氮离子注入氧化锌薄膜引起的结构、光学和电学性质变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过磁控贱射在玻璃基底上制备出了的厚度约为630 nm氧化锌(ZnO)薄膜,在室温下用能量为140 keV,剂量为2×1016 cm-2的氮(N)离子对该膜进行注入。注入后的样品在200到600℃范围内真空退火1小时。分别采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、电子能量色谱仪(EDX)、紫外-可见分光光度计(UV-Vis)、荧光分光光度计(PL)和物理性能测试系统(PPMS)等分析手段对各种处理条件下的ZnO薄膜进行了分析,详细的研究了它们的结构特性、表面形貌、化学成分、光学性质和电学特性。
     X射线衍射(XRD)结果表明,在未注入的ZnO薄膜中,(002)峰和(004)的强度相对较高,表明ZnO薄膜具有较好的结构特性。在高剂量N离子注入以后导致了(002)峰和(004)的强度急剧减小。这表明N离子注入已经导致了薄膜表面结构的严重受损。随后的退火会导致(002)峰和(004)的强度逐渐增加,这反映了ZnO的晶格结构的恢复。同时,在300℃退火时,(002)的峰位向小角度发生了偏移,这可能是跟ZnO薄膜的氮氧化物形成有关;而在600℃时,(002)峰和(004)又恢复原位,这说明在较低温度下形成的氮氧化物在高温下已经分解为气体。而在扫描电子显微镜(SEM)观测到了400℃下退火的ZnO薄膜,发现晶粒大小为30-50 nm。当退火温度达到600℃的时候,在薄膜表面发现了大小约为50 nm左右的孔洞,这说明高温退火导致了薄膜表面大量氮氧化物的分解。
     紫外可见吸收和透射光谱(UV-Vis)显示未注入的ZnO薄膜的光学性质非常好,其平均透射率高达85%。然而,N离子注入以后光学透射率急剧降低到50%左右,并且透射截至波长从370 nm蓝移到330 nm。这说明N离子注入已经影响了ZnO的光学性质。随后的退火导致了ZnO薄膜光学性质的恢复。随着退火温度的逐渐增加,光学透射率也从50%增加到了90%左右。此外,研究中使用了光学带隙(Eg)和带尾参数(E0)来描述ZnO薄膜的带边和近带边特性。结果发现,离子注入导致了Eg和E0的增加。较高的Eg表明了离子注入导致了B-M漂移,而较高的E0说明薄膜内部有很高的杂质浓度。随着退火温度的增加,光学带隙增加,带尾参数减小,这表明ZnO薄膜内的杂质得到了纯化和充分扩散,光学性质得到了恢复。
     光致发光(PL)测试结果表明,在未注入的ZnO薄膜中观测到三个发光带,分别是2.65,2.8和3.0 eV。2.65 eV的发光带归因于氧空位(VO),而2.8和3.0 eV发光带归因于锌的间隙子(Zni)。N离子注入导致了光致发光的严重恶化,三个发光带几乎完全消失。随后的退火使得ZnO薄膜发光强度的得到了部分恢复,这种恢复与ZnO内部的各种缺陷演变有关。当退火温度到达300℃时激活了锌的间隙子,所以2.8和3.0 eV的发光带开始增强。当退火到600℃时,氧的空位成为主要ZnO薄膜中的主要缺陷形式,而锌间隙子被部分抑制,所以2.65 eV的发光带逐渐增加,同时2.8和3.0 eV的发光带发生了红移。
     霍尔效应(Hall)测量结果表明N离子注入的薄膜在退火到600℃的时候仍然是n型,载流子浓度高达6.67×1022 cm-3。强烈的自补偿效应、过高的掺杂浓度和严重的晶格失配导致了制作p型ZnO薄膜的失败。使用较低剂量的N离子注入(~1×1015 cm-2)生长在GaN基底上的ZnO薄膜可能是制作p型ZnO薄膜的有效途径。通过理论研究认为N的受主能级过高,并不是制作高效、可重复的p型ZnO薄膜的最理想的元素。通过Mg、N共掺不仅可以减小受主能级,而且能避免N和Mg的p-d轨道杂化。此外,在掺杂后,其电介质函数虚部的变化也比较小。因此, N和Mg共掺是制作高效的、稳定的、可重复性的p型ZnO的有效途径,这部分工作有待于以后在实验上进行验证。
The ZnO thin films deposited on glass substrate were implanted at room temperature with 140 keV N ions at a dose of 2×1016/cm2. Techniques, such as x-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible spectrophotometer (UV-Vis), fluorescence spectrophotometer, physical properties measurement system (PPMS), have been used to study film structures, optical, electrical properties and their thermal evolutions.
