利用基因工程手段提高两种微藻的生物量与特定代谢产物产量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用基因工程手段提高裂壶藻生长速度和脂肪酸含量
     裂壶藻(Schizochytrium sp.)又称裂殖壶菌,属不等鞭毛门(Stramenopiles),是一种异养微藻。裂壶藻合成丰富的多不饱和脂肪酸,其二十碳五烯酸(timnodonic acid, DPA)和二十二碳六烯酸(docosahexaenoic acid, DHA)占总脂肪酸60%以上,占细胞干重的43%,是用于工业发酵生产长链多不饱和脂肪酸的几种非常理想的异养真核微藻之一。
     目前,利用裂壶藻生产长链多不饱和脂肪酸面临的主要问题之一是在高密度发酵过程中,葡萄糖转化后积累出的乙酸会对发酵过程微生物产生负面影响。为解决这一难题,我们拟通过电击转化法将大肠杆菌中的乙酰辅酶A合成酶基因(acetyl-coA synthetase,ACS)引入到海洋裂壶藻Schizochytrium sp. TIO1101中。对转化子进行PCR、Southern和Western免疫印迹检测的结果显示:外源ACS基因转化成功并在传代过程中稳定表达。摇瓶培养及高密度发酵实验的检测结果显示:外}源ACS基因表达可以降低培养基醋酸浓度,增加细胞内乙酰辅酶A库存,显著提高生物量和脂肪酸含量。以上结果表明,过表达ACS促进了裂壶藻三羧酸循环方向的代谢,降低了乙酸的积累,能显著提升DHA的产量。证明引入的ACS对改善裂壶藻代谢方面确实有重要意义。
     雨生红球藻遗传转化研究
     雨生红球藻Haematococcus pluvialis)是一种单细胞绿藻,新形成细胞体积较小,呈球形或卵圆形,黄绿色,有两根鞭毛。雨生红球藻则是属于绿藻门(Chlorophata),绿藻纲(Chlorophyceae),团藻目(Volvocales),红球藻科Haematococcaceae),红球藻属(Haematococcus)。微藻是天然虾青素重要的来源之一。微藻中虾青素含量最高的是雨生红球藻,也是所有已知能积累虾青素生物体中合成量最高的物种,其合成量最高可达细胞干重的4%。
     在转基因裂壶藻的基础上,结合以前的经验教训,分别用农杆菌侵染法和基因枪法对雨生红球藻做了外源基因稳定表达的实验尝试。同时从启动子,报告基因,抗性筛选基因和目的基因的组合方面进行考虑,构建了多个质粒。通过荧光标记验证,抗性筛选,PCR鉴定,结果证明农杆菌侵染法和基因枪法均可将外源基因导入雨生红球藻。由于雨生红球藻自身的生物特性及实验设计的复杂程度,未来将对外源蛋白的定位,功能性验证等方面进行深入研究,并将是实验室未来的一个长期的研究方向。
Increasing the growth rate and fatty acids content of Schizochytrium by genetic engineering
     Schizochytrium sp., one of heterotrophic microalgae belongs to phylum Stramenopiles, Schizochytrium synthesizes rich unsaturated fatty acids. It has been found that timnodonic acid (DPA) and docosahexaenoic acid (DHA) account for more than60%of its total fatty acids and43%of its dry cellular weight. Schizochytrium is one of a few desirable heterotrophic microalgae which can be used to produce long chain unsaturated fatty acids through fermentation.
     During high density fermentation, transformation of glucose causes accumulation of acetic acid which will affect the fermentation negatively. In this research, the acetyl-coA synthetase gene, ACS, of E. coli was introduced into Schizochytrium sp. TIO1101with electroporation with such an introduction and the expression of the introduced gene verified by immunoblotting and polymerase chain reaction, In rotating bottle culture and high density fermentation, it was found that the acidity of transformant changed and the growth rate and glucose consumption rate of transformant were higher than those of the wild strain. As was evidenced by biomass and metabolite measurement, the biomass and the content of fatty acids were increase significantly in comparison with the wild. These findings indicated that over expression of ACS shifted the metabolism of Schizochytrium towards tricarboxylic acid cycle, and reduced the synthesis of acetic acid. Introduction of ACS gene has significantly improved the metabolism of Schizochytrium.
     Genetic transformation of Haematococcus pluvialis
     Haematococcus pluvialis is a single cell green alga. Newly formed cells of H. pluvialis appear to be spherical or oviform, and have two flagellates. H. pluvialis belons to genus Haematococcus, family Haematococcaceae, order Volvocales, class Chlorophyceae, phylum Chlorophata. Microalgae are the major source of astaxanthin, of them H. pluvialis contains the richest astaxanthin. H. pluvialis contains the richest astaxanthin among all known species accumulating this chemical, reaching4%of the dry cellular weight.
