生鲜面制品的品质劣变机制及调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面条是中国及其它一些亚洲国家的传统主食,已有4000多年的历史。为便于保存,目前市场上出售的面条类制品多为干制品,如挂面、油炸方便面等,这些加工工艺均会不同程度的损害面条的风味和口感,营养成分也会受到一定损失,因此已日益不能满足现代人崇尚营养健康的消费时尚。生鲜面制品,因其新鲜、有嚼劲及较好的面香味等特点,作为一种传统食品而长久不衰,实现生鲜面的工业化、规模化生产将具有重大的现实意义,而解决其贮藏运输过程中的品质劣变问题则是实现其批量化生产的前提和关键。
     首先,对生鲜面贮藏过程中宏观、结构以及分子层面的品质指标变化进行了探索。发现导致生鲜面腐败变质的主要微生物为细菌,其次是霉菌和酵母;贮藏前期生鲜面中菌落总数(TPC)迅速增加,后期趋于平缓;生鲜面的亮度值(L*值)在制作后的24h特别是前4h降低最快;贮藏过程中pH值和总酚含量显著下降(P<0.05)。随品质劣变程度的加深,部分蛋白组分被降解,淀粉的糊化特性和粘度特性也会发生一系列变化。生鲜面变质过程中等温吸湿曲线下移,核磁共振横向弛豫峰右移;MRI图像显示随贮藏时间的延长,生鲜面原有的结构被破坏,水分分布不均且向表面迁移。通过对主要指标变化规律进行相关性分析和因子分析,筛选出TPC和L*值的变化值作为评价生鲜面品质劣变的直观指标;而生鲜面中水分的流动和迁移则对其表面状态及煮后质构参数具有显著的影响,也是维持生鲜面良好品质所需要解决的重要问题。
     其次,研究确定了生鲜面品质劣变加速的关键转折条件,发现导致其劣变开始加速的关键转折温度为20~25℃,关键水分含量在23%~24%之间,褐变速率最快的pH范围为pH8.0~8.5,而微生物在初始pH6~10整个范围内,都保持着较高的生长速率。在此基础上,以微生物生长速率和褐变速率为评价指标,建立了常温下生鲜面的品质劣变动力学模型,结果表明微生物的生长可以用Gompertz模型和Logistis模型很好的拟合,其中Gompertz模型的拟合精度更高,拟合方程为y=4.364exp[-exp(1.032-0.086t)],R2=0.98855;而褐变速率则符合二次多项式模型,褐变速率方程为y=76.0629-0.0165x+5.98587x2,R2=0.9814。
     再次,探讨了生鲜面贮藏过程中水分结合状态对其品质变化的影响,研究了降低水分活度即促进生鲜面中游离水分结构化的关键技术。优化出降低生鲜面水分活度的最佳持水剂组合,使其水分活度从0.979降至0.900;从制面工艺入手,研究了真空和面对生鲜面品质特性及促进游离水分结构化的作用效果,结果表明:真空和面能显著改善生鲜面的色泽、外观、蒸煮及质构等品质指标,但对不同小麦粉所制得的生鲜面改善效果不同,确定-0.06MPa作为实际生产中最适和面真空度;此外,真空和面能促进生鲜面中水与非水组分的相互作用,使其一定含水量下的等温吸湿曲线上移,降低生鲜面中可冻结水含量,使核磁共振弛豫峰左移,弛豫时间变短;进一步研究得出,真空和面能在一定程度上促进生鲜面中各蛋白组分相互作用及面筋网络的充分形成;FR-IT图谱分析得出,真空和面使生鲜面中蛋白质二级结构更加稳定有序,MRI图像显示贮藏过程中真空和面组生鲜面中水分的迁移和内部结构劣变更加缓慢,说明真空和面能显著改善制面特性,促进生鲜面中游离水分结构化,增加生鲜面贮藏稳定性。
     此外,以将生鲜面水分含量降低到前面得出的相对安全范围为目的,比较了高温短时脱水(HTST,105~135℃,30~200s)和中低温长时间脱水(MTLT,45~75℃,5~20min)对生鲜面蒸煮、质构品质以及内部组分结构和贮藏稳定性的影响。DSC和偏光十字现象分析发现,120℃以下高温短时脱水会导致一少部分淀粉糊化(30%左右);SEM结果显示,高温短时脱水得到的生鲜面表面更加致密,内部呈现出均匀的孔隙,蛋白和淀粉结合更为紧密;同时高温短时脱水会导致生鲜面中蛋白质通过二硫键(-S-S-)作用发生聚合,其蒸煮损失比中低温脱水生鲜面显著降低,质构参数无显著差异(P>0.05)。同时,高温短时脱水生鲜面具有更高的贮藏稳定性,但由于初始含菌量较高,120℃和135℃适度脱水处理也只能将生鲜面含菌量降至103CFU/g以内,若不经其它处理,室温下的保质期可延长至5天左右。
     最后,为进一步降低原料及生鲜面中的初始含菌量,增强后续保鲜效果,研究了臭氧处理对小麦粉品质特性及生鲜面货架期的影响。结果表明,臭氧处理能显著降低小麦粉中菌落总数及PPO活性(P<0.05),延长生鲜面货架期。同时,经臭氧处理后小麦粉和生鲜面片的亮度和白度增加,面团稳定性增强,RVA峰值粘度、低谷粘度及最终粘度值增加;SDS-PAGE蛋白电泳条带显示臭氧处理小麦粉中生成了以二硫键作用为主的大分子量蛋白聚合体,说明臭氧可作为小麦粉中化学氧化剂的天然替代。此外,经臭氧处理后的小麦粉在贮藏过程中菌落总数会进一步显著降低;GC-MS结果显示,臭氧处理后小麦粉中主要风味成分变化不大,但风味物质种类增多,相对含量有所改变。
Noodle products are the staple food in many Asian countries since ancient time, theyhave been in existence for nearly4000years. For quite a long time, people could only buy drynoodles or instant fried noodles in supermarkets for preservation. However, these dryingprocesses may induce deterioration in the flavor and taste of the products, as well as thenutrients. Thus, as a food product with a long history in China, nowadays, fresh noodle isattracting more and more people for its unique favor and taste. It is of great practicalsignificance to realize the industrialization of fresh noodles.