     The results from XRD measurements show that high dose N ion implantation can induce deterioration of the crystallinity and sharp decrease of (002)-peak. The damaged structures have been found to be partially recovered upon annealing, which leads to growth of grain size. Images from the SEM reveal that the grain size is about 30~ 50 nm and the annealing at 600℃induce lots of pores with size of 50 nm,which may be suggest that the nitrogen oxygen compound has been evaporated at the 600℃.
     The optical transmission and absorption in N-implanted ZnO films and their thermal evolutions have been investigated. Optical band gap (Eg) and the parameters of band tail (Eo) have been used to analyze the optical absorption edge and near-absorption edge characteristics. Our results show that optical band edge has shifted to higher energy and effect of band tail can be clearly seen after N ion implantation. It indicates that the Burstein-Moss shift has occurred. Subsequently, with the increase of annealing temperature, optical band gap is widened while effect of band tail is weakened. Electrostatic potentials in the grain boundary have been discussed to explain the band-gap widening. Moreover, impurity and structural disorder of the film are responsible for band tail.
     The three luminescence band at 2.65, 2.8 and 3.0 eV has been observed by photoluminescence spectra. The luminescence band at 2.65 eV is related to the oxygen vacancies, and the 2.8 and 3.0 eV band is attributed to the zinc interstitial. N ion implantation induces the decease of luminescence bands. However, subsequent annealing gives rise to the increase of luminescence. At 300℃, the luminescence band at 2.8 and 3.0 eV can be clearly observed, which can be ascribed to activation of zinc interstitial. Owing to the lots of oxygen vacancies at 600℃, the band at 2.65 eV is notable. Therefore, the results suggest that the green luminescence band can be attributed to the oxygen vacancies.
     N-implanted ZnO films annealed at 600℃are still n-type. Strain mismatch induced by thermal expansion and the high doping levels are responsible for the difficulty in fabrication of p-type ZnO thin film by N ion implantation. Meanwhile, our results show that ZnO thin film deposited on GaN substrate with low dose N ion implantation may be promising for development of p-type ZnO. Howerer, the theoretical calculations conceive that the acceptor level of nitrogen doping is relatively high and it is not suitable to develop reproductive p-type ZnO. The calculated results suggest that the N and Mg co-doping may be effective methods to fabricate the p-type ZnO. The further experimental results are eager to be made to confirm our conclusions.
引文
[1] R. H. Horng, C. C. Yang, J. Y. Wu, et al., GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography, Appl. Phys. Lett., 2005, 86: 221101-1~221101-3.
    [2] F. A. Ponce, D. P. Bour, Nitride-based semiconductors for blue and green light-emitting devices, Nature, 1997, 386, 351~359
    [3] S. Nagahama, N. Iwasa, M. Senoh, et al., GaN-Based Light-Emitting Diodes and Laser Diodes, and Their Recent Progress, Phys. Stat. Sol. (a), 2001, 188: 1~7
    [4] S. D. Lester, F. A. Ponce, M. G Craford, et al., High dislocation densities in high efficiency GaN-based light-emitting diodes, Appl. Phys. Lett., 1995, 66: 1249~1251.
    [5] T. Miyajima, T. Tsuyoshi, T. Asano, et al., GaN-based blue laser diodes, J. Phys.: Condens. Matter, 2001, 13: 7099~7114.
    [6] Z. K. Tang, G. K LWong, P Yu, et al., Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystal thin films, Appl. Phys. Lett., 1998, 72(25):3270~3272.
    [7] R. F. Service, Materials Science: Will UV Laser Beat the Blues?, Science, 1997, 276: 895~896.
    [8] P. Yu, Z. K. Tang, et al., Room Temperature Gain Spectra and Lasing in microstructure ZnO Thin Films, J. Cryst.Growth, 1998, 184/185:601~605.
    [9] D. M. Bagnall, Y. F. Chen, et al., Optically Pumped Lasing of ZnO at Room Temperature, Appl. Phys. Lett., 1997, 70:2230~2232.
