聚合物复合材料深海环境吸湿行为及耐湿和阻湿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用实验测试和有限元数值分析相结合的方法,研究玻璃纤维增强环氧树脂复合材料(GF/CYD-128层合板)在深海环境中的吸湿行为,揭示复合材料在深海环境下的吸湿机理及吸湿对复合材料力学性能的影响规律;通过纤维界面处理和基体纳米填料改性提高复合材料本体耐湿性;通过在GF/CYD-128层合板表面构建超疏水表面层提高复合材料结构整体阻湿性。主要研究内容包括:
     聚合物基复合材料深海环境吸湿行为研究。设计并制备了圆柱形压力容器,内装海水并充入0-3.0MPa的高压氮气,模拟0-300米的深海环境。采用称量法表征复合材料的吸湿量,采用试件排水法表征复合材料吸湿溶胀率,研究GF/CYD-128层合板在深海环境中的吸湿规律。结果表明,复合材料在深海环境中吸湿量的变化规律符合Langmuir吸湿模型,采用该模型预测GF/CYD-128层合板在3.0MPa水压下的吸湿数据与实测数据吻合较好。
     深海环境吸湿对聚合物基复合材料力学性能影响研究。通过复合材料试样吸湿后力学性能的测试和表征,揭示吸湿后GF/CYD-128层合板力学性能的变化规律;采用有限元分析方法,分别建立了常规吸湿和界面优先吸湿细观力学分析模型,得到复合材料吸湿后的内应力分布,揭示复合材料吸湿破坏的细观机制。结果表明,界面优先吸湿细观力学分析模型的预测结果与实验结果较为吻合,表明界面脱粘是复合材料吸湿后破坏的主要控制模式。在深海环境吸湿后,GF/CYD-128层合板力学性能下降的主要原因是吸湿溶胀产生的内应力促使复合材料界面脱粘和基体开裂。
     复合材料界面吸湿改性研究。本文采用纤维表面处理方法,研究硅烷类偶联剂(RSiX3)表面处理对复合材料吸湿前后力学性能的影响规律。结果表明,采用预处理法比添加法的改性效果更好,与未经偶联剂处理的试件相比,KH550预处理使GF/CYD-128层合板的平均吸湿速率下降了31.8%,但对其饱和吸湿量基本没有影响;层间剪切强度提高了16.9%;在去离子水中浸泡79天后的层间剪切强度提高了10.3%;R基可与基体树脂反应的偶联剂其界面改性效果更好;水解后,X基团位阻较小的偶联剂其界面改性效果更明显。
     复合材料基体吸湿改性研究。提出了在基体中添加纳米颗粒的改性方法,进一步提高复合材料的耐湿性。通过对纳米SiO2填料改性树脂及其玻璃纤维增强复合材料吸湿前后的静态力学性能和疲劳性能测试,研究纳米填料改性对环氧树脂及其GF/CYD-128层合板耐湿性能的影响。结果表明,与饱和吸湿后未改性复合材料相比,纳米SiO2改性GF/CYD-128层合板饱和吸湿后的最大溶胀率降低了61.5%;饱和吸湿后,未改性GF/CYD-128层合板的弯曲强度比干态试样的下降了约15.3%,而纳米SiO2改性GF/CYD-128层合板的弯曲强度却上升了约5%;未改性GF/CYD-128层合板的短梁剪切强度比干态的下降了约31%,而纳米SiO2改性GF/CYD-128层合板的短梁剪切强度仅下降了约12%;与未改性试样相比,纳米SiO2改性复合材料试件的拉-拉疲劳寿命提高了142.8%。
     复合材料结构整体阻湿方法研究。提出了在聚合物基复合材料表面构建超疏水表面层的方法,提高复合材料结构的整体阻湿性。利用复合材料组元材料特性,设计了复合材料结构超疏水表面层的组元材料,通过化学刻蚀和表面修饰获得具有超疏水表面的纤维增强环氧树脂复合材料结构,对超疏水表面进行了微观结构表征,对具有超疏水表面的GF/CYD-128层合板的耐湿性进行了实验研究。结果表明,本文在GF/CYD-128层合板表面上制备的CaCO3/环氧树脂和ZnO/环氧树脂超疏水表面层的水滴接触角大于150°,且具有长期的室温稳定性和在10-80℃范围内的热稳定性,该超疏水表面能有效降低复合材料结构的吸湿速率和吸湿量。
The paper focuses on the water absorption behaviors and failure mechanism ofglass fiber reinforced epoxy resin composites (GF/CYD-128) in deep-seawaterenvironment. Methods to improve mechanical properties of the composites immersed inthe deep-seawater environment were investigated. The methods are based onmodification of the inter-phase of fiber/matrix by using coupling agents, enhancedproperties of the matrix by using nano-particles and isolating moisture from thecomposite structures by forming a superhydrophobic surface layer on it. The mainresearch work is as follows:
     Experimental investigation on water absorption of the glass fiber reinforced epoxymatrix composites immersed in the deep-seawater environment was conducted. The0-300meters deep-seawater environment was simulated by using a self-madecylindrical pressure vessel filled with seawater and0.1-3.0MPa high-pressure nitrogengas. The moisture contents and saturated swelling of specimens of the GF/CYD-128composites immersed in the deep-seawater environment were obtained. Results showthat the Langmuir-model can be used to describe the water absorption behavior of theGF/CYD-128composites, and the predicted data with Langmuir-model were agreedwith the experimental data of GF/CYD-128under pressures of0.1-3MPa.