     Basing on the basis of Schizochytrium transformation and taking previous experience into account, Agrobacterium-medizted transformation and particle bombardment (gene gun) were tried in this study in order to express foreign gens stably in this alga. From available promoters, reporter genes, antibiotic resistance genes and target genes, a few recombinant plasmids were constructed. As were proved by fluorescence marker, antibiotic selection, and polymerase chain reaction, both Agrobacterium-mediated transformation and particle bombardment were effective for transferring foreign genes into H. pluvialis. Due to the biological characteristics of H. pluvialis and the complexity of planted experiment, the location and function verification of foreign protein need to be studied further. This will be a long term researching goal of the lab in which I tried to transform Haematococcus.
引文
[Al]Cavalier-Smith T., Allsopp MTEP., Chao EE. Thraustochytrids are chromists, not Fungi: 18S rRNA signatures of Heterokonta. Philos. T. Roy. Soc. B.1994.346:387-97.
    [A2]Honda D., Yokochi T., Nakahara T., Erata M., Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res.1998.102:439-48.
    [A3]Lippmeier JC., Crawford KS., Owen CB., Rivas AA., Metz JG, Apt KE. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids. 2009.44:621-30.
    [A4]冯云,任路静,魏萍,仝倩倩,纪晓俊,黄和.微生物发酵产二十二碳六烯酸代谢机理的研究进展.生物工程学报.2010.26:1225-31.
    [A5]Dyerberg J. Observations of populations in Greenland and Denmark. In nutritional evaluation of long-chain fatty acids. Academic Press, London, England.1982. pp. 245-61.
    [A6]周爱儒.生物化学.北京人民卫生出版社,2003.
    [A7]范文洵.α-亚麻酸及其代谢产物EPA和DHA.生理科学进展.1988.19:110-3.
    [A8]祝向红.廿碳五烯酸的抗缺血性疾病作用.生理科学进展.1986.17:166-8.
    [A9]Nair SSD., Leitch J., Garg ML. N-3 polyunsaturated fatty acid supplementation alters inositol phosphate metabolism and protein kinase C activity in adult porcine cardiacmyocytes. J. Nutr. Biochem.2001.12:7-13.
    [A10]Leifert WR., Dorian CL., Jahangiri A., McMurchie EJ. Dietary fish oil prevents asynchronous contractility and alters C2+ handling in adult rat cardiomyocytes. J. Nutr. Biochem.2001.12:365-76.
    [A11]Rinaldi B., Di Pierro P., Vitelli MR., D'Amico M., Berrino L., Rossi F., Filippelli A. Effects of docosahexaenoic acid on calcium pathway in adult rat cardiomyocytes. Life Sci.2002.71:993-1004.
    [A12]蔡双莲,李敏.多不饱和脂肪酸的研究进展.生命科学研究.2003.7:289-304.
    [A13]Berge JP., Barnathan G. Fatty acids from lipids of marine organisms:molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Engin/Biotechnol.2005.96:49-125.
    [A14]Stough C., Downey L., Silber B., Lloyd J., Kure C., Wesnes K., Camfield D. The effects of 90-day supplementation with the Omega-3 essential fatty acid docosahexaenoic acid (DHA) on cognitive function and visual acuity in a healthy aging population. Neurobiol. Aging.2012,33:824.e1-e3.
    [A15]温雪馨,李建平,侯文伟,彭晓芳,马金余.微藻DHA的营养保健功能及在食品工业中的应用.食品科学.2010.31:446-50.
    [A16]Agren JJ., Hanninen O., Julkunen A., Fogelholm L., Vidgren H., Schwab U., Pynnonen O., Uusitupa M. Fish diet, fish oil and docosahexaenoic acid rich oil lower fasting and postprandial plasma lipid levels. Eur. J. Clin. Nutr.1996.50:765-71.
    [A17]元艺兰,方勇,石俊,韩光海,李明哲.不饱和脂肪酸对危重病人免疫功能及营养水平的影响.延边大学医学学报.2006.29:117-20.
    [A18]Liu Y., Gong L., Li D., Feng Z., Zhao L., Dong T. Effect of fish oil on lymphocyte proliferation, cytokine production and intracellular signalling in weanling pigs. Arch. Tierernahr.2003.57:151-65.
    [A 19]Simopoulos AP., Kifer RR., Martin RE. Health effects of polyunsaturated fatty acids in seafoods. Academic Press, London (UK).1986.453.
    [A20]Bartsch H., Nair J., Owen RW. Dietary polyunsaturated fatty acids and cancer of the breast and colorectum:emerging evidence for their role as risk modifiers. Carcinogenesis.1999.20:2209-18.
    [A21]马栋柱,孙克任,赵丽,肖志峰,李慧.药物AC-88的抗肿瘤作用和对荷瘤小鼠T细胞的Fas, NF-κB/I-KB的影响.上海免疫学杂志.2002.22:246-9.
    [A22]Calviello G., Palozza P., Piccioni E., Maggiano N., Frattucci A., Franceschelli P., Bartoli GM. Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats:effects on proliferation and apoptosis. Int. J. Cancer.1998.75:699-705.