    [10] C. W. Bunn, The lattice-dimensions of zinc oxide, Proc. Phys. Soc., 1935, 47: 835~842.
    [11] R. B. Heller, J. McGannon, and A. H. Weber, Precision Determination of the Lattice Constants of Zinc Oxide, J. Appl. Phys., 1950, 21(12): 1283~1284.
    [12] T. C. Damen, S. P. S. Porto, and B. Tell, Raman Effect in Zinc Oxide, Phys. Rev., 1966, 142(2): 570~574.
    [13] J. C. Jamieson, The phase behavior of simple compounds, Phys. Earth Planet.Inter., 1970, 3: 201~203.
    [14] G. Galli and J. E. Coker, Epitaxial ZnO on sapphire, Appl. Phys. Lett., 1970, 16: 439~441.
    [15] C. A. Mead, Surface barriers on ZnSe and ZnO, Phys. Lett., 1965, 18: 218~220.
    [16] W. L. Ng, M. A. Louren?o, R. M. Gwilliam, et al., An efficient room-temperature silicon-based light-emitting diode, Nature, 2001, 410: 192~194.
    [17] J. Davenas, A. Perez, P. Thevenard, et al., Correlation between absorption bands and implanted alkali ions in LiF, Phys. Status Solidi A, 1973,19: 679~686.
    [18] M. Treileux, P. Thevenard, G. Ghassagne, et al., Observation of implanted potassium aggregates in MgO single crystals, Phys. Status Solidi A, 1978 48(2): 425~430.
    [19] H. Amekura, K. Kono, Y. Takeda, et al., Cupric oxide nanoparticles in SiO2 fabricated by copper-ion implantation combined with thermal oxidation, Appl. Phys. Lett., 2005, 87: 153105-1~153105-3.
    [20] H. Amekura, N. Umeda, Y. Sakuma, et al., Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence, Appl. Phys. Lett.,2006, 88: 153119-1~153119-3.
    [21] X. Xiang, X. T. Zu, S. Zhu and L. M. Wang, Optical properties of metallic nanoparticles in Ni-ion-implanted-Al2 O3 single crystals, Appl. Phys. Lett., 2004, 84: 52~54.
    [22] G. Maggioni, A. Vomiero, S. Carturan, et al., Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation, Appl. Phys. Lett., 2004, 85: 5712~5714.
    [23] H. Amekura, N. Umeda and Y. Sakuma, Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation, Appl. Phys. Lett., 2005, 87: 013109-1~013109-3.
    [24] H. Amekura, O. A. Plaksin, M. Yoshitake,et al., Atomic force microscopy and x-ray photoelectron spectroscopy studies of ZnO nanoparticles on SiO2 fabricated by ion implantation and thermal oxidation, Appl. Phys. Lett., 2006, 89:023115-1~023115-3.
    [25] D. K. Sood, P. K. Sekhar and S. Bhansalia, Ion implantation based selective synthesis of silica nanowires on silicon wafers, Appl. Phys. Lett., 2005, 88: 143110-1~143110-3.
    [26] D. Krupaa, J. Baszkiewicza, J.A. Kozubowskia, Effect of dual ion implantationof calcium and phosphorus on the properties of titanium, Biomaterials, 2005, 26: 2847~2856.
    [27] R. S. McLean, M. H. Reilly, and G. Nunes, et al., Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering, Appl. Phys. Lett., 2003, 82: 1117 ~1119.
    [28] J. Chen, Y. C. Liu, J. G. Ma, et al., High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn S, J. Cryst. Growth, 2002, 240: 467 ~472.
    [29] A. Kuroyanagi, Properties of aluminum-doped ZnO thin films grown by electron beam evaporation, Jpn. J. Appl. Phys., 1989, 28: 219~222.
    [30] T. Schuler and M.A. Aegerter, Optical, electrical and structural properties of sol gel ZnO: Al coatings, Thin Solid Films, 1999, 351: 125~131.
    [31] S. A. Studenikin, N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescence, undoped ZnO films using spray pyrolysis, J. Appl. Phys., 1998, 84: 2287~2294.
    [32] S. Im, B.J. Jin and S.Yi, Ultraviolet emission and microstructural evolution in pulsed-laser-deposited ZnO films, J. Appl. Phys., 2000, 87: 4558-4561.
    [33] Y. Chen, H. Ko, S. Hong, and T. Yao, Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, Appl. Phys. Lett., 2000, 76: 559 ~561.
