, Moreno NS, Godeas A. Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization Biology and Fertility of Soils,2010,46(7):755-763.
    173.Schaperdoth I, Liermann, LJ, Brantley SL. The effect of polymeric substances on apatite reactivity in the presence of a freshwater cyanobacterium. Geomicrobiology Journal, 2007,24(2):79-91.
    174. Schroder JJ, Smit AL, Cordel D, Rosemarin A. Improved phosphorus use efficiency in agriculture:A key requirement for its sustainable use. Chemosphere,2011,84(6): 822-831.
    175.Schuffert JD, Kastner M, Emanuele G, Jahnke RA. Carbonate-ion substitution in francolite:A new equation. Geochimica et Cosmochimica Acta,1990,54:2323-2328.
    176. Seaman JC, Arey JS, Bertsch PM. Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 2001,30:460-469.
    177.Sengul H, Ozer AK, Gulaboglu MS. Beneficiation of Mardin-Mazidagi (Turkey) calcareous phosphate rock using dilute acetic acid solutions. Chemical Engineering Journal,2006,122:135-140.
    178.Sequera O, Ramirez R. Available phosphorus, calcium and sulfur from acidulated phosphate rock with sulfuric acid and ammonium thiosulfate. Interciencia,2003,28(10): 604-610.
    179.Silva LFO, Hower JC, Izquierdo M, Querol X. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Science of the Total Environment,2010,408(21):5117-5122.
    180.Singh H, Reddy M. Sudhakara. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. European Journal of Soil Biology,2011,47(1):30-34.
    181.Sljivic M, Smiciklas I, Plecas I, Mitric M. The influence of equilibration conditions and hydroxyapatite physico-chemical properties onto retention of Cu2+ions. Chemical Engineering Journal,2009,148:80-88.
    182.Smith SE, Jakobsen I, Gronlund M, Smith F. Roles of arbuscular mycorrhizas in plant phosphorus nutrition:Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology,2011,156(3):1050-1057.
    183.Sparks DL. Kinetics of soil chemical processes. San Diego:Academic press,1989.
    184.Speight J G Ed. Lange's Handbook of Chemistry,16th. edition 2004.
    185.Sreenivas C, Narayanasamy G. Role of earthworm (Eisenia fetida) and phosphate solubilising microorganism(Aspergillus awamori) in vermi-phosphocomposting. Researche on Crops,2009,10(2):293-300.
    186.Srinivasan R, Alagawadi AR, Yandigeri MS. Meena KK, Saxena AK. Characterization of phosphate-solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants [Sorghum bicolor (L.) Moench]. Annals of Microbiology, 2012,62(1):93-105.
    187.Strobel BW. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma,2001,99:169-198.
    188.Strom L, Owen AG, Godbold DL, Jones DL. Organic acid behavior in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biology & Biochemistry,2005,37: 2046-2054.
    189.Szilas C, Koch CB, Msolla MM, Borggaard OK. The reactivity of Tanzanian Minjingu phosphate rock can be assessed from the chemical and mineralogical composition.Geoderma,2008,147(3-4):172-177.
    190.Terry PA, Stone W. Biosorption of cadmium and copper contaminated water by Scenedesmus abundans. Chemosphere,2002,47:249-255.
    191.Ulmanu M, Maranon E, Fernandez Y, Castrillon L, Anger I, Dumitriu D. Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, and Soil Pollution,2003,142:357-373.
    192.van Hees PAW, Jones DL, Nyberg L, Holmstrom SJM, Godbold DL, Lundstrom US. Modelling low molecular weight organic acid dynamics in forest soils. Soil Biology & Biochemistry,2005,37:517-531.
    193.Vassilev N, Baca MT, Vassileva M, Franco L, Azcon R. Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Applied Microbiology and Biotechnology,1995,44:546-549.
    194.Vassilev N, Vassileva M, Fenice M, Federici F. Immobilized cell technology applied in solubilization of insoluble inorganic (rock) phosphates and P plant acquisition. Bioresource Technology,2001,79(3):263-271.
    195.Wang X, Tang C, Guppy C N, Sale P W G. Phosphorus acquisition characteristics of cotton (Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin(Lupinus albus L.) under P deficient conditions. Plant and Soil,2008,312(1-2):117-128.
    196.Watt JF, Wolstenholme J. An Introduction to Surface Analysis by XPS and AES. John Wiley & Sons,2002
    197.Wickramatilake ARP, Kouno K, Nagaoka T. Compost amendment enhances the biological properties of Andosols and improves phosphorus utilization from added rock phosphate. Soil Science and Plant Nutrition,2010,56(4):607-616.
    198.Xu R, Zhe Y, Chittleborough D. Phosphorus release from phosphate rock and iron phosphate by low molecular weight organic acids. Journal of Environmental Sciences, 2004,16 (1):5-8.
    199.Xu Y, Schwartz F W, Traina S J. Sorption of Zn2+and Cd2+on hydroxyapatite surfaces. Environmental Science and Technology,1994,28:1472-1480.
    200.Yavuz O, Altunkaynak Y, Guzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research,2003,37:948-952.
    201.Yoon JK, Cao X, Ma LQ. Application methods affect phosphorus-induced lead immobilization from a contaminated soil. Journal of Environmental Quality,2007,36, 373-378.
    202.Zafar ZI, Anwar MM, Pritchard DW. Selective leaching of calcareous phosphate rock in formic acid:Optimisation of operating conditions. Minerals Engineering,2006,19: 1459-1461.
    203.Zafar ZI, Ashraf M. Selective leaching kinetics of calcareous phosphate rock in lactic acid. Chemical Engineering Journal,2007,131:41-48.
    204.Zapata F, Roy RN. Use of phosphate rocks for sustainable agriculture. Fertilizer and Plant Nutrition Bulletin, V13. Rome:Food and Agriculture Organization of the United Nations,2004.
    205.Zayed G, Abdel-Motaal H. Bio-production of compost with low pH and high soluble phosphorus from sugar cane bagasse enriched with rock phosphate. World Journal of Microbiology & Biotechnology,2005,21(5):747-752.
    206.Zeledon-Toruno Z, Lao-Luque C, Sole-Sardans M. Nickel and copper removal from aqueous solution by an immature coal (leonardite):effect of pH, contact time and water hardness. Journal of Chemical Technology and Biotechnology,2005,80:649-656.
    207.Zhang M, Pu J. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils. Journal of Environmental Sciences-China,2011,23(4):607-615.
    208.Zhang W, Ma W, Ji Y, Fan M, Oenema O, Zhang F. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutrient Cycling in Agroecosystems,2008,80:131-144.
    209.Zhang XM, Spiers CJT. Effects of phosphate ions on intergranular pressure solution in calcite:An experimental study. Geochimica et Cosmochimica Acta,2005,69(24): 5681-5691.