     Firstly, changes of the quality parameters of fresh noodles were evaluated at macroscopic,structural and molecular levels. Results showed that the most common spoilagemicroorganisms in fresh noodles are bacteria, followed by molds and yeast; Total plate count(TPC) increased rapidly at the early storage period, and then got slowly; L*value decreasedrapidly during the first24h, especially the first4h; During storage, pH value and totalphenolic content of fresh noodles decreased significantly. Proteins were partly decomposedwith the deterioration of fresh noodles, and changes were also detected in the pasting andviscosity properties of starch. In addition, water sorption isotherm of fresh noodles decreasedduring storage, while the NMR transverse relaxation peak right shifted; MRI images showedthat with the extension of storage time, the original structure in fresh noodles was damaged,water distribution became nonuniform and migrated to the surface. With the correlation andfactor analysis of the changes in quality parameters, TPC and L*value were selected as thevisualized indicators to evaluate the deterioration of fresh noodles; water status and migrationwas shown to significantly affect their apparence and textural properties after cooking, thus itwas also an important problem to be resolved to maintain high quality of fresh noodleproducts.
     Secondly, critical conditions inducing the acceleration of fresh noodle deterioration weredetermined. Results showed that the critical temperature leading to the initial acceleration was20~25℃, critical water content was between23%~24%; the fastest darkening rate wasdetected at pH8.0~8.5, while microorganisms kept a high growth rate during the whole rangeof initial pH6~10. Based on this, shelf-life model was built at room temperature, showing thatmicrobial growth could be well fitted by both Gompertz and Logistis model, with higherfitting precision for Gompertz model and the fitting equation was y=4.364exp[-exp(1.032-0.086t)], R2=0.98855; Meanwhile, the darkening of fresh noodles could be fitted byquadratic polynomial model, with the fitting equation y=76.0629-0.0165x+5.98587x2,R2=0.9814.
     Then, the effect of water status on the quality changes of fresh noodles during storagewas discussed, and the key techniques for reducing water activity and promote thecombination between water and other components were studied. The most effective group ofawlowering agents was selected, which reduced the awof fresh noodles to0.900(from0.979);meanwhile, effect of vacuum mixing on noodle quality and the water combination in freshnoodles were determined, results showed that vacuum mixing significantly improved the color, appearance, cooking and textural properties of fresh noodles, the improving effects weredifferent in samples made from different kinds of flour.-0.06MPa was confirmed as the bestvacuum degree for noodle production. In addition, vacuum mixing enhanced the interactionbetween water and other components in noodle dough, with increased water sorption isotherm,decreased freezable water content, as well as the left shifed NMR transverse relaxation peakand reduced relaxation time. Results also showed that vacuum mixing could promote theinteraction of protein components and the development of gluten network; FR-IT spectrumanalysis presented a more stable and ordered secondary structure, MRI images showed thatwater migration and texture deterioration in fresh noodles were retarded. These resultsindicated that vacuum mixing could significantly improve noodle quality, enhance watercombination and increased storage stability of fresh noodles
     In addition, based on the safe range of water content resulted previously, high-temperature-short-time (HTST,105~135℃,30~200s) and medium-temperature-long-time(MTLT,45~75℃,5~20min) dehydration was used for moderate dehydration of freshnoodles. Their effects on the cooking, textural qualities of fresh noodles, as well as thecomponents structure and storage stability were compared. DSC and polarization crossanalysis presented a few part of starch gelatinization (about30%) with HTST dehydration;SEM images showed that the surface of fresh noodles was more compact after HTSTdehydration, with uniform pores detected in the cross section and enhanced protein-starchinteraction; meanwhile, HTST dehydration induced protein polymerization in fresh noodlesby-S-S-, and lead to significantly reduced cooking loss as compared with MTLT dehydration.Textural parameters showed no significant difference for all dehydration temperature. HTSTdehydrated fresh noodles showed higher storage stability, however, due to the high initialbacteria content,120℃and135℃dehydration could only decrease the TPC of freshnoodles to less than103CFU/g and shelf-life of fresh noodles was extended to5days withoutother treatment.