    [A23]Wirtitsch M., Roth E., Bachleitner-Hofmann T., Wessner B., Sturlan S. Omega-3 and omega-6 polyunsaturated fatty acids enhance arsenic trioxide efficacy in arsenic trioxide-resistant leukemic and solid tumor cells. Oncol. Res.2009.18:83-94.
    [A24]冯宪光,姚文环.DHA复合物抗肿瘤作用的实验研究.预防医学论.2005.11:567-9.
    [A25]Hulbert AJ., Else PL. Membranes as possible pacemakers of metabolism.J. Theor. Biol. 1999.199:257-74.
    [A26]Feller SE., Gawrisch K., MacKerell, Jr AD. Polyunsaturated fatty acids in lipid bilayers: intrinsic and environmental contributions to their unique physical properties. J. Am. Chem. Soc.2002.124:318-26.
    [A27]Hulbert AJ., Faulks S., Buttemer WA., Else PL. Acyl composition of muscle membranes varies with body size in birds. J. Exp. Biol.2002.205:3561-9.
    [A28]Else PL., Wu BJ. What role for membranes in determining the higher sodium pomp molecular activity of mammals compared to ectotherms? J. Comp. Physiol. B.1999.169: 296-302.
    [A29]Wu BJ., Else PL., Storlien LH., Hulbert AJ. Molecular activity of Na+/K+ -ATPase from different sources is related to the packing of membrane lipids. J. Exp. Biol.2001.204: 4271-80.
    [A30]于得庆.DHA, EPA对耐力训练小鼠红细胞膜流动性影响的实验研究.河北科技大学学报.2005.26:31-5.
    [A31]刘玉军.鱼油十二碳五烯酸和二十二碳六烯酸的生物效应与作用机理.生理科学进展.1987.18:230-5.
    [A32]王致诚.DHA生理保健新发现..药物与人.1997.10:32-3.
    [A33]王萍.DHA可造就天才.国际科技动态.1998.6:47.
    [A34]Stordy BJ. Dark adaptation, motor skills, docosahexaenoic acid, and dyslexia. Am. J. Clin. Nutr.2000.71:323S-6S.
    [A35]Morley R. Nutrition and cognition development. Nutrition.1998.14:752-4.
    [A36]王萍.DHA可治疗阿尔兹海默氏病.国际科技动态.1998.6:48.
    [A37]Vessby B., Tengblad S., Lithell H. Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia.1994.37:1044-50.
    [A38]Turner N., Else PL., Hulbert AJ. Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump:implications for disease states and metabolism. Naturwissenschaften.2003.90:521-3.
    [A39]赵华,王康宁.多不饱和脂肪酸对动物体脂沉积及其基因表达的影响.动物营养学报.2004.16:1-5.
    [A40]李惠侠,杨公社.二十二碳六烯酸对大鼠脂肪酸细胞增殖分化的影响.生物工程学报.2005.21:840-3.
    [A41]Liu JC, Conklin SM., Manuck SB., Yao JK., Muldoon MF. Long-Chain Omega-3 Fatty Acids and Blood Pressure. Am. J. Hypertens.2011.24:1121-6.
    [A42]Trierweiler AK. For active and vital years. How Omega-3 supplementation can benefit age-related diseases. Agro Food Ind. Hi Tec.2011.22:13.
    [A43]Levine B., Bell RT. DHA in health and disease. Patient Care.1998.32:87-92.
    [A44]Schaefer E. Brain boosters. Psychol. Today.1998.31:44.
    [A45]张义明.DHA的来源及合理应用.食品工业科技.2003.24:98-9.
    [A46]邓斌,尚刚.ω-3型脂肪酸-DHA在食品中的应用.食品工业.2009.30:157-9.
    [A47]张影霞,黄巍峰.微藻DHA在月饼中的应用.现代食品科技.2011.27:1494-7.
    [A48]吴继军.γ-亚麻酸发酵生产的研究.广州:华南理工大学.1999.p4-5.
    [A49]吴克刚.培养破囊壶菌Thtraustochytrium roseum产DHA及其脂质氧化稳定性的研究.广州:华南理工大学.2001.
    [A50]高淳仁,梁亚全,刘庆慧,韩阿寿.饲料中不饱合脂肪酸对斑节对虾幼虾存活、蜕皮和生长的影响.中国水产科学.1997.4:75-9.
    [A51]徐新章,何珍秀.不同脂肪源对幼蟹生长的影响.饲科工业1997.18:16-8.
    [A52]张欣欣,钱凯先.ω-3多烯脂肪酸在鸡蛋蛋黄中的积累研究.营养学报.1998.21:51-4.
    [A53]余龙江,兰文智.多不饱和脂肪酸的微生物发酵及其产业化的研究进展.行业展望.2006.125-8.
    [A54]张义明.DHA的来源及合理应用.食品工业科技.2003.24:98-9.
