Co基催化剂对Li-B-N-H复合体系储氢性能的影响及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发安全、经济和高效的储氢技术是氢能大规模应用的关键。近年来,Li-B-N-H新型储氢材料因其高的储氢容量而备受世人关注,但较高的放氢温度和极差的吸氢可逆性严重阻碍了其实用化进程。为了降低Li-B-N-H体系的放氢温度,改善其可逆吸氢性能,本文系统研究了CoO、Co3O4、Co(OH)2和MOF-74-Co添加对LiBH4-2LiNH2体系的结构和储氢性能的影响,并揭示了其作用机理。
     研究了球磨后LiBH4-2LiNH2-xCoO(x=0、0.0006、0.005、0.01、0.03、0.05、0.10、0.20)样品的储氢性能及其机理。研究发现,添加0.05mol CoO的样品具有最佳的储氢性能,在200℃的等温条件下,10min内放出9.1wt%的氢气,而相同条件下,原始的LiBH4-2LiNH2体系几乎不放氢。热力学和动力学结果表明,添加0.05mol CoO的样品改变了放氢热力学性能,降低了放氢反应的活化能。进一步XAFS分析结果表明,CoO在最初的放氢阶段被还原成了金属Co单质,新生成的Co是真正的催化活性物质。Co的存在有利于B-N键在其表面生成。吸氢测试发现,添加了CoO的LiBH4-2LiNH2样品在350℃放氢之后产物在350℃、110bar条件下的可逆吸氢量达1.1wt%。
     系统研究了球磨后LiBH4-2LiNH2-x/3Co3O4(x=0、0.01、0.03、0.05、0.08、0.10)样品的结构特征、储氢性能及其机理。结果显示,添加Co3O4的LiBH4-2LiNH2体系的放氢温度得到明显降低,动力学性能得到显著改善,在200℃条件下保温60min就可以放出8.2wt%的氢气。添加Co3O4的LiBH4-2LiNH2体系经历四步放氢步骤,其中第一步和第三步反应为吸热反应,在热力学方面为体系的可逆吸氢性能提供了必要的条件。在动力学方面,添加Co3O4样品的四步反应所需表观活化能均比原始LiBH4-2LiNH2样品的低。进一步XRD和FTIR测试结果表明,在加热过程中,Co3O4发生了一系列的变化。球磨后的样品中以Co3O4形式存在,而放氢过程中先后转变成Li1.47Co3O4、Li2.57Co0.43N、 C03B7O13NO3,当样品完全放氢后,Co3O4则转变成了单质Co。这些中间产物以及Co的生成,导致LiBH4-2LiNH2体系的放氢反应路径发生变化,热力学与动力学性能得到提高,从而促进体系储氢性能的改善。吸氢测试表明,添加Co3O4的LiBH4-2LiNH2体系显示出部分可逆性,其放氢产物可以在220℃、110bar氢压下吸收1.7wt%的氢气。
     深入研究了球磨后LiBH4-2LiNH2-xCo(OH)2(x=0、0.0004、0.01、0.03、0.05、0.08、0.10、0.20、1.00)样品的储氢性能及其机理。研究可知,Co(OH)2与LiBH4、LiNH2在球磨过程中发生了化学反应,释放出氢气,改变了LiBH4-2LiNH2体系放氢路径。添加Co(OH)2明显改善了LiBH4-2LiNH2体系的动力学性能,在200℃下、20min内就释放出9.1wt%的氢气。动力学结果显示,添加0.05mol Co(OH)2样品的放氢活化能较LiBH4-2LiNH2样品降低了25%。XRD分析表明,放氢结束后Co(OH)2转变成了Co,新生成的Co起到了真正的催化效果,EDS测试可知,原位生成的Co均匀分布在体系中,有利于产物Li3BN2在Co表面成键、形核与长大。进一步吸氢测试显示,添加Co(OH)2的LiBH4-2LiNH2体系放氢后的产物在350℃、110bar氢压下能可逆吸收1.3wt%的氢气。
     研究了MOF(MOF-74-Co)添加对LiBH4-2LiNH2体系储氢性能的影响。结果发现,添加5wt%MOF-74-Co的LiBH4-2LiNH2样品具有最佳的储氢性能,在200℃下、50min内释放出9.0wt%的氢气,占总放氢量(10.4wt%)的87%。动力学结果表明,添加5wt%MOF-74-Co的样品,放氢反应的活化能降低了26%。XRD和EDS分析显示,MOF-74-Co在200℃被还原成了单质Co,并均匀地弥散在整个体系中。SEM观察发现,放氢产物呈孔状结构,这利于氢气的交换与扩散运输。吸氢测试发现,添加了MOF-74-Co的LiBH4-2LiNH2样品在220℃放氢之后,产物在220℃、110bar条件下可逆吸氢量达1.7wt%。
Development of safe, economic and efficient hydrogen storage technologies is the key issue for large-scale applications of hydrogen energy. In recent years, considerable attention has been paid to the Li-B-N-H hydrogen storage system due to their relatively high hydrogen capacity. However, the high dehydrogenation temperature and poor reversibility prevent it from practical applications. In this paper, to reduce the dehydrogenation and improve the hydrogen storagte reversibility, the effects of CoO, CO3O4, Co(OH)2and MOF-74-Co on hydrogen storage properties and mechanism of the Li-B-N-H system were systematically investigated.