     Finally, in ordor to further reduce the initial bacteria content in the raw materials andfresh noodles, effect of ozone treatment on the quality characteristics of wheat flour andshelf-life of fresh noodles was evaluated. It was showed that ozone treatment can significantlyreduced TPC in wheat flour and extended the shelf-life of fresh noodles. Meanwhile, wheatflour and noodle sheet whiteness, dough stability, and viscosity properties of wheat starchwere all improved by ozone treatment. Remarkable protein aggregates (mainly by–S-S-interaction) were observed in ozone treated wheat flour in SDS-PAGE patterns,indicating the potential of ozone as a natural alternative for chemical oxidants in wheat flour.In addition, TPC in ozone treated wheat flour was found to be significantly reduced in the firstfew days’ storage. And no obvious changes were detected in the major volatile compounds asshown by the results of GC-MS, with increased types of total compounds and changedrelative content.
引文
1.李里特.粮食加工业的出路在于重视传统主食品工业化[J].中国粮油学报,2000,15(4):40-43
    2.郭文华.主食工业化看山西[J].农产品加工:创新版,2012(8):12-16
    3.章建浩.生鲜食品贮藏保鲜包装技术[M].北京:化学工业出版社,2009.1-6
    4.方坤.复合改良剂对低温面制食品抗老化及防褐变效果的研究[D]:[硕士学位论文].合肥:合肥工业大学,2010
    5. Lu H Y,Yang X Y,Ye M L,et al. Culinary archaeology: Millet noodles in late Neolithic China. Nature,2005,437(7061):967-968
    6. Miskelly D. Noodles: a new look at an old food. Food Australia,1993,45(10):496-500
    7.孙敏.快餐面条的现状及发展前景[J].经营管理者,2012,4:209
    8. Fu B X. Asian noodles: History, classification, raw materials, and processing. Food ResearchInternational,2008,41(9):888-902
    9.周文化,郑仕宏,张建春等.生鲜湿面的保鲜与品质变化关系研究[J].中国粮油学报,2007,22(1):19-22
    10.蒋志红,吴莹.面条类食品的现状和发展[J].粮食与油脂,2003(S1):16-19
    11.冯俊敏,张晖,王立等.冷冻面条品质改善的研究[J].食品与生物技术学报,2012,31(10):1080-1086
    12. Evans J A. Frozen Food Science and Technology,Wiley online,2008.26-50
    13. Cheung R H F,Morrison PD,Small D M,et al. Investigation of folic acid stability in fortified instantnoodles by use of capillary electrophoresis and reversed-phase high performance liquidchromatography. Journal of ChromatographyA,2008,1213(1):93-99
    14. Wang L,Hou G G,HsuY H,et al. Effect of phosphate salts on the Korean non-fried instant noodlequality. Journal of Cereal Science,2011,54(3):506-512
    15.岑军健.非油炸方便面生产的新技术[J].食品科技,2011,36(3): I0003-I0004
    16.李晋萍.非油炸方便面远红外辐射加热脱水技术研究[J].科技情报开发与经济,2009,19(18):163-164
    17.李书国,陈辉,李雪梅等.我国方便面工业发展现状、存在问题及前景[J].粮食与油脂,2010(12):1-4
    18. Ghaffar S,Abdulamir AS,Bakar FA,et al. Microbial Growth, Sensory Characteristic and pH asPotential Spoilage Indicators of ChineseYellow Wet Noodles from Commercial Processing PlantsAmerican Journal ofApplied Sciences,2009,6(6):1059-1066
    19. Huis in't Veld J H J. Microbial and biochemical spoilage of foods: an overview. International Journal ofFood Microbiology,1996,33(1):1-18
    20. Mossel D AA,Corry J E L,Struijk C B,et al. Essentials of the microbiology of foods: a textbook foradvanced studies. Chichester: John Wiley&Sons.1995.110-111
    21. Berghofer LK,HockingAD,Miskelly D,et al. Microbiology of wheat and flour milling inAustralia.International Journal of Food Microbiology,2003,85(1-2):137-149
    22. Fistes A,Tanovic G. Predicting the size and compositional distributions of wheat flour stocks followingfirst break roller milling using the breakage matrix approach. Journal of Food Engineering,2006,75(4):527-534
    23.周美玲,邹奇波,黄卫宁.气调包装技术延长烘焙食品货架期的研究[J].食品科学,2007,28(9):599-604
    24. Thompson J M,Dodd C E,Waites W M. Spoilage of bread by bacillus. International biodeterioration&biodegradation,1993,32(1-3):55-66.