     Investigation on effects of water absorption on mechanical properties of thecomposites was conducted. Flexural strength, inter-laminate shear strength (ILSS) andfatigue life of the GF/CYD-128specimens with different contents of absorbed seawaterwere test. Finite element models for ordinary and interphase precession waterabsorption of fiber reinforced polymer matrix composites were developed and stressdistribution in the composites were obtained. Results show that the interface debondingwas a dominating mechanism for the failure of the composites absorbed water underexternal loadings. Degradation of the mechanical properties of the composites absorbedwater was due to the internal stresses induced by swelling of the composites afterabsorbed water which results in the interface debonding and matrix cracking of thecomposites.
     In order to improve the interface bonding property of the composite materialsduring water absorbed process, silicic-alkyl coupling agents of RSiX3were used tomodify the glass fiber/epoxy matrix interphase. Effects of treatment method andmolecular structures of the coupling agents on the moisture absorption behavior of thecomposite material were investigated. Results show that the fiber pretreatment with thecoupling agents was better than the mixing of the coupling agents with epoxy resin toimprove the mechanical properties of the composites. Comparing to the original composites, the rate of moisture absorption of the GF/CYD-128composites with fiberpretreatment of KH550coupling agents decreased31.8%, while the saturated water inthe composites has no significant changes. With fiber pretreatment of KH550couplingagents, ILSS of the dry and wet composites immersed in water for79days increased16.9%and10.3%, respectively. And the same effect can be benefit from more reactiveR-group and less resistance of X-group in the RSiX3.
     To improve moisture resistance of resin matrix in the composites the nano-SiO2particles were added into the resin matrix of the GF/CYD-128composites. The moistureabsorption and mechanical properties of GF/CYD-128composites were tested. Resultsshow that the maximum swelling rate of the GF/CYD-128with nano-SiO2modifieddecreased61.5%. Compared with dry specimens, the flexure strength of the saturatedunmodified GF/CYD-128decreased15.3%, while the saturated modified GF/CYD-128increased5%. The ILSS of the saturated unmodified GF/CYD-128decreased31%,while that of the saturated modified GF/CYD-128decreased only12%. Fatigue life ofthe nano-SiO2modified composites with saturated moisture under tension-tensioncycling loading was increased142.8%than that of the saturated unmodifiedGF/CYD-128.
     A method for protecting the whole composite structures from moistureenvironment was proposed and tested. The idea for the method is try to form an outersuperhydrophobic surface on the composite structures by isolating the moistureenvironment from contacting with the composite structures. Through material design forthe superhydrophobic surface layer, chemical etching, surface modification andparameter optimization, a superhydrophobic surface on the GF/CYD-128compositeswas successful fabricated. It was showed that the superhydrophobic surface layer ofCaCO3/CYD-128and ZnO/CYD-128with contact angle of larger than150°weresuccessfully formed by chemical etching with50wt%acetic acid and surface modifiedwith1wt%stearic acid. The prepared superhydrophobic surfaces have long-termstability at room temperature and thermal stability in rang of10to80℃. In addition, theprepared superhydrophobic surface can effectively reduce the hygroscopic rate andsaturated moisture content of GF/CYD-128composites in the moisture environment.
引文
[1]郝元恺,肖加余主编.高性能复合材料学[M].北京:化学工业出版社,2004:1-2.
    [2]吴人洁主编.复合材料[M].天津:天津大学出版社,2000:2-5.
    [3]霍斯金(澳),贝克(澳)著,沈真译.复合材料原理及应用[M].北京:科学出版社,1992:1-3.
    [4] Hoa V S, Gauvin R. Composite structures and materials[M]. London: Elsevierapplied science,1992:1-2.
    [5]周曦亚.复合材料[M].北京:化学工业出版社,2005:2-3.
    [6]赵玉庭,姚希曾.复合材料聚合物基体[M].武汉:武汉工业大学出版社,1992:3-5.
    [7]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1999:3-4.
    [8]黄业青,张康助,王晓洁. T700碳纤维复合材料的海水腐蚀研究[J].材料开发与应用,2007,22(3):28-32.
    [9]刘建华,赵亮,李松梅,等.盐雾环境对玻璃纤维增强树脂基复合材料力学性能的影响[J].复合材料学报,2007,24(3):18-22.