    [A55]刘燕琳,石峰,尹玲,梁晓燕.利用海洋微藻发酵生产二十二碳六烯酸的研究.药学进展.2005.12:544-9.
    [A56]徐天宇.利用生物技术生产二十碳五烯酸和二十二碳六烯酸.食品与发酵工业.1995.1:56-64.
    [A57]Vazhappilly R., Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J. Am. Oil Chem. Soc.1998.75: 393-7.
    [A58]Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie.2004.86:807-15.
    [A59]Ratledge C. Yeasts, moulds, algae and bacterial as source of lipids. Biotechnol. Bioeng. 1994.46:325-32.
    [A60]Meyer A., Cirpus P., Ott C., Schlecker R., Zahringer U., Heinz E. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a A4-fatty acyl group desaturase. Biochemistry-US.2003.42:9779-88.
    [A61]Metz JG., Roessler P., Facciotti D., Levering C., Dittrich F., Lassner M., Valentine R., Lardizabal K., Domergue F., Yamada A., Yazawa K., Knauf V., Browse J. Production of polyunsaturated fatty acids by polyketide synthases in both Prokaryotes and Eukaryotes. Science.2001.293:290-3.
    [A62]Qiu X. Biosynthesis of docosahexaenoic acid (DHA,22:6-4,7,10,13,16,19): two distinct pathways. Prostag. Leukotr. Ess.2003.68:181-6.
    [A63]Okuyama H., Orikasa Y., Nishida T., Watanabe K., Morita N. Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl. Environ. Microb.2006.73:665-70.
    [A64]De Swaaf ME., de Rijk TC, van der Meer P., Eggink G, Sijtsma L. Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. J. Biotechnol.2003.103:21-9.
    [A65]Pfeifer BA., Khosla C. Biosynthesis of polyketides in heterologous hosts. Microbiol. Mol. Biol. Rev.2001.65:106-18.
    [A66]Haskins RH, Tulloch AP, Micetich RG. Steroids and the stimulation of sexual reproduction of aspecies of phythian. Can. J. Microbiol.1964.10:187-95.
    [A67]Bajpai PK., Bajpai P., Ward OP. Optimization of production of docosahexaenoic acid (DHA) by Thraustochytrium aureum ATCC 34304. J. Am. Oil Chem. Soc.1991.68: 509-14.
    [A68]Li ZY., Ward OP. Production of docosahexaenoic acid by Thraustochytrium roseum. J. Indust. Microbiol.1994.13:238—41.
    [A69]Singh AW., Ward OP. Docosahexaenoic acid production by Thraustochytrium sp. ATCC20892. World J. Microbiol. Biotechnol.1996.12:76-81.
    [A70]Iida I., Nakahara T., Yokochi T. Improvement of docosahexaenoic acid production in a culture of Thraustochytrium aureum by medium optimization. J. Ferm. Bioeng.1996.81: 76-8.
    [A71]Yaguchi T., Tanaka S., Yokochi T., Nakahara T., Higashihara T. Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J. Am. Oil Chem. Soc. 1997.74:1431-4.
    [A72]Nakahara T., Yokochi T., Higashihara T., Tanaka S., Yaguchi T., Honda D. Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. J. Am. Oil Chem. Soc.1996.73:1421-6.
    [A73]Honda D., Yokochi T., Nakahara T., Erata M., Higashihara T. Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res.1998.102:439-48.
    [A74]魏萍,马小琛,任路静,纪晓俊,何光华,刘臻,黄和.裂殖壶菌发酵生产DHA研究进展.食品工业科技.2010.31:398-404.
    [A75]Bailey RB., DiMasi D., Hansen JM., Mirrasoul PJ., Ruecker CM., Veeder GT III., Kaneko T., Barclay WR. Enhanced production of lipids containing poloyunsaturated fatty acids by very high density cultures of eukaryotic microbes in fermenters. U.S. Patent #6607900. United States of America.2003.
    [A76]Ren LJ., Ji XJ., Huang H., Qu L., Feng Y., Tong QQ., Ouyang PK. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp.Appl. Microbiol. Biotechnol.2010.87:1649-56.
    [A77]Fedorova-Dahms I., Marone PA., Bauter M., Ryan AS. Safety evaluation of DHA-rich algal oil from Schizochytrium sp. Food Chem. Toxicol.2011.49:3310-8.
    [A78]Hammond BG, Mayhew DA., Kier LD., Mast RW., Sander WJ. Safety assessment of DHA-rich microalgae from Schizochytrium sp. IV. Mutagenicity Studies. Regul. Toxicol. Pharm.2002.35:255-65.
    [A79]Akesson M., Karlsson EN., Hagander P., Axelsson JP., Tocaj A. On-line detection of acetate formation in Escherichia coli cultures using dissolved oxygen responses to feed transients. Biotechnol. Bioeng.1999,64:590-8.
    [A80]Dittrich CR., Vadali RV., Bennett GN., San KY. Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate. Biotechnol. Prog. 2005,21:627-31.