    25. Ray B,Bhunia A. Fundamental food microbiology. Boca Raton: CRC Press LLC.2013:41-49
    26.周文化,郑仕宏,唐冰.生鲜湿面菌相分析及腐败菌分离[J].粮食与油脂,2010(4):45-47
    27.李洁,孙姝,朱科学等.半干面腐败菌的分离与鉴定[J].食品科学,2012,33(5):183-187
    28.李兴军,姜平,陆晖.小麦及加工品中游离氨基酸总量测定[J].粮食科技与经济,2013,38(1):35-36
    29.周惠明,李曼,朱科学等.面粉品质与面条品质的关系探讨[J].粮食与食品工业,2011,18(6):19-22
    30. Fuerst E P,Anderson J V,Morris C F. Delineating the Role of Polyphenol Oxidase in the Darkening ofAlkaline Wheat Noodles. Journal ofAgricultural and Food Chemistry,2006,54(6):2378-2384
    31. Gupta R,Batey I,MacRitchie F. Relationships between protein composition and functional propertiesof wheat flours. Cereal Chemistry,1992,69(2):125-131
    32. Masci S,D'Ovidio R,Lafiandra D,et al. Characterization of a low-molecular-weight glutenin subunitgene frombread wheat and the corresponding protein that represents a major subunit of the gluteninpolymer. Plant physiology,1998,118(4):1147-1158
    33. Crosbie G B. The relationship between starch swelling properties, paste viscosity and boiled noodlequality in wheat flours. Journal of Cereal Science,1991,13(2):145-150
    34.段兰萍,梁瑞.新收获小麦在贮藏期间品质指标变化规律的分析[J].粮食加工,2010,35(6):22-24
    35. Кретович В Л.面粉和米在贮藏期间的生化变化[J].刘仁华译,粮食贮藏,1983(1):21-23
    36. Rehman Z U,Shah W H. Biochemical changes in wheat during storage at three temperatures. PlantFoods for Human Nutrition,1999,54(2):109-117
    37. LodiA,AbduljalilAM,Vodovotz Y. Characterization of water distribution in bread during storageusing magnetic resonance imaging. Magnetic Resonance Imaging,2007,25(10):1449-1458
    38. Jensen S,Oestdal H,Skibsted LH,et al. Chemical changes in wheat pan bread during storage and howit affects the sensory perception of aroma, flavour, and taste. Journal of Cereal Science,2011,53(2):259-268
    39. Ronda F,Caballero PA,Quilez J,et al. Staling of frozen partly and fully baked breads. Study of thecombined effect of amylopectin recrystallization and water content on bread firmness. Journal ofCereal Science,2011,53(1):97-103
    40. Farhat IA,Mousia Z,Mitchell J R. Water redistribution during the recrystallisation of amylopectin inamylopectin/gelatin blends. Polymer,2001,42(10):4763-4766
    41. LodiA,Vodovotz Y. Physical properties and water state changes during storage in soy bread with andwithout almond. Food Chemistry,2008,110(3):554-561
    42. Lai H M,Hwang S C. Water status of cooked white salted noodles evaluated by MRI. Food ResearchInternational,2004,37(10):957-966
    43.徐俐,何文光,王文菊等.不同保鲜剂对湿玉米面条保鲜技术的研究[J].农产品加工学刊,2006,70(7):44-46
    44.王晓英,王宇光,刘颖等.新型防霉保鲜剂-双乙酸钠的生产与应用研究进展[J].乙醛醋酸化工,2013(2):9-13
    45.宋显良.生鲜湿面防霉保鲜技术的研究[D]:[硕士学位论文].长沙:中南林业科技大学,2013
    46. Shiau SY,YehAI. Effects of alkali and acid on dough rheological properties and characteristics ofextruded noodles. Journal of Cereal Science,2001,33(1):27-37
    47. Lombard G E,Weinert IAG,MinnaarA,et al. Preservation of SouthAfrican steamed bread usinghurdle technology. LWT-Food Science and Technology,2000,33(2):138-143
    48.夏文水.食品工艺学[M].北京,中国轻工业出版社,2007.86.