    [10] Pethrick, Richard A. Effect of Cure Temperature on the Structure and WaterAbsorption of Epoxy/Amine Thermosets[J]. Polymer International,1996,36(4):275-88.
    [11] Whiteside J B, Delasi R J, Schulte R L. Measurement of Preferential MoistureIngress in Composite Wing/Spar Joints[J]. Composite Science and Technology1985,24(2):123-45.
    [12] Delasi R J, Schulte R L. Moisture Detection in Composites Using NuclearReaction Analysis[J]. Journal of Composite Materials,1979,13:303-310.
    [13] Schulte R L, DeIasi R J. Nuclear Reaction Analysis for Measuring MoistureProfiles in Graphite/Epoxy Composites[J]. Nuclear Instrumment and Methods,1980,168(1-3):535-539.
    [14] Schulte R L, DeIasi R J. Moisture Distribution Measurements inAdhesive-Bonded Composites Using the D(3He,p)4He reaction[C]. IEEETransactions on Nuclear Science,1981.
    [15] Siva P P, Kevin L S, James D H, et al. A Novel Accelerated Moisture AbsorptionTest and Characterization[J]. Composites Part A,2009,40:1501-1505.
    [16] Wan L S, Huang X J, Xu Z K. Diffusion and Structure of Water in PolymersContaining N-Vinyl-2-Pyrrolidone[J]. Journal of Physicial Chemistry B,2007,111:922-928.
    [17] Mensitieri G, Lavorgna M, Musto P, et al. Water Transport in DenselyCrosslinked Networks: A Comparison Between Epoxy Systems Having DifferentInteractive Character[J]. Polymer,2006,47:8326-8336.
    [18] Camacho W, Hedenqvist M, Karlsson S. Near Infrared (NIR) SpectroscopyCompared with Thermogravimetric Analysis as a Tool for On-line Prediction ofWater Diffusion in Polyamide6,6[J]. Polymer,2002,51(12):1366-1370.
    [19] Musto P, Ragosta G, Scarinzi G, et al. Probing the Molecular Interactions in theDiffusion of Water through Epoxy and Epoxybismaleimide Networks[J]. Journalof Polymer Science, Part B: Polymer Physics,2002,40(10):922-938.
    [20] Lue S J, Shieh S J. Modeling Water States in Polyvinyl Alcohol-Fumed SilicaNano-Composites[J]. Polymer,2009,50:654-661.
    [21] Olmos D, Lopez M R, Gonzalez B J. The Nature of the Glass Fibre Surface andits Effect on the Water Absorption of Glass Fibre/Epoxy Composites. The Use ofFluorescence to Obtain Information at the Interface[J]. Composites Science andTechnology,2006,66:2758-2768.
    [22] William M B, Francois D, StephenT H, et al. Dielectric and MechanicalAssessment of Water Ingress into Carbon Fibre Composite Materials[J].Computers and Structures,2000,76:43-55.
    [23]詹茂盛,伊海峰.单束玻纤增强环氧树脂复合材料吸水规律的理论与实验[J].塑料,2006,35(4):53-56.
    [24]陈新文,许凤和. T300/5405复合材料的吸水特性研究[J].材料工程,1999,(5):6-8.
    [25]和润忠.树脂基复合材料层合板吸湿特性研究[C].北京:第九届全国复合材料学术会议论文集,1996:453-458.
    [26] Shen C H, Springer G S. Moisture Absorption and Desorption of CompositeMaterials[J]. Journal of Composite Materials,1976,10:2-18.
    [27]田莉莉,刘道新,张广来,杨专钊.温度和应力对碳纤维环氧复合材料吸湿行为的影响[J].玻璃钢/复合材料,2006,(3):14-17.
    [28]王玉林,万怡灶,陈桂才,周福刚,成国祥.三维编织碳纤维/环氧复合材料的吸湿特性及外应力的影响[J].复合材料学报,2002,(6):101-105.
    [29] Liao K, Schultheisz C R, Hunston D L. Effects of Environmental Aging on theProperties of Pultruded GFRP[J]. Composites Part B,1999,30:485-493.
    [30] Muhammad U F. Degeradation of the Composite Fiber/Materix Interface inMariane Environment[D]. Provo, US: Florida Atlantic University,2009:5-6.
    [31] Huang G. Dynamic Mechanical Analysis of the Seawater Treated Glass/PolyesterComposites[J]. Materials and Design,2009,30:2774-2777.
    [32] Kootsookos A, Mouritz A P. Seawater Durability of Glass-and Carbon-PolymerComposites[J]. Composites Science and Technology,2004,64:1503-1511.
    [33] Davies P, Pomies F, Carlsson L A. Influence of Water Absorption on TransverseTensile Properties and Shear Fracture Toughness of Glass/Polypropylene[J].Journal of Composite Materials,1996,30:1004-1019.
    [34] Selzer R, Friedrich K. Mechanical Properties and Failure Behaviour of CarbonFibre-Reinforced Polymer Composites under the Influence of Moisture[J].Composites Part A,1997,28A:595-604.