    [A81]Eiteman MA., Altman E. Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol.2006,24:530-6.
    [A82]Farmer WR., Liao JC. Reduction of aerobic acetate production by Escherichia coli. Appl. Environ. Microbiol.1997,63:3205-10.
    [A83]Aristidou AA., San KY, Bennett GN. Metabolic engineering of Escherichia coli to enhance recombinant protein production through acetate reduction. Biotechnol Prog. 1995,11:475-8.
    [A84]Lin H., Castro NM., Bennett GN., San KY. Acetyl-CoA synthetase overexpression in Escherichia coli demonstrates more efficient acetate assimilation and lower acetate accumulation: a potential tool in metabolic engineering. Appl. Microbiol. Biotechnol. 2006,71:870-4.
    [A85]Tomar A., Eiteman MA., Altman E. The effect of acetate pathway mutations on the production of pyruvate in Escherichia coll. Appl. Microbiol. Biotechnol.2003,62: 76-82.
    [A86]Kumari S., Tishel R., Eisenbach M., Wolfe AJ. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol.1995,177:2878-86.
    [A87]魏萍,任路静,纪晓俊,仝倩倩,冯云,黄和.强化乙酰辅酶A供应对裂殖壶菌合成二十二碳六烯酸的影响.中国生物工程杂志.2011.31:87-91.
    [A88]梁楠,王淼,刘立明,堵国成,陈坚.提高光滑球拟酵母乙酰辅酶A水平促进α-酮戊二酸合成.微生物学报.2008.48:874-8.
    [A89]Kumari S., Beatty CM., Browning DR, Busby SJ., Simel EJ., Hovel-Miner G, Wolfe AJ. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol.2000, 182:4173-9.
    [A90]Wu ST., Yu ST., Lin LP. Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem.2005.40:3103-8.
    [A91]Ganuza E., Anderson AJ., Ratledge C. High-cell-density cultivation of Schizochytrium sp. in an ammonium/pH-auxostat fed-batch system. Biotechnol Lett.2008.30:1559-64.
    [A92]Chi ZY, Pyle D., Wen ZY, Frear C., Chen SL. A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem.2007.42:1537-45.
    [A93]尚常花,杨康,袁振宏,王忠铭,朱顺妮.藻类转基因研究进展.安徽农业科学.2011.39:7611-12,7639.
    [A94]Sanford JC, Klein TM., Wolf ED., Allen N. Delivery of substances into cells and tissues using a particle bombardment process. J. Part. Sci. Tech.1987.5:27-37.
    [A95]Klein TM., Wolf ED., WU R., Sanford JC. High velocity microprojectiles for delivering nucleic acids into living cells. Nature.1987.327:70-3.
    [A96]Cheney DP., Kurtzman. Progress in protoplast fusion and gene transfer in red algae. In: Absrtracts of the ⅩⅣ International Seaweed Symposium, Brest, France.1992.
    [A97]秦松,张健,李文斌,王希华,童顺,孙勇如,曾呈奎.用基因枪将GUS基因导入褐藻细胞中表达.海洋与湖沼.1994.25:353-6.
    [A98]Kuang M., Wang SJ., Li Y., Shen DL., Zeng CK. Transient expression of exogenous GUS gene in Porphyra yezoensis (Rhodophyta). Chin. J. Oceanol. Limn.1998.16: 56-61.
    [A99]于道展,秦松.p-半乳糖苷酶基因(lacZ)在大型经济海藻裙带菜中的瞬间表达.高技术通讯.2002.12:93-5.
    [A100]Tan C., Qin S., Zhang Q., Jiang P., Zhao F. Establishment of a microparticle bombardment transformation system for Dunaliella salina. J. Microbiol.2005.43: 361-5.
    [A101]Apt KE., Kroth-Pancic PG., Grossman AR. Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol. Gen. Genet.1996.252:572-9.
    [A102]Dunahay TG., Jarvis EE., Roessler PG Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol.1995.31:1004-12.
    [A103]李玉秋,王景会,郑丽,杨贞耐.毕赤酵母电转化方法比较的研究.农产食品科技.2010.4:18-21.
    [A104]Liu HQ., Yu WG, Dai JX., Gong QH., Yang KF., Zhang YP. Increasing the transient expression of GUS gene in Porphyra yezoensis by 18S rDNA targeted homologous recombination. J. Appl. Phycol. 2003.15:371-7.
    [A105]Mizukami Y, Hado M., Kito H., Kunimoto M., Murase N. Reporter gene introduction and transient expression in protoplasts of Porphyra yezoensis. J. Appl. Phycol.2004.16: 23-9.
    [A106]Geng D., Wang Y., Wang P., Li W., Sun Y. Stable expression of hepatitis B surface antigen gene in Dunaliella salina (Chlorophyta). J. Appl. Phycol.2003.15:451-6.
    [A107]Chow KC., Tung WL. Electrotransformation of Chlorella vulgaris. Plant Cell Rep. 1999.18:778-80.