    49. XuYY,Hall III C,Wolf-Hall C,et al. Fungistatic activity of flaxseed in potato dextrose agar and afresh noodle system. International Journal of Food Microbiology,2008,121(3):262-267
    50. Del Nobile M A,Di Benedetto N,Suriano N,et al. Use of natural compounds to improve the microbialstability ofAmaranth-based homemade fresh pasta. Food Microbiology,2009,26(2):151-156
    51.周文化,周其中,郑仕宏等.中草药提取物在鲜湿面保鲜中的应用研究[J].粮食与饲料工业,2008,8:26-27
    52. Schieber A,Stintzing F C,Carle R. By-products of plant food processing as a source of functionalcompounds—recent developments. Trends in Food Science&Technology,2001,12(11):401-413
    53. Zhu K X,Dai X,Guo X N,et al. Retarding effects of organic acids, hydrocolloids and microwavetreatment on the discoloration of green tea fresh noodles. LWT-Food Science and Technology,2014,55(1):176-182
    54. KhareAK,Biswas AK,Sahoo J. Comparison study of chitosan, EDTA, eugenol and peppermint oil forantioxidant and antimicrobial potentials in chicken noodles and their effect on colour and oxidativestability at ambient temperature storage. LWT-Food Science and Technology,2014,55(1):286-293
    55. Perumalla AV S,Hettiarachchy N S. Green tea and grape seed extracts-Potential applications in foodsafety and quality. Food Research International,2011,44(4):827-839
    56. Kanatt S R,Chander R,Sharma A. Chitosan glucose complex—Anovel food preservative. FoodChemistry,2008,106(2):521-528
    57. Huang J R,Huang CY,HuangYW,et al. Shelf-life of fresh noodles as affected by chitosan and itsMaillard reaction products. LWT-Food Science and Technology,2007,40(7):1287-1291
    58. Mansour N,YousefAE,KimJ G. Inhibition of surface growth of toxigenic and nontoxigenic aspergilliand penicillia by eugenol, isoeugenol and monolaurin. Journal of food safety,1996,16(3):219-229
    59. Samaranayaka AG P,Li-Chan E CY. Food-derived peptidic antioxidants:Areview of their production,assessment, and potential applications. Journal of Functional Foods,2011,3(4):229-254
    60. Hiraki J,Ichikawa T,Ninomiya S I. Use ofADME studies to confirm the safety of ε-polylysine as apreservative in food. Regulatory Toxicology and Pharmacology,2003,37(2):328-340
    61. Chang S S,Lu WYW,Park S H,et al. Control of foodborne pathogens on ready-to-eat roast beefslurry by ε-polylysine. International Journal of Food Microbiology,2010,141(3):236-241
    62. Arakawa K,Kawai Y,Iioka H,et al. Effects of gassericins Aand T, bacteriocins produced byLactobacillus gasseri, with glycine on custard cream preservation. Journal of Dairy Science,2009,92(6):2365-2372
    63. Perumalla AV S,Hettiarachchy N S. Green tea and grape seed extracts—Potential applications infood safety and quality. Food Research International,2011,44(4):827-839
    64. Cai J M. Preservation of fresh noodles by irradiation. Radiation Physics and Chemistry,1998,52(1-6):35-38
    65.张晖,冯俊敏,郭晓娜等.一种生鲜面的非热杀菌处理方法[P].中国专利,201010520724.0.2010-10-27
    66.周其中,周文化,郑仕宏.一种生鲜湿面保鲜方法[P].中国专利,200810031761.8.2008-12-10
    67. Zardetto S. Effect of modified atmosphere packaging at abuse temperature on the growth of Penicilliumaurantiogriseum isolated from fresh filled pasta. Food Microbiology,2005,22(4):367-371
    68.黄淑霞,曾实,蔡静平等.湿生面条保鲜的研究[J].郑州粮食学院学报,1997,18(2):13-17
    69. Del Nobile M A,Di Benedetto N,Suriano N,et al. Combined effects of chitosan and MAPto improvethe microbial quality of amaranth homemade fresh pasta. Food Microbiology,2009,26(6):587-591
    70.任顺成,王涛,李翠翠.生鲜湿面条常温下的品质变化与防腐保鲜[J].河南工业大学学报(自然科学版),2010,31(6):6-10
    71. Dainty R H. Chemical/biochemical detection of spoilage. International Journal of Food Microbiology,1996,33(1):19-33
    72. International Organization for Standardization. ISO14502-1. Content of total polyphenols in tea—Colorimetric method using Folin-Ciocalteu reagent[S]. Switzerland,2005
    73.王肇慈.粮油食品品质分析[M].北京:中国轻工业出版社,2005:405-407
    74. OngY L,RossAS,Engle D A. Glutenin Macropolymer in Salted andAlkaline Noodle Doughs. CerealChemistry,2010,87(1):79-85