    [35] Asp L E. The Effects of Moisture and Temperature on the InterlaminarDelamination Toughness of a Carbon/Epoxy Composite[J]. Composites Scienceand Technology,1998,58:967-977.
    [36] Rhee K Y, Lee S M, Park S J. Effect of Hydrostatic Pressure on the MechanicalBehavior of Seawater-Absorbed Carbon/Epoxy Composite[J]. Materials Scienceand Engineering A,2004,384:308-313.
    [37] Rhee K Y, Kim H J, Park S J. Effect of Strain Rate on the Compressive Propertiesof Graphite/Epoxy Composite in a Submarine Environment[J]. Composites Part B,2006,37:21-25.
    [38] Beckry A M, Saeed Z, Katrina G, et al.. The Combined Effects of Load, Moistureand Temperature on the Properties of E-Glass/Epoxy Composites[J]. CompositeStructures,2005,71(3-4):320–326.
    [39] Helbling C, Karbhari V. Investigation of the Tensile Strength Behavior ofE-Glass/Vinyl-Ester Composite Under Synergistic Hygrothermal Exposure andSustained Strain[C]. The60th International SAMPE Conference,2004.
    [40] Reifsnider K L, Schulte K, Duke J C. Long-Time Fatigue Behavior of CompositeMaterials, Long-Term Behavior of Composites[M], ASTM STP813,1983:136-159.
    [41] Mear S T, Wheat H G, Marcus, H L. Corrosion Fatigue Behavior of aGraphite/Epoxy Composite for Marine Applications[C]. The8th InternationalOffshore and Polar Engineering Conference,1998.
    [42] Smith L V, Weitsman Y J. The Immersed Fatigue of Response of PolymerComposites[J]. International Journal of Fracture,1996,82:31-42.
    [43] Komai K, Minoshima K. Tensile and Fatigue Fracture Behavior andWater-environment Effects in a SiC-Whisker/7075-Aluminum Composite[J].Composites Science and Technology,1993,46(1):59-66.
    [44] Sullivan, Roy M. The Effect of Water on Thermal Stresses in PolymerComposites[J]. ASME Journal of Applied Mechanics,1996,63:173-179.
    [45] Stokes E H. Prediction of Ply Lift Temperature in Two-Dimensional PolymericComposites[C]. JANNAF Rocket Nozzle Technology Subcommittee Meeting,1989,526:525-532.
    [46] Clayton F I. Influence of Real Gas Effects on the Predicted Response ofCarbon-Phenolic Material Exposed to Elevated Temperature and PressureEnvironments[C]. JANNAF Rocket Nozzle Technology Subcommittee Meeting,1992,592:123-137.
    [47] McManus H L N, Springer G S. High Temperature Thermomechanical Behaviorof Carbon-Phenolic and Carbon-Carbon Composites[J]. Journal of CompositeMaterials,1992,26:206.
    [48] Wu Y, Katsube N A. Thermostructural Model for Chemically DecomposingComposites[J]. International Journal of Engineering Science,1997,35(2):113-128
    [49] Moy P, Karasz FE. Epoxy-Water Interactions[J]. Polymer Engineering andScience,1980,20(4):315-319.
    [50] Apicella A, Nicolais L, Nobile M R, Castiglione M A. Effect of ProcessingVariables on The Durability of Epoxy Resins for Composite Systems[J].Composite Science and Technology,1985,24:101-121.
    [51] Crank J. The mathematics of diffusion[M]. Oxford, Clarendon,1956.
    [52] Carter H G, Kibler K G. Langmuir-type Model for Anomalous Moisture Diffusionin Composite Resins[J]. Journal of Composite Materials,1978,12:118-130.
    [53] Roy S, Xu W X, Park S J, et al. Anomalous Moisture Diffusion in ViscoelasticPolymers: Modeling and Testing[J]. Journal of Applied Mechanics-Transactionsof the ASME,2000,67:391-396.
    [54]边立平,肖加余,曾竟成,等.极性基团对环氧树脂基体力学性能及吸水性能的影响[J].国防科技大学学报,2011,33(4):55-59.
    [55] Soles C L, Yee A F. A Discussion of the Molecular Mechanisms of MoistureTransport in Epoxy Resins[J]. Journal of Polymer Science Part B: PolymerPhysics,2000,38:792-802.
    [56]惠雪梅,王晓洁,尤丽虹. CE/EP/CF复合材料的湿热性能研究[J].工程塑料应用,2006,34(5):49-51.
    [57]谭怀山,欧雄燕,代堂军.新型含联苯结构环氧树脂的合成与性能[J].化工新型材料,2008,36(11):49-50.
    [58] Mimura K, Ito H, Fujioka H. Improvement of Thermal and Mechanical Propertiesby Control of Morphologies in PES-Modified Epoxy Resin[J]. Polymer,2000,41(12):4451-4459.