    [34] Z.X. Fu, B.X. Lin and J. Zu, Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition, Thin Solid Films, 2002, 402: 302~306.
    [35] J. Lim, K. Shin, H. Kim, and C. Lee, Enhancement of ZnO nucleation in ZnO epitaxy by atomic layer epitaxy Thin Solid Films, 2005, 475: 256-261.
    [36] X.T. Zhang et al., Temperature dependence of excitonic luminescence from nanocrystalline ZnO films, J. Lumin., 2002, 99(2): 149~154.
    [37] H. Kleinwechter, C. Janzen, J. Knipping,et al., Formation and properties of ZnO nano-particles from gas phase synthesis processes, Journal of Materials Science, 2002, 37(20): 4349~4360.
    [38] S. Kumar, V. Gupta and K. Sreenivas, Synthesis of photoconducting ZnO nano-needles using an unbalanced magnetron sputtered ZnO/Zn/ZnO multilayer structure, Nanotechnology, 2005, 16: 1167~1171.
    [39] T. Okada, K. Kawashima and Y. Nakata, Nano-wire pig-tailed ZnO nano-rodssynthesized by laser ablation, Thin Solid Films, 2006, 506-507: 274~277.
    [40] Y. C. Kong, D. P. Yu, B. Zhang, el al.,Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach, Appl. Phys. Lett., 2001, 78( 4): 407~409.
    [41] A. Tsukazki, A. Ohtomo, T, Onuma, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature Materials, 2005, 4: 42~46.
    [42] A. F. Kohan, G. Ceder, and D. Morgan, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61: 15019~15027.
    [43] S. Limpijumnong, S. B. Zhang, S. H. Wei, et al, Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenicor Antimony-Doped p-Type Zinc Oxide, Phys. Rev. Lett., 2004, 92: 155504-1~15504-4.
    [44] C. H. Park, S. B. Zhang, S. H. Wei, Origin of p-type The impurity perspective doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 2002, 66: 073202-1~073202-3.
    [45] S. B. Zhang, S. H. Wei, and A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B, 2001, 63: 075205-1~075205-7.
    [46] E. C. Lee, Y.S. Kim, Y.G. Jin, et al., Compensation mechanism for N acceptors in ZnO, Phys. Rev. B, 2001, 64(8): 085120-1~085120-5.
    [47] C. L. Dong, C. Persson, L. Vayssieres, Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation Phys. Rev. B, 2004, 70: 195325-1~195325-5.
    [48] A. F. Kohan, G. Ceder, and D. Morgan, First-principles study of native point defects in ZnO, Phys. Rev. B, 2000, 61: 15019~15027.
    [49] A. Kornherr, S. H. Wolfgang, E. G. Hansal, Molecular dynamics simulations of the adsorption of industrial relevant silane molecules at a zinc oxide surface, J. Chem. Phys., 2003, 119(18): 9719~9728.
    [50] M. Kubo, Y. Oumi, H. Takaba, A. Chatterjee, et al., Homoepitaxial growth mechanism of ZnO(0001): Molecular-dynamics simulations, Phys. Rev. B, 2002, 61: 16187~16192.
    [51] K. Vanheusden, C. H. Seager, W. L. Warren, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett.,1996, 68: 403~405.
    [52] A. Zubiagaa, J. A. García, F. Plazaola, Correlation between Zn vacancies and photoluminescence emission in ZnO films, J, Appl. Phys., 2006, 99: 053516-1~053516-6.
    [53] F. Reuss,C. Kirchner, T. Gruber, et al.,Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO, J, Appl. Phys., 2004, 95: 3385~3390.
    [54] J. K. Lee, M. Nastasi, D. W. Hamby, et al, Optical observation of donor-bound excitons in hydrogen-implanted ZnO, Appl. Phys. Lett., 2005, 86: 171102-1~171102-3.
    [55] G. Xiong, K. B. Ucer, and R. T. Williams, Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal, J. Appl. Phys., 2005, 97: 043528-1~ 043528-4.
    [56] T. Monteiro, C. Boemare, and M. J. Soares, Photoluminescence and damage recovery studies in Fe-implanted ZnO single crystals, J. Appl. Phys., 2003, 93: 8995~8999.
    [57] Z. Q. Chen, T. Sekiguchi, X. L. Yuan, N+ ion-implantation-induced defects in ZnO studied with a slow positron beam, J. Phys.: Condens. Matter, 2004, 16:S293~S299.