    75. McCormick K M.膨胀势测定在选择小麦面条品质方面的应用[J].麦类作物学报,许东河译,1992(6):28-30
    76. Gram L,Ravn L,Rasch M,et al. Food spoilage—interactions between food spoilage bacteria.International Journal of Food Microbiology,2002,78(1-2):79-97
    77. Adams M R,Moss M O. Food Microbiology,2ed. Cambridge: Royal Society of Chemistry,2000.36-191
    78.钟赛意,刘寿春,秦小明等.蛋白质分解对低温贮藏真空包装罗非鱼品质的影响[J].食品科技,2013,38(6):141-146
    79.李伟妮,韩剑众.冷藏山羊肉品质变化的核磁共振研究[J].食品工业科技,2010,31(1):125-127
    80. Asenstorfer R E,Appelbee M J,Mares D J. Impact of protein on darkening in yellow alkaline noodles.Journal ofAgricultural and Food Chemistry,2010,58(7):4500-4507
    81. Asenstorfer,R E,Appelbee M J,Mares D J. Physical-chemical analysis of non-polyphenol oxidase(non-PPO) darkening in yellow alkaline noodles. J Agric Food Chem,2009,57(12):5556-5562
    82. Asenstorfer,R E,Appelbee M J,Mares D J. Impact of protein on darkening in yellow alkaline noodles.Journal ofAgricultural and Food Chemistry,2010,58(7):4500-4507
    83.宁正祥,赵谋明.食品生物化学.广州:华南理工大学出版社.1995:288-292
    84. OngY L,RossAS,Engle D A. Glutenin macropolymer in salted and alkaline noodle doughs. CerealChemistry,2010,87(1):79-85
    85.孙晓云,王小生. α-淀粉酶对面包品质的影响[J].食品工业科技,2005,26(11):65-67
    86.吴雪辉,张加明.板栗淀粉的性质研究[J].食品科学,2003,24(6):38-41
    87.褚振辉,卢立新.韧性饼干的等温吸湿特性及模型表征[J].包装工程,2011,32(3):12-15
    88.林向阳.核磁共振及成像技术在面包制品加工与储藏过程中的研究[D]:[博士学位论文].南昌:南昌大学,2006
    89.张志健,李新生.食品防腐保鲜技术[M].北京:科学技术文献出版社,2006.1-4
    90.楚炎沛.碱性条件对面条品质特性影响的研究[J].粮油食品科技,2004,12(5):7-9
    91. Moss H J,Miskelly D M,Moss R. The effect of alkaline conditions on the properties of wheat flourdough and cantonese-style noodles. Journal of Cereal Science,1986,4(3):261-268
    92.梁建兰,尚勋武,付志新.影响春小麦面粉中多酚氧化酶活性因素的研究[J].粮食加工,2006,31(2):25-27
    93. FarahnakyA,Ansari S,Majzoobi M. Effect of glycerol on the moisture sorption isotherms of figs.Journal of Food Engineering,2009,93(4):468-473
    94. Maltini E,Torreggiani D,Venir E,et al. Water activity and the preservation of plant foods. FoodChemistry,2003,82(1):79-86
    95.单珊.紫薯—小麦混合粉的性质及面条品质研究[D]:[硕士学位论文].无锡:江南大学,2012
    96.郭晓娜,韩晓星,张晖等.苦荞麦营养保健面条的研究[J].中国粮油学报,2009,24(10):116-119
    97. Chan K Y,Wasserman B P. Direct colorimetric assay of free thiol groups and disulfide bonds insuspensions of solubilized and particulate cereal proteins. Cereal Chemistry,1993,70(1):22-26
    98. Gliemmo M F,Campos CA,Gerschenson LN. Effect of several humectants and potassium sorbate onthe growth of Zygosaccharomyces bailii in model aqueous systems resembling low sugar products.Journal of Food Engineering,2006,77(4):761-770
    99.鲍宇茹.磷酸盐在面条中的应用研究[J].河南工业大学学报(自然科学版),2009,30(5):69-72
    100.罗海波,杨性民,刘青梅等.水分活度降低剂在虾干加工中的应用研究[J].食品科学,2005,26(8):181-184
    101.严维凌,任莉萍,沈菊泉等.山梨糖醇添加量对牛肉干等温吸湿线的影响研究[J].食品科学,2007,28(8):82-86
    102. Baik M Y,Chinachoti P. Effects of glycerol and moisture gradient on thermomechanical properties ofwhite bread. Journal ofAgricultural and Food Chemistry,2001,49(8):4031-4038
    103. Kruger J E,Hatcher D W,DePauw RA. Whole seed assay for polyphenol oxidase in Canadian prairiespring wheats and its usefulness as a measure of noodle darkening. Cereal Chemistry,1994,71(4):324-326
    104. Petitot M,Boyer L,Minier C,et al. Fortification of pasta with split pea and faba bean flours: Pastaprocessing and quality evaluation. Food Research International,2010,43(2):634-641
    105. Zweifel C,Handschin S,Escher F,et al. Influence of high-temperature drying on structural andtextural properties of durum wheat pasta. Cereal Chemistry,2003,80(2):159-167
    106. Ajila C M,Aalami M,Leelavathi K,et al. Mango peel powder: A potential source of antioxidant anddietary fiber in macaroni preparations. Innovative Food Science&Emerging Technologies,2010,11(1):219-224
    107. Park C S,Hong B H,Baik B K. Protein quality of wheat desirable for making fresh white saltednoodles and its influences on processing and texture of noodles. Cereal Chemistry,2003,80(3):297-303