    [59]于淼,张华婷,郑世平.玻璃纤维表面偶联剂处理方法对树脂基复合材料性能的影响[J].宇航材料工艺,2006,(6):29-31.
    [60]陈现景,岳云龙,于晓杰,等.界面改性方法对玻纤增强聚丙烯复合材料力学性能的影响[J].玻璃钢/复合材料,2008(1):14-16.
    [61]张文根,张学英,祝保林,等. KH-560和SEA-171表面处理纳米SiC改性氰酸酯树脂[J].中国胶粘剂,2009,18(4):9-12.
    [62]杜仕国.复合材料用硅烷偶联剂的研究进展[J].玻璃钢/复合材料,1996,(4):32-36.
    [63]乌云其其格.偶联剂对玻璃纤维增强塑料的界面作用[J].玻璃钢/复合材料,2000,(4):12-15.
    [64] Yao X F, Ye H Y, Zhou D. The Structural Characterization and Properties ofSiO2/Epoxy Nanocomposite[J]. Journal of Composite Materials,2006,40(4):371-381.
    [65]张淑慧,梁国正,崔红.纳米SiO2改性环氧树脂胶粘剂的研究[J].中国胶剂,2008,17(6):1-4.
    [66]王仁俊,蔡仕珍.用纳米SiO2改进环氧树脂胶粘剂性能的研究[J].粘接,2005,26(4):32-33.
    [67]熊联明,夏亮亮,魏朝秀,等.环氧树脂/有机蒙脱土复合材料的制备与力学性能研究[J].塑料工业,2011,39(5):30-33.
    [68]宋军,汪丽,黄福堂.环氧树脂/蒙脱土纳米复合材料的制备和性能[J].热固性树脂,2008,20(4):14-16.
    [69] Liu W, Hoa SV, Pugh M. Fracture Toughness and Water Uptake of HighPerformance Epoxy/Clay Nanocomposites[J]. Composite Science and Technologe,2005,65(16):2364–2373.
    [70]唐一壬,刘丽,王晓明,等.耐湿热老化三元复合材料OMMT/EP/CF的制备研究[J].材料科学与工艺,2011,19(2):70-74.
    [71] Manfredi L B, Santis H D, Vázquez A. Influence of the Addition ofMontmorillonite to the Matrix of Unidirectional Glass Fibre/Epoxy Compositeson Their Mechanical and Water Absorption Properties [J]. Composites Part A,2008,39:1726-1731
    [72]陈雪,闻荻江. GFRP复合材料的疏水性研究及表征方法[J].纤维复合材料,2006,(2):21-24
    [73] Cassie A B D, Baxter S, Wettability of Porous Surfaces[J]. Transactions of theFaraday Society,1944,40:546-551.
    [74] Barthlott W, Neinhuis C. Purity of the Sacred Lotus or Escape fromContamination in Biological Surfaces[J]. Planta,1997,202(1):1-8.
    [75] Feng L, Li S, Li Y. Super-hydrophobic Surfaces: from Natural toArtificial[J].Advance Materials,2002,14(24):1857-1860.
    [76] Feng L, Zhang Y N, Xi J M, et al. Petal Effect: A Superhydrophobic State withHigh Adhesive Force[J]. Langmuir,2008,24:4114-4119
    [77] Gao X,Jang L.Water-Repellent Legs of Water Striders[J]. Nature,2004,432(7013):36
    [78] Adamson A W.Physieal Chemistry of Surfaces[M].New York:John wiley&Sons,1990.
    [79] Nishino T,Meguro M,Nakamae K.The Lowest Surface Free Energy Basedon-CF3Alignment[J].Langmuir,1999,15(13):4321-4323.
    [80] Wenzel R N.Resistance of Solid Surfaces to Wetting by Water[J].Industrial andEngineering Chemitry Reseach,1936,28(8):988-994.
    [81] Yuan Z Q, Chen H, Tang J X,et al.Facile Method to Fabricate StableSuperhydrophobic Polystyrene Surface by Adding Ethan[J]. Surface and CoatingsTechnology,2007,201:7138-7142.
    [82] Yuan Z Q, Chen H, Zhang J D.Facile Method to Prepare Lotus-leaf-likeSuper-hydrophobic Poly(vinyi chloride)Film[J].Applied Surface Science,2008,254:1593-1598.
    [83] Qian B, Shen Z.Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper and Zinc Substrates[J].Langmuir,2005,21:9007-9015.
    [84] Guo Z G, Zhou F, Hao J C.Stable Biomimetic Super-hydrophobic EngineeringMaterials[J]. Journal of the Americal Chemical Society.2005,127:1567-1571.
    [85] Krupenkin T N, Taylor J A, Schneider T M.From Rolling Ball to CompleteWetting: the Dynamic Tuning of Liquids on Nano-structured Surfaces[J].Langrnuir,2004,20(10):3824-3827.