    [58] Haiyan Wang, Xiaoyong Gao, Qiliang Duan,et al., Variation of surface properties of ZnO films by the implantation of N+ ions, Thin Solid Films, 2005, 492: 236~239.
    [59] A.N. Georgobiani, A.N. Gruzintsev, V.T. Volkov, p-Type ZnO:N obtained by ion implantation of nitrogen with post-implantation annealing in oxygen radicals .Nuclear Instruments and Methods in Physics Research A, 2003, 514: 117~121.
    [60] Y. Yan and S. B. Zhang, S. T. Pantelides, Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO, Phys. Rev. Lett., 2001, 86: 5723~5726.
    [61] J. P. Bjersack, L. J. Haggmark, Computer Program for the Transport of Energetic Ions in Amorphous Targets, Nucl.Instrum. Methods, 1980, 174: 257~269.
    [62] J. F. Ziegler, SRIM-2003, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2004, 219-220:1027~1036.
    [63] S. S. Lin, J. L. Huang, Effect of thickness on the structural and optical properties of ZnO films by r.f. magnetron sputtering, surface & coating and technology, 2004, 185: 224~227.
    [64] K. Lorenz, E. Alves, E. Wendler, Damage formation and annealing at low temperatures in ion implanted ZnO, Appl. Phys. Lett., 2005, 87: 191904-1~191904~3.
    [65] Z Q Chen, T Sekiguchi, X L Yuan, N+ ion-implantation-induced defects in ZnO studied with a slow positron beam, J. Phys.: Condens. Matter, 2004, 16: S293~S299.
    [66] H. S. Chao, S. W. Crowder, P. B. Griffin, Species and dose dependence of ion implantation damage induced transient enhanced diffusion, J. Appl. Phys.,1996, 79 (5): 2352~2363.
    [67] W. K. Hofker, H. W. Werner, D. P. Oosthoek, et al., Boron implantations in silicon: A comparison of charge carrier and boron concentration profiles, Applied Physics A: Materials Science & Processing, 1974, 4: 125~133.
    [68] Y.Yamanaka, H.Harada, K.Tanahashi, et al, Infrared Absorption Analysis of Nitrogen in Czochralski Silicon, Solid.State.Phenomena, 2002, 82-84: 63~68.
    [69] L. I. Murin, V. P. Markevich, J. L. Lindstorm, et al., Carbon-Oxygen-Related Complexes in Irradiated and Heat-Treated Silicon: IR Absorption Studies, Solid State Phenomena,2002, 82-84: 57~62.
    [70] C. C. Lin, S.Y. Chen, S.Y. Cheng, Physical characteristics and photoluminescence properties of phosphorous-implanted ZnO thin films, Appl. Sur. Sci., 2004, 238: 405~409.
    [71] L. Sagalowicz, G.R. Fox, Planar defects in ZnO thin films deposited on optical fibers and flat substrates, J. Mater. Res., 1999, 14 (5): 1876~1885.
    [72] G. Sanon, R. Rup, A. Mansingh, Growth and characterization of tin oxide films prepared by chemical vapour deposition. Thin Solid Films, 1990, 190 (2): 287~301.
    [73] Z. B. Fang, Z. J. Yana, Y. S. Tana, et al., Influence of post-annealing treatment on the structure properties of ZnO films, Applied Surface Science, 2005, 241: 303~308.
    [74] K. F. Kelton, A. L. Greer, Test of classical nucleation theory in a condensed system, Physical Review B, 1988, 38: 10089~10092.
    [75] D. W. Oxtoby, Homogeneous nucleation: Theory and experiment, J.Phys.:Condens. Matter, 1992, 4: 7627~7650.
    [76] J. Lee, Z. Li, M. Hodgson, et al., Structural, electrical and transparent properties of ZnO thin films prepared by magnetron sputtering, Current Applied Physics, 2004, 4(2-4): 398~401.
    [77] K. H. Bang, D. K Hwang and J. M. Myoung, Effects of ZnO buffer layer thickness on properties of ZnO thin films deposited by radio-frequency magnetron sputtering, Applied Surface Science, 2003, 207(1-4), 359~364.
    [78] Z.L. Pei, X.B. Zhang, G.P. Zhang, et al., Transparent conductive ZnO:Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering, Thin Solid Films, 2006, 497(1-2): 20~23.