    [A108]Krens FA., Molendijk L., Wullems GJ., Shilperoort RA. The genetic material may also be transferred into the plant cell using polysthylene glycol. Nature.1982.296:72-4.
    [A109]王萍,王罡,季静,吴颖.大豆转基因体系的研究进展.遗传.2004.26:969-76.
    [A110]Cheney D., Metz B., Stiller J. Agrobacterium-mediated genetic transformation in the macroscopic marine red alga Porphyra yezoensis. J. Phycol.2001.37:11.
    [A111]Kumar SV., Misquitta RW, Reddy VS., Rao BJ., Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004.166:731-8.
    [A112]Kathiresan S., Chandrashekar A., Ravishankar G.A., Sarada R. Agrobacterium-mediated transformation in the green alga haematococcus pluvialis (chlorophyceae, volvocales). J. Phycol.2009.45:642-9.
    [A113]Miller GL. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal.Chem.1959.31:26.
    [A114]Bligh EG, Dyer WJ. A rapid method of total lipid extraction andpurification. Can. J. Biochem. Phys.1959.37: 911-7.
    [A115]Cheng RB., Lin XZ., Wang ZK., Yang SJ., Rong H., Ma Y. Establishment of a transgene expression system for the marine microalga Schizochytrium by 18S rDNA-targeted homologous recombination. World J. Microb. Biot.2011.27:737-41.
    [A116]Brown TD., Jones-Mortimer MC., Kornberg HL. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol.1977.102: 327-36.
    [A117]Gorman C., Bullock C. Site-specific gene targeting for gene expression in eukaryotes. Curr. Opin. Biotechnol.2000.11:455-60.
    [A118]Amador E., Martin JF., Castro JM. A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol. Lett.2000.185: 199-204.
    [A119]Lopes TS., Klootwijk J., Veenstra AE., van der Aar PC., van Heerikhuizen H., Raue HA., Planta RJ. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae:a new vector for high-level expression. Gene.1989.79: 199-206.
    [A120]Pisabarro A., Correia A., Martin JF. Characterization of the rmB operon of the plant pathogen Rhodococcus fascians and targeted integrations of exogenous genes at rrn loci. Appl. Environ. Microbiol. 1998.64:1276-82.
    [A121]李清,臧晓南,张学成,许永,鹿宁.裂殖壶菌对7种抗生素的敏感性.武汉大学学报(理学版).2012.58:275-80.
    [A122]Metz JG, Kuner J., Rosenzweig B., Lippmeier JC., Roessler P., Zirkle R. Biochemical characterization of polyunsaturated fatty acid synthesis in Schizochytrium: release of the products as free fatty acids. Plant Physiol. Biochem.2009.47:472-8.
    [A123]Cheng R., Ma R., Li K., Rong H., Lin X., Wang Z., Yang S., Ma Y. Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol. Res.2012.167:179-86.
    [A124]Roessler PG. Product and process for transformation of Thraustochytriales Microorganisms. U.S. Patent#7001772B2. United States of America.2006.
    [A125]Huang J., Jiang X., Zhang X., Chen W., Tian B., Shu Z., Hu S. Expressed sequence tag analysis of marine fungus Schizochytrium producing docosahexaenoic acid. J. Biotechnol.2008.138:9-16.
    [A126]Ren LJ., Huang H., Xiao AH., Lian M., Jin LJ., Ji XJ. Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst. Eng.2009.32:837-43.
    [A127]Chi Z., Hu B., Liu Y., Frear C., Wen Z., Chen S. Production of omega-3 polyunsaturated fatty acids from cull potato using an algae culture process. Appl. Biochem. Biotechnol.2007.137-140:805-15.
    [A128]Ganuza E., Izquierdo MS. Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl. Microbiol. Biotechnol.2007.76:985-90.
    [A129]Sakaguchi K., Matsuda T., Kobayashi T., Ohara JI., Hamaguchi R., Abe E., Nagano N., Hayashi M., Ueda M., Honda D., Okita Y., Taoka Y., Sugimoto S., Okino N., Ito M. Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl. Environ. Microbiol.2012.78:3193-202.
    [B1]Lorenz RT. A Technical Review of NatuRoseTM Haematococcus Algae Meal, NatuRoseTM Technical Bulletin#060, Cyanotech Corporation.1999.
    [B2]Hazen TE. The life history of Sphaerella lacustris. Mem. Torrey Bot. Club.1899.6: 211-47.
    [B3]Tischer J. IJber die Carotinoide von Hamatococcus pluvialis. Ⅲ. (Carotinoide der Siiβwasseralgen. Ⅸ. Teil). Hoppe. Seylers. Z. Physiol. Chem.1944.281:143-55.
    [B4]Peebles F. The formation and behavior of the microzooids of Haematococcus pluvialis. Science.1909.21:380.
    [B5]Peebles F. The life history of Sphaerella lacustris (Haematococcus pluvialis) with reference to the nature and behavior of the zoospores. Centralbl. Bakt. Abt.1909.2: 511-21.