    [86] Yoshimitsu Z, Nakajima A, Watanabe T.Effects of Surface Structure on theHydrophobicity and Sliding Behavior of Water Droplets[J].Langmuir,2002,18(15):5818-5822.
    [87] Guo S S, Sun M H, Shi J.Patterning of Hydrophilic Micro Arrays withSuperhydrophobic Surrounding Zones[J]. Microelectronic Engineering.2007,84(5-8):1673-1676.
    [88] Martines E, Seunarine K, Morgan H. Superhydrophobicity and Super-hydrophilicity of Regular Nanopattems[J].Nano Letter,2005,5:2097-2102.
    [89] Tserepi A D, Vlachopoulou M E, Gogolides E. Nanotexttaing of Poly(dimethylsiloxane) in Plasmas for Creating Robust Super-hydrophobiesurfaces[J].Nanotechnology,2006,17(15):3977-3983.
    [90] Veeramasuneni S,Miller J D,Yamauchi G. Hydrophobicity of Ion-PlatedCoatings [J].Progress in Organic Coatings,1997,31:265-270.
    [91] Duprre A, Flemming M, Steinert J,et al. Optical Coatings with EnhancedRoughness for Ultrahydrophobic Low Scater Applications[J]. Applied Optics,2002,41(6):3294-3298.
    [92] Tsoi S,Fok E,Sit J C,et al. Superhydrophobic High Surface Area,3-D SiO2Nanostructure through Siloxane-base Surfaced Functionalization[J]. Langmuir,2004,20:10771-10774.
    [93]李欢军,王贤宝,宋延林等.超疏水多孔阵列碳纳米管薄膜[J].高等学校化学学报,2001,22:759-761.
    [94] Lau K K S, Bico J, Teo K B K, et al. Superhydrophobic Carbon NanotubeForests[J]. Nano Letter,2003,3:170l-1705.
    [95] Wang S, Feng L, Liu H. Manipulation of Surface Wetability betweenSuperhydrophobicity and Superhydrophgilicity of Copper Film[J]. ChemicalPhysics,2005,6:1474-1478.
    [96] Abdelsalam M E, Bartlett P N, Kelf T, et al.Wetting of Regularly Structured GoldSurfaces[J].Langmuir,2005,21,1753-1756.
    [97] Shirtcliffe N J, Mchale G, Newton M I, et al. Intrinsically SuperhydrophobicOrganosilica Sol-Gel Foams[J].Langmuir,2003,19,5626-5630.
    [98] Hikita M, Tanaka K, Nakamura T, et al. Super-Liquid-Repellent SurfacesPrepared by Colloidal Silica Nanoparticles Covered with FluoroalkylGroups[J].Langmuir,2005,21:7299-7304.
    [99] Wu X, Zheng L, Wu D. Fabrication of Superhydrophobic Surfaces fromMicrostructured ZnO-Based Surfaces Via a Wet-Chemical Route[J].Langmuir,2005,21:2665-2672.
    [100] Xie Q,Xiu J, Feng L, et a1. Facile Cration of a Super-Amphiphobic CoatingSurface with Bionic Microstructure[J]. Advance Materials,2004,16(4)302-305.
    [101] Erbil H Y,Demirel A L, Avci Y,et al. Transformation of a Simple Plastic into aSuperhydrophobic Surface[J]. Science,2003,299:1377-1380.
    [102] Miyauchi Y,Qing B,Shiratori S.Fabrication of a Silver-Ragwort-Leaf-LikeSuperhydrophobie Micro/Nanoporous Fibrous Mat Surface by Electrospinning[J].Nanotechnology,2006,17(20):5151-5156.
    [103] Lim J M, Yi G R, Moon J H,et a1.Superhydrophobic Films of Electrospun Fiberswith Multiple-Scale Surface Morphology[J]. Langmuir,2007,23(15):7981-7989.
    [104] Ding B,Li C,Hotta Y.Conversion of an Electrospun Nanofibrous CelluloseAcetate Mat from a Superhydrophilic to Superhydrophobic Surface[J].Nanotechnology,2006,17(17):4332-4339.
    [105] Hsiang H I, Liang M T, Huang H C,et al. Preparation of SuperhydrophobicBoehmite and Anatase Nanocomposite Coating Films[J].Materials ResearchBulletin,2007,42:420-427.
    [106] Hart J T, Xu X R,Cho I C.Diverse Access to Artificial SuperhydrophobicSurfaces Using Block Copolymers[J]. Langmuir,2005,21:6662-6665.
    [107] Bormashenko E, Stein T, Whyman G, et al. Wetting Properties of the MultiscaledNanostructured Polymer and Metallic Superhydrophobic Surfaces[J]. Langmuir,2006,22(24):9982-9985.
    [108] Guo Z, Liang J, Fang J, et al. A Novel Approach to the Robust Ti6Al4V-BasedSuperhydrophobic Surfacewith Crater-Like Structure[J]. Advance EngineeringMaterials,2007,99(4):316-319.