    [79] B.T. Lee, S. H. Jeong, M. H. Kim, et al., Growth and characterization of device quality ZnO on Si(111) and c-sapphire using a conventional rf magnetron sputtering, J. Electroceram, 2006, 17: 305~310.
    [80] R. Ghosh and D. Basak and S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films, J.Appl.Phys., 2004, 96: 2689~2692.
    [81] R. Hong, J. Shao, H. He, et al., Influence of buffer layer thickness on the structure and optical properties of ZnO thin films, Applied Surface Science, 2006, 252: 2888~2893.
    [82] S. Y. Kuoa, W. C. Chen, F.I. Lai, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of Crystal Growth, 2006, 287: 78~84.
    [83] N. Parkansky, G. Shalev, B. Alterkop, Growth of ZnO nanorods by air annealing of ZnO films with an applied electric field, Surface and Coatings Technology, 2006, 201(6): 2844~2848.
    [84] J. B. Cui and U. J. Gibson, Growth of Ga-doped ZnO nanowires by two-step vapor phase method, Appl. Phys. Lett., 2005, 86: 133107-1~133107~3.
    [85] S. H. Jeong, S. Kho, D. Jung, Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their surface characteristics, Surface and Coatings Technology, 2003, 174-175: 187~192.
    [86] T. Minami, S. Suzuki and T. Miyata, Transparent conducting impurity-co-doped ZnO: Al thin films prepared by magnetron sputtering, Thin Solid Films, 2001, 398-399: 53~58.
    [87] D. H. Zhang, Q.P. Wang, Z.Y. Xue, Photoluminescence of ZnO films excitedwith light of different wavelength, Applied Surface Science, 2003, 207: 20~25.
    [88] D. Redfield, Effect of Defect Fields on the Optical Absorption Edge, Phys. Rev., 1963, 130(3): 916~918.
    [89] D. L. Dexter, Absorption of Light by Atoms in Solids, Phys. Rev., 1956, 101(1): 48~55.
    [90] J. Bardeen, F. J. Blatt, and L. H. Hall, Indirect transitions from the valence to the conduction bands, G. H. Breckenridge Proceedings of the Conference on Photoconductivity, Atlantic City, New York, John Wiley & Sons., Inc., 1954, 146~153.
    [91] J. I. Pankove, Optical Processes in Semiconductors, New York, Dover, 1971.
    [92] J. I. Pankove, Absorption Edge of Impure Gallium Arsenide, Phys. Rev., 1965, 140 (6A): A2059~A2065.
    [93] D Redfield, Transport properties of electrons in energy band tails, Advances in Physics, 1975, 24(4): 463~487.
    [94] W. Y. Liang and A. D. Yoffe., Transmission Spectra of ZnO Single Crystals, Phys. Rev. Lett., 1968, 20: 59~62.
    [95] Hengehold and R. J. Almassy, F. L. Pedrotti, Electron Energy-Loss and Ultraviolet-Reflectivity Spectra of Crystalline ZnO, Phys. Rev. B, 1970, 1: 4784 ~4791.
    [96] V. Srikant and D. R. Clarke, On the optical band gap of zinc oxide, J. Appl. Phys., 1998, 83(10): 5447~5451.
    [97] S. Bandyopadhyay, G.K. Paul, S.K. Sen, Study of optical properties of some sol-gel derived films of ZnO, Solar Energy Materials and Solar Cells, 2002, 71: 103~113.
    [98] E. Burstein, Anomalous Optical Absorption Limit in InSb, Phys. Rev., 1954, 93(3): 632~633.
    [99] A. P. Roth, J. B. Webb, D.F. williams, Band-gap narrowing in heavily defect-doped ZnO , Phys. Rev. B, 1982, 25: 7836~7839.
    [100]C. L. Liu, E. Ntsoenzok, R. Delamare, et al., The evolution of cavities in Si co-implanted with Si and He ions, Materials Science and Engineering B, 2003, 102: 75-79.
    [101]G. H. Dohler, Doping superlattices ("n-i-p-i crystals"), IEEE J. Quantum Electron, 1986, 22(9): 1682~1695.
    [102]F. Bassani, Band structure and Interband Transition, Academic Press, 1966.
    [103]J. I. Panvoke, J. A. Hutchby, Photoluminescence of ion-implanted GaN, Journal of Applied Physics, 1976, 47(12): 5387~5390.