    [B6]Elliot AM. Morphology and life history of Haematococcus pluvialis. Arch. Protistenk 1934.82:250-72.
    [B7]Pocock MA. Studies in South African Volvocales.1. A new Sphaerella (Haematococcus). Proc. Linn. Soc. London 1937.149:55-8.
    [B8]Pocock MA. Haematococcus in southern Africa. Trans. Royal Soc. South Africa 1961. 36:5-59.
    [B9]Droop MR. Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis. Flotow. Arch. Mikrobiol.1954.20:391-7.
    [B10]Droop MR. Haematococcus pluvialis and its allies; Ⅲ:Organic nutrition. Rev. Algol. N.S.1961.5:247-59.
    [B11]Almgren K. Ecology and distribution in Sweden of algae belonging to Haematococcaceae. I. Notes on nomenclature and history. Svensk Bot. Tidskr.1966.60: 49-73.
    [B12]Proctor VW. Some controlling factors in the distribution of Haematococcus pluvialis. Ecol.1957.38:457-62.
    [B13]刘建国,殷明焱,张京浦,孟昭才,WFBourne.雨生红球藻的细胞周期初探.海洋与湖沼.2000.31:145-50.
    [B14]董玉华,赵元凤.虾青素生物学来源和功能的研究进展.水产科学.2005.24:50-2.
    [B15]彭小兰.虾青素的生理功能及其生产与应用研究.当代畜牧.2005.第11期:50-2.
    [B16]陈晓琳,汲霞,钟志梅,李鹏程.虾青素的应用前景.海洋科学.2008.32:87-9.
    [B17]李兆华,刘鹏.虾青素的功能及应用进展.食品与药品.2005.7:17-20.
    [B18]付佳.天然虾青素的生物保健功能及安全性概述.国外医学卫生学分册.2007.34:382--6.
    [B19]Mera Pharmaceuticals. Haemotococcus pluvials and astaxanthin safety for human health consumption. Technical Report TR.3005.001.1999.
    [B20]Nagaraj S., Rajaram MG, Arulmurugan P., Baskaraboopathy A., Karuppasamy K., Jayappriyan KR., Sundararaj R., Rengasamy R. Antiproliferative potential of astaxanthin-rich alga Haematococcus pluvialis flotow on human hepatic cancer (HepG2) cell line. Biomedicine and Preventive Nutrition.2012.2:149-53.
    [B21]Corona V., Aracri B., Kosturkova G., Bartley GE., Pitto L., Giorgetti L., Scolnik PA., Giuliano G. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J.1996.9:505-12.
    [B22]Oshima S., Ojima F., Sakamoto H., Ishiguro Y, Terao J. Inhibitory effect of beta-carotene and astaxanthin on photosensitized oxidation of phospholipid bilayers. Nutr. Sci. Vitaminnol.1993.39:607-15.
    [B23]耿华田.虾青素简介.化学教育.2007.28:5-7.
    [B24]林晓,储小军,周蒂,钱锋,毛尔华,范良秀,管雪青.虾青素的来源,功能及应用.环境与职业医学.2008.25:615-20.
    [B25]Tso MO., Lam TT. Method of retarding and ameliorating central nervous system and eye damage. U.S. Patent #5527533. Board of Trustees of the University of Illinois. United States of America.1996.
    [B26]Nakai K., Kooryama T. Health food containing phaffia rhodozyma oil with astaxanthin. Jpn Kokai Kokkyo Koho (JP0799,883). CA 123:54651.
    [B27]Bjerkeng B., Johnsen G. Froze storage quality of rainbow trout (Oncorhynchus mykiss) as affected by oxygen, illumination, and fillet pigment. J. Food Sci.1995.60:284-93.
    [B28]Nakai K., Kooryama T. Concentrated Phaffia pigments for pickling. Jpn Kokai Kokkyo Koho (JP0799,883). CA 123:54604.
    [B29]Torrissen OJ. Pigmentation of salmonids--ffect of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture.1984.43:185-93.
    [B30]Bendich A. Carotenoids and the immune system. In:Carotenoids Chemistry and Biology. Krinsky EdNI., Plenum Press, New York,1990. pp.323-35.
    [B31]Christiansen R., Glette J., Lie, Torrissen OJ., Waagb R. Antioxidant status and immunity in Atlantic salmon, Salmo salar L., fed semi-purified diets with and without astaxanthin supplementation. J. Fish Diseases.1995.18:317-28.
    [B32]魏东,严小君.天然虾青素的超级抗氧化活性及其应用.中国海洋药物.2001.20:45-50.
    [B33]Miki WW., Hosoda K., Kondo K., Itakura H. Astaxanthin-containing drink. Patent application number 10155459. Japanese Patent Office. Publication date:16 June,1998.
    [B34]凌善峰.虾青素的研究进展.生物学通报.2003.38:4-5.