    [109] Li S, Li H J, Wang X B, et al. Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes[J]. Journal of Physical Chemistry B,2002,106:9274-9276.
    [110] Zhang J, Li J, Han Y C, et al. Superhydrophobic PTFE Surfaces by Extension[J].Macromolecular Rapid Communication.2004,25:1105–1108.
    [111] Nakanishi Y, Shindo A. Deterioration of CFRP and GFRP in Salt Water[C].Progess in Science and Engineering of Composites, Intenational Conference onComposite Materials IV, Tokyo,1982:1009-1016.
    [112] Loos A C, Springer G S. Moisture Absorption of Graphite-Epoxy CompositesImmersed in Liquids and in Humid Air[J]. Journal of Composite Materials,1979,13:131-147.
    [113] Xiao, G Z, Delamar M, Shanahan, et al. Environment Degradation of Epoxy ResinMatrix[J]. Applied Polymer Science,1997,65(3):449-453.
    [114] Luoma, G A, Rowland R D, Environmental Degradation of an Epoxy ResinMatrix[J]. Journal of Applied Polymer Science,1986,32:5777-5790.
    [115] De'N'evc B, Shanahan M E R. Water Absorption by an Epoxy Resin and Its Effecton the Mechanical Properties and Infra-red Spectra[J]. Polymer,1993,34(24):5009-5015.
    [116] Xiao G Z, Shanahan M E R. Swelling of DGEBA/DDA Epoxy Resin DuringHygrothermal Ageing[J]. Polymer,1998,39(14):3253-3260.
    [117] Botelho E C, Pardini L C, Rezende M C. Evaluation of Hygrothermal Effects onthe Shear Properties of Carbon Composites[J]. Materials Science and EngineeringA,2007,452:292-301.
    [118] Chiou P, Bradley W L. Effects of Seawater Absorption on Fatigue CrackDevelopment in Carbon/Epoxy EDT Specimens[J]. Composites,1995,26:869-876.
    [119] Ellyin F, Rohrbacher C. The Influence of Aqueous Environment, Temperature andCyclic Loading on Glass-Fibre/Epoxy Composite Laminates[J], Journal ofReinforced Plastics&Composites,2003,22:615-636.
    [120] Suh D, Ku M, Nam J, Kin B, Yoon S. Equilibrium of Water Uptake ofEpoxy/Carbon Fiber Composites in Hygrothermal Environmental Conditions[J].Journal of Composite Materials,2001,35(3):264-278.
    [121] Blikstad M, Sjoblom P O W, Johannesson T R. Long-Term Moisture Absorptionin Graphite/Epoxy Angle-Ply Laminates[J]. Journal of Composite Materials,1984,18(1):32-46.
    [122] Mouritz A P, Gellert E, Burchill P, Challis K. Review of Advanced CompositeStructures for Naval Ships and Submarines[J]. Composite Structures,2001,53:21-41.
    [123] Ramirez F A, Carlsson L A, Acha B A. Evaluation of Water Degradation ofVinylester and Epoxy Matrix Composites by Single Fiber and CompositeTests[J].Journal of Materials Science,2008,43(15):5230-5242.
    [124] Hoa S V, Ouellette P, Ngo T D. Determination of Shrinkage and ModulusDevelopment of Thermosetting Resins[J]. Journal of Composite Materials,2009,43(7):783-803.
    [125] Catherine A W, Walter L B. Determination of the Effect of Seawater on theInterface Strength of an Interlayer E-Glass/Craphite/Epoxy Composite by inSitu-observation of Transverse Cracking in an Environmental SEM[J].Composites Science and Technology,1997,57:1033-1043.
    [126] lee B L, Hall M W. Effects of Moisture and Thermal Cycling on In-Plane ShearProperties of Graphite Fibre-Reinforced Cyanate Ester Resin Composites.Composites Part A,1996,21A:1015-1022.
    [127]王春齐,江大志,曾竟成,肖加余.侧面封边对玻璃纤维增强环氧树脂基复合材料吸湿规律的影响[J].国防科技大学学报,2011,33(4):51-54
    [128] Boukhoulda B F, Adda B E, Madani K. The Effect of Fiber Orientation Angle inComposite Materials on Moisture Absorption and Material Degradation afterHygrothermal Ageing[J]. Composite Structures,2006,74:406-418.
    [129] Badaliane R, Dill H D. Damage in Composite Materials[C]. ASTMSTP775,1982:229-234
    [130] Dally J W, Broulman L J.Frequency Effects on the Fatigue of Glass ReinforcedPlastics[J].Journal of Composite Materials,1967, l:424-426
    [131] Tsai G C,Doyle J F, Sun C T.Frequency Effects on the Fatigue Life and Damageof Graphite-Epoxy Composites[J].Journal of Composite Materials,1987,21:2-13
    [132] Hahn H T. Fatigue Behavior and Life Prediction of Composite Laminates[C].ASTM STP674,1979:383-417.