    [104]K. Winer and L. Ley, Surface states and the exponential valence-band tail in a-Si: H, Phys. Rev. B, 1987, 36(11): 6072-6078.
    [105]Z.Y Xue, D.H Zhang, Q.P Wang, The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering, Appl. Surf. Sci., 2002, 195: 126~129.
    [106]S. A. Studenikin and M. Cocivera, Time-resolved luminescence and photoconductivity of polycrystalline ZnO films, J. Appl. Phys., 2002, 91(8): 5060~5065.
    [107]K. Vanheusden, C. H. Seager, W. L. Warren, et al., Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys., 1996, 79 (10): 7983~7990.
    [108]D. C. Look, G. C. Farlow, P. Reunchan, Evidence for Native-Defect Donors in n-Type ZnO, Phys. Rev. Lett., 2005, 95: 225502-1~225502-4.
    [109]X. T. Zhang, Y. C. Liu, J.G.Ma, et al., Room-temperature blue luminescence from ZnO: Er thin films, Thin Solid Films. 2002,413 (1/2): 257~261.
    [110]M. Abdullah, T. Morimoto, K. Okuyama, Generating Blue and Red Luminescence from ZnO/Poly(ethylene glycol) Nanocomposites Prepared Using an In-Situ Method, Adv. Func. Mat., 2003, 13(10): 800~804.
    [111]H. Hayashi, A. Ishizaka, M. Haemoti,et al., Bright blue phosphors in ZnO–WO3 binary system discovered through combinatorial methodology, Appl. Phys. Lett., 2003,82: 1365-1367.
    [112]K. Vanheusden, C. H. Seager, W. L. Warren, et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett.,1996, 68: 403~405.
    [113]H. He, Y.Wang and Y. Zou, Photoluminescence property of ZnO-SiO 2 composites synthesized by sol-gel method, J. Phys. D: Appl. Phys. 2003, 36: 2972~2975.
    [114]A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, et al., Identification of the transition responsible for the visible emission in ZnO using quantum size effects, J. Lumin., 2000, 90: 123~128.
    [115]S. H. Wei, S. B. Zhang, and A. Zunger, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 2002, 66: 075205-1~075205-3
    [116]J. G. Lu, Z. Z. Ye, F. Zhuge, p-type conduction in N–Al co-doped ZnO thin films, Appl. Phys. Lett., 2004, 85(15): 3134~3135.
    [117]C. C. Lin and S. Y. Chen, S. Y. Cheng, et al., Properties of nitrogen-implanted p-type ZnO films grown on Si3N4/Si by radio-frequency magnetron sputtering, Appl. Phys. Lett., 2004, 84: 5040~5042.
    [118]G. Braunstein, A. Muraviev, H. Saxena, p type doping of zinc oxide by arsenic ion implantation, Appl. Phys. Lett., 2005, 87: 192103-1~192103-3.
    [119]S. H. Wei and A. Zunger, Role of metal d states in II-VI semiconductors, Phys.Rev.B, 1988, 37: 8958~8981.
    [120]W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 1965, 140(4A): A1133~A1138.
    [121]J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77(18): 3865~3868.
    [122]J. B. Li, S. H. Wei, S. S. Li, et al, Design of shallow acceptors in ZnO:First principles band calculations, Phys.Rev. B, 2006, 74: 081201-1~081201-4.
    [123]S. H. Wei, Overcoming the doping bottleneck in semiconductors, Comput.Mater. Sci., 2004, 30: 337~348.
    [124]阮永丰,固体物理Ⅱ,天津,天津大学理学院物理系(内部教材), 18~20.
    [125]沈学础,半导体光谱与光学性质,北京:科学出版社,2002, 22~23.
    [126]ü. ?zgür, Y. I. Alivov, C. Liu, et al., A comprehensive review of ZnO materials and devices, J. Appl. Phys., 2005, 98: 041301-1~041301-103.
    [127]R. Schmidt, B. Rheinla¨nder, M. Schubert,et al, Dielectric functions (1 to 5 eV) of wurtzite MgxZn1-xO thin films, Appl.Phys.Lett., 2003, 82(14):2260.
    [128]C. Weisbuch and R. Ulbrich, Resonant Polariton Fluorescence in Gallium Arsenide, Phys. Rev. Lett.,1977, 39: 654~656.