    [B35]Cyanotech Corp.1999. Haematococcus algae safety summary. FDA website Docket Number 95S-0316. Report#45. Access date:November 27,1999.
    [B36]US Nutra Llc. Substantial equivalence application for the approval of an astaxanthin-rich carotenoid oleoresin, Zanthin derived from haematococcus pluvialis for use in dietary supplement tablets and capsules.2004.
    [B37]Osterlie M., Bjerkeng B., Liaaen-Jensen S. Accumulation of astaxanthin all-E,9Z and 13Z geometrical isomers and 3 and 3' RS optical isomers in rainbow trout (Oneorhynchus mykiss) is selective. J. Nutr.1999.129:391-8.
    [B38]Andrewes AG, Phaff HJ, Starr MP. Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry.1976.15:1003-7.
    [B39]Li J., Zhu D., Niu JF., Shen SD., Wang G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnol. Adv.2011. 29: 568-74.
    [B40]沈建新,韦金河.利用雨生红球藻生产虾青素的研究进展及其产业化现状.江苏农业科学.2007.第3期:196-9.
    [B41]Grunewald K., Hagen C. Extrusion of secondary carotenoid containing vesicles from flagellates of Haematococcus pluvialis (Volvocales; Chlorophyceae). J. Appl. Bot-Angew. Bot.2000.74:141-4.
    [B42]Rio ED., Acien FG, Guerrero MG Photoautotrophic Production of Astaxanthin by the Microalga Haematococcus pluvialis. Sustainable Biotechnology.2010.247-58.
    [B43]Teng C., Qin S., Liu J., Yu D., Liang C., Tseng C. Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J. Appl. Phycol.2002.14: 497-500.
    [B44]Steinbrenner J., Sandmann G Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol.2006.72:7477-84.
    [B45]Kumar SV., Misquitta RW., Reddy VS., Rao BJ., Rajam MV. Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci. 2004.166:731-8.
    [B46]Escudero J., Hohn B. Transfer and integration of T-DNA without cell injury in the host plant. Plant Cell.1997.9:2135-42.
    [B47]Zambre M., Terryn N., Clercq JD., Buck SD., Dillen W., Montagu MV., Straeten DVD., Angenon G Light strongly promotes gene transfer from Agrobacterium tumefaciens to plant cells. Planta.2003.216:580-6.
    [B48]Dillen W., Clercq JD., Kapila J., Zambre M., Montagu MV., Angenon G The effect of temperature on Agrobacterium tumefaciens mediated gene transfer to plants. Plant J. 1997.12:1459-63.
    [B49]李哲,蔡明刚,黄水英,石荣贵,陆晓霞,齐安翔,吴锐.稀土元素Ce对雨生红球藻生长及虾青素积累影响的研究.海洋科学.2008.32:37-40.
    [B50]王关林,方宏筠.植物基因工程(第二版).科学出版社.2002年.[ISBN]7030100581,9787030100580.
    [B51]Kathiresan S., Chandrashekar A., Ravishankar GA., Sarada R. Agrobacterium-mediated transformation in the green alga Haematococcus Pluvialis (Chlorophyceae, Volvocales). J. Phycol.2009.45:642-9.
    [B52]Heiser W. Optimization of the biolistic transformation using the helium-driven PDS-1000/He system. Bulletin.1688. Bio-Rad Laboratories. Hercules CA.1992.
    [B53]蒋建国,胡国华,吴蔚,康苧心,李忠万.葡萄糖转运蛋白1与血管内皮细胞生长因子受体3在喉癌中的表达及其与淋巴转移的关系.实用医院临床杂志.2010.7:6-8.
    [B54]章精,刘志红,李颖健,陈朝虹,黎磊石.大黄酸对体外培养小鼠肾小球系膜细胞葡萄糖转运蛋白1表达及葡萄糖摄入的影响.中华内分泌代谢杂志.1999.15:229-32.
    [B55]Tyree B., Webster DA. The binding of cyanide and carbon monoxide to cytochrome o purified from vitreoscilla. Evidence for subunit interaction in the reduced protein. J. Biol. Chem.1978.253:6988-91.
    [B56]Wakabayashi S., Matsubara H., Webster DA. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature.1986.322:481-3.
    [B57]Dikshit KL., Webster DA. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli. Gene.1988.70:377-86.
    [B58]冯静,施庆珊,疏秀林,欧阳友生,陈仪本.透明颤菌血红蛋白研究进展及其在芽孢杆菌属中的应用.化学与生物工程.2007.24:5-8.
    [B59]Khosla C., Bailey JE. The Vitreoscilla hemoglobin gene:molecular cloning, nucleotide sequence and genetic expression in Escheriachia coli. Mol. Gene. Genet.1988.214: 158-61.
    [B60]Tsai PS., Nageli M., Bailey JE. Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol. Bioeng.2002.79:558-67.
    [B61]胡之璧.透明颤菌血红蛋白研究现状及其在中药中的应用展望.中西医结合学报.2005.3:337-41.