    [133] Stinchcomb W W, Reifsnider K L. Fatigue Damage Mechanisms in CompositeMaterials. Fatigue Mechanism[C]. ASTMSTP,1975,675:762-787.
    [134]黄远,万怡灶,何芳等.碳纤维/环氧树脂基复合材料湿热残余应力的研究[J].航空材料学报,2009,29(4):57-62.
    [135]王彦君,阳建红,张晖.纺论纤维/环氧树脂复合材料的吸湿应力分析[J].宇航材料工艺,2010,(6):41-44.
    [136]陈桂兰,罗伟东,刘法谦,刘光烨.偶联剂对玻纤增强ABS复合材料性能的影响[J].工程塑料与应用,2002,30(6):6-8.
    [137]傅宏俊,马崇启,王瑞.玄武岩纤维表面处理及其复合材料界面改性研究[J].纤维复合材料,2007,(3):11-13.
    [138]许小芳,申世杰.硅烷偶联剂处理玻璃纤维对复合材料界面的影响[J].宇航材料工艺,2010,(3):5-7.
    [139]杜新胜,王善伟,徐惠俭,马斌.偶联剂的合成研究进展[J].杭州化工,2009,39(3):11-14.
    [140]赵贞,张文龙,陈宇.偶联剂的研究进展和应用[J].塑料助剂,2007,63(3):4-9
    [141] Su F H, Zhang Z Z. Mechanical and Tribological Properties of Carbon FabricComposites Filled with Several Nano-Particulates[J]. Wear,2006,260:861-868.
    [142]刘埕. SiO2/环氧树脂基纳米复合材料研究进展[J].怀化学院报,2009,28(2):44-47.
    [143]周红军,尹国强,葛建芳等.纳米SiO2对聚丙烯P环氧树脂共混物性能的影响[J].塑料科技,2008,(36):70-73.
    [144] Chen C, Justice R S, Schaefer D W, Baur J W. Highly Dispersed Nano Silica/Epoxy Resins with Enhanced Mechanical Properties [J]. Polymer,2008,49:3805-3815.
    [145]陆绍荣,张海良,赵才贤等.含柔性链EP-SiO2-TiO2纳米复合材料的制备[J].高分子材料科学与工程,2005,(21):253-257.
    [146]刘丹,贺高红,孙杰等.溶胶-凝胶法制备纳米SiO2/环氧树脂杂化材料[J].热固性树脂,2008,(23):91-93.
    [147] Johnsen B B, Kinloch A J, Mohammed R D, Taylor A C, Sprenger S. TougheningMechanisms of Nanoparticle-Modified Epoxy Polymers [J]. Polymer,2007,48:530-541.
    [148] Triantafyllidis K S, Baron P C, Park I, Pinnavaia T J. Epoxy-Clay Fabric FilmComposites with Unprecedented Oxygen-Barrier Properties [J]. Chemistry ofMaterials.2006,(18):4393-4398.
    [149] Liu W, Hao SV, Pugh M. Water Uptake of Epoxy-Clay Nanocomposites: ModelDevelopment[J]. Composite Science and Technology,2008,68(15-16):156-163.
    [150] Deepa M V, Ranganathaiah U C, Ramani R, Lal B, Alam S. Diffusion ofSeawater in Unsaturated Polyester Resin and Its Glass Fiber ReinforcedComposites in the Presence of Titanium Dioxide as UV Absorber[J]. Journal ofApplied Polymer Science,2006,102:2784-2794.
    [151]江大志.玻璃纤维增强环氧树脂复合材料湿热效应研究[D].国防科学技术大学,1990.
    [152]吴金荣,马芹永,张经双.论碳纤维复合材料疲劳损伤理论[J].山西建筑,2007,33(4):182-183.
    [153] Garg A, Ishai O. Hygrothermal Influence on Delamination Behavior ofGraphite/Epoxy Laminate[J]. Enginner Fracture Mechanics,1985,22(3):413-427.
    [154] Beland S, Komorowsky J P, Roy C. Proceed Ageing of Glass Fiber ReinforcedEpoxy Resin in Water[J]. Compostes,1983,14:35-39.
    [155] Grimmer C S, Dharan C K H. High-Cycle Fatigue of Hybrid CarbonNanotube/Glass Fiber/Polymer Composites[J]. Journal of Material Science,2008,43:4487-4492.
    [156] Marrs B, Andrews R, Pienkowski D. Multiwall Carbon Nanotubes Enhance theFatigue Performance of Physiologically Maintained Methyl Methacrylate StyreneCopolymer[J]. Carbon,2007,45:2098-104.
    [157] Lining Pan, Huiru Dong, Pengyu Bi. Facile Preparation of SuperhydrophobicCopper Surface by HNO3Etching Technique with the Assistance of CTAB andUltrasonication[J]. Applied Surface Science,2010,257:1707–1711