    108. Vittadini E,Clubbs E,Shellhammer T H,et al. Effect of high pressure processing and addition ofglycerol and salt on the properties of water in corn tortillas. Journal of Cereal Science,2004,39(1):109-117
    109. Wang X,Choi S G,Kerr W L. Water dynamics in white bread and starch gels as affected by water andgluten content. LWT-Food Science and Technology,2004,37(3):377-384
    110. Osborne T B. The proteins of the wheat kernel. Washington: Carnegie institution,1907.8-36
    111. Di Cagno R,DeAngelis M,Lavermicocca P,et al. Proteolysis by Sourdough LacticAcid Bacteria:Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance.Applied and environmental microbiology,2002,68(2):623-633
    112. K hler P,Belitz H D,Wieser H. Disulphide bonds in wheat gluten: isolation of a cystine peptide fromglutenin. Zeitschrift für Lebensmitteluntersuchung und-Forschung A,1991,192(3):234-239
    113. Don C,Lichtendonk W J,Plijter J J,et al. The effect of mixing on glutenin particle properties:aggregation factors that affect gluten function in dough. Journal of Cereal Science,2005,41(1):69-83
    114. Gujral H S,Rosell C M. Functionality of rice flour modified with a microbial transglutaminase.Journal of Cereal Science,2004,39(2):225-230
    115. AndersonAK,Ng PK W. Changes in disulfide and sulfhydryl contents and electrophoretic patterns ofextruded wheat flour proteins. Cereal Chemistry,2000,77(3):354-359
    116. Liao L,Wang Q,Zhao M M. Functional, conformational and topographical changes of succinic aciddeamidated wheat gluten upon freeze-and spray-drying:Acomparative study. LWT-Food Science andTechnology,2013,50(1):177-184
    117. Wellner N,Clare Mills E N,Brownsey G,et al. Changes in protein secondary structure during glutendeformation studied by dynamic Fourier transform infrared spectroscopy. Biomacromolecules,2005,6(1):255-261
    118. Selinheimo E,Autio K,Kruus K,et al. Elucidating the mechanism of laccase and tyrosinase in wheatbread making. Journal ofAgricultural and Food Chemistry,2007,55(15):6357-6365
    119. Li J,Kang J,Wang L,et al. Effect of water migration between arabinoxylans and gluten on bakingquality of whole wheat bread detected by magnetic resonance imaging (MRI). Journal ofAgriculturaland Food Chemistry,2012,60(26):6507-6514
    120. Ferrer E G,BoschA,Yantorno O,et al. Aspectroscopy approach for the study of the interactions ofbioactive vanadium species with bovine serumalbumin. Bioorganic&medicinal chemistry,2008,16(7):3878-3886
    121. Lacroix M,Ouattara B,Saucier L,et al. Effect of gamma irradiation in presence of ascorbic acid onmicrobial composition and TBARS concentration of ground beef coated with an edible active coating.Radiation Physics and Chemistry,2004,71(1):73-77
    122.吕莹果,梁晓宁,陈洁等.干燥温度对半干面品质的影响[J].农业机械,2012(18):68-71
    123.梁晓宁,陈洁,王春等.主干燥阶段风速对半干面品质的影响[J].河南工业大学学报(自然科学版),2012,33(4):49-52
    124.李洁.干燥工艺和壳聚糖Maillard产物对半干面保鲜和品质的影响研究[D]:[硕士学位论文].无锡:江南大学,2012
    125. Basman A,Yalcin S. Quick-boiling noodle production by using infrared drying. Journal of FoodEngineering,2011,106(3):245-252
    126. Xue C F,Sakai N,Fukuoka M. Use of microwave heating to control the degree of starch gelatinizationin noodles. Journal of Food Engineering,2008,87(3):357-362
    127. MohamedAA,Rayas-Duarte P. The effect of mixing and wheat protein/gluten on the gelatinization ofwheat starch. Food Chemistry,2003,81(4):533-545
    128.原沙沙.微波对马铃薯淀粉特性影响的研究[D]:[硕士学位论文].郑州:河南工业大学,2012
    129. AltanA,Maskan M. Microwave assisted drying of short-cut (ditalini) macaroni: Drying characteristicsand effect of drying processes on starch properties. Food Research International,2005,38(7):787-796
    130. Putseys J A,Derde LJ,Lamberts L,et al. Functionality of short chain amylose-lipid complexes instarch-water systems and their impact on in vitro starch degradation. Journal ofAgricultural and FoodChemistry,2010,58(3):1939-1945
    131. Güler S,K ksel H,Ng PK W. Effects of industrial pasta drying temperatures on starch properties andpasta quality. Food Research International,2002,35(5):421-427
    132. BaianoA,ConteA,Del Nobile M A. Influence of drying temperature on the spaghetti cooking quality.Journal of Food Engineering,2006,76(3):341-347
    133.施润淋,王晓东.高温烘干—挂面干燥新技术[J].面粉通讯,2005(2):33-38
    134. Weegels P L,Hamer R J,Schofield J D. Depolymerisation and re-polymerisation of wheat gluteninduring dough processing. II. Changes in composition. Journal of Cereal Science,1997,25(2):155-163
    135. Shewry PR,TathamAS. Disulphide bonds in wheat gluten proteins. Journal of Cereal Science,1997,25(3):207-227
    136. Alexandre E M C,Brand o T R S,Silva C LM. Modelling Microbial Load Reduction in Foods Due toOzone Impact. Procedia Food Science,2011,1:836-841
    137. McDonough M X,Mason LJ,Woloshuk C P. Susceptibility of stored product insects to highconcentrations of ozone at different exposure intervals. Journal of Stored Products Research,2011,47(4):306-310
    138. Sandhu H PS,Manthey FA,Simsek S. Quality of bread made from ozonated wheat (Triticumaestivum L.) flour. Journal of the Science of Food andAgriculture,2011,91(9):1576-1584
    139. Li Q,Zhang H H,Claver I P,et al. Effect of different cooking methods on the flavour constituents ofmushroom (Agaricus bisporus (Lange) Sing) soup. International Journal of Food Science&Technology,2011,46(5):1100-1108
    140.刘海燕,尚珊,王宏兹等.糯麦粉对冷冻面团发酵流变特性和面包烘焙特性的影响[J].食品科学,2012,33(3):77-81
    141.刘海燕.糯麦粉对冷冻面团发酵流变学和面包烘焙特性的影响[D]:[硕士学位论文].无锡:江南大学,2012
    142. Huang W N,Li L L,Wang F,et al. Effects of transglutaminase on the rheological and Mixolabthermomechanical characteristics of oat dough. Food Chemistry,2010,121(4):934-939
    143. Guzel-Seydim Z B,GreeneAK,SeydimAC. Use of ozone in the food industry. LWT-Food Scienceand Technology,2004,37(4):453-460
    144. Li W H,LiuW,Liu L,et al. QTLMapping for wheat flour color with additive, epistatic, andQTL×environmental interaction effects.Agricultural Sciences in China,2011,10(5):651-660
    145. SaizAI,Manrique G D,Fritz R. Determination of benzoyl peroxide and benzoic acid levels by HPLCduring wheat flour bleaching process. Journal ofAgricultural and Food Chemistry,2001,49(1):98-102
    146. Chittrakorn S. Use of ozone as an alternative to chlorine for treatment of soft wheat flours. Doctor ofPhilosophy, Kansas State University.
    147. Sandhu H PS,Manthey FA,Simsek S. Ozone gas affects physical and chemical properties of wheat(Triticum aestivum L.) starch. Carbohydrate Polymers,2012,87(2):1261-1268
    148. Chan H T,Bhat R,KarimAA. Physicochemical and functional properties of ozone-oxidized starch.Journal ofAgricultural and Food Chemistry,2009,57(13):5965-5970
    149. Kuakpetoon D,WangY J. Characterization of different starches oxidized by hypochlorite. Starch-Starke,2001,53(5):211-218
    150. Rosell C M,Collar C,Haros M.Assessment of hydrocolloid effects on the thermo-mechanicalproperties of wheat using the Mixolab. Food Hydrocolloids,2007,21(3):452-462
    151. Linlaud N,Ferrer E,Puppo M C,et al. Hydrocolloid interaction with water, protein, and starch inwheat dough. Journal ofAgricultural and Food Chemistry,2011,59(2):713-719
    152. Panozzo J F,McCormick K M. The rapid viscoanalyser as a method of testing for noodle quality in awheat breeding programme. Journal of Cereal Science,1993,17(1):25-32
    153. Konik C M,Mikkelsen LM,Moss R,et al. Relationships between physical starch properties andyellow alkaline noodle quality. Starch-Starke,1994,46(8):292-299
    154. Crosbie G B,RossAS,Moro T,et al. Starch and protein quality requirements of Japanese alkalinenoodles (Ramen). Cereal Chemistry,1999,76(3):328-334
    155. Moss H J. The pasting properties of some wheat starches free of sprout damage. Cereal ResearchCommunications,1980,8(1):297-302
    156. Hung PV,Maeda T,Morita N,et al. Study on physicochemical characteristics of waxy andhigh-amylose wheat starches in comparison with normal wheat starch. Starch-Starke,2007,59(3-4):125-131
    157.覃鹏,马传喜,吴荣林等.糯小麦粉添加比例对其理化性质的影响[J].中国粮油学报,2008,23(6):21-27