     The LiBH4-2LiNH2-xCoO composites with x=0,0.0006,0.005,0.01,0.03,0.05,0.10and0.20were prepared by ball milling, and the hydrogen storage properties of the as-prepared samples were investigated. It was found that the sample with0.05mol CoO behaved the best hydrogen storage performances. With the addition of0.05mol CoO, the composite released about9.1wt%of hydrogen within10min at200℃, whereas there was no detectable hydrogen desorption for the additive-free sample under the same conditions. Thermodynamic and kinetic measurements revealed that adding CoO changed the heat flow behaviors of hydrogen desorption and decreased the activation energy. Further XAFS analyses indicated that CoO was reduced to metallic Co during the initial heating stage, and the newly formed metallic Co played a role as the actual active catalytic species in favor of the creation of B-N bonding on the surface of metallic Co. Moreover, the dehydrogenated CoO-added sample exhibited improved hydrogen storage reversibility, absorbing about1.1wt%of hydrogen at350℃and a hydrogen pressure of110bar.
     The LiBH4-2LiNH2-x/3Co3O4composites with x=0,0.01,0.03,0.05,0.08and0.10were prepared by ball milling, and the hydrogen storage properties of the as-prepared samples were investigated systematically. It was found that the presence of Co3O4in the LiBH4-2LiNH2system significantly reduced the dehydrogenation operating temperatures and enhanced the dehydrogenation kinetics. The LiBH4-2LiNH2-0.05/3Co3O4composite exhibited optimal hydrogen storage properties. It released~8.2wt%of hydrogen within60min at200℃. Hydrogen desorption from the Co3O4-added LiBH4-2LiNH2system was a four-step reaction, and the first and third steps of dehydrogenation are endothermic in nature, exhibiting favourable thermodynamics for reversible hydrogen storage. The apparent activation energies of the four dehydrogenation steps were all lower than that of the pristine LiBH4-2LiNH2sample. XRD and FTIR analyses revealed that the added Co3O4was first converted to Li1.47Co3O4and then formed Li2.57Co0.43N and Co3B7O13NO3. Finally, the metallic Co was identified in the resultant dehydrogenation product. Such a transformation not only changed the dehydrogenation thermodynamics but also decreased the energy barriers, consequently improving the dehydrogenation properties of the Co3O4-added sample. Further hydrogenation examinations revealed that the dehydrogenated Co3O4-added sample exhibited a partial reversibility because it absorbed~1.7wt%of hydrogen at220℃and110bar of hydrogen pressure.
     In-depth investigations were conducted on the hydrogen storage properties and mechanism of the LiBH4-2LiNH2-xCo(OH)2composites with x=0,0.0004,0.01,0.03,0.05,0.08,0.10and0.20. During ball milling, a chemical reaction among Co(OH)2, LiBH4and LiNH2readily occurred to generate H2. The presence of Co(OH)2in the LiBH4-2LiNH2system significantly enhanced the dehydrogenation kinetics. The LiBH4-2LiNH2-0.05Co(OH)2composite exhibited optimal hydrogen storage properties. It released~9.1wt%of hydrogen within20min at200℃. Kinetic measurements revealed that adding Co(OH)2decreased the activation energy by25%. XRD analyses showed that Co(OH)2were converted to Co after dehydrogenation, and the newly formed metallic Co played a role as the actual active catalytic species. EDS measurements showed that the in situ generated Co uniformly distributed in the system which is in favor of the creation of Li3BN2, nucleation and growth on the surface of metallic Co. Further hydrogenation examinations reveal that the dehydrogenated Co(OH)2-added sample exhibited a partial reversibility because it absorbs~1.3wt%of hydrogen at350℃and110bar of hydrogen pressure.
     The effects of MOF(MOF-74-Co) on the hydrogen storage properties of LiBH4-2LiNH2system were further investigated. It was found that the sample with5wt%MOF-74-Co exhibited the best hydrogen storage performances. With the addition of5wt%MOF-74-Co, the composite released about9.0wt%of hydrogen' within10min at200℃, which is87%of the total amount of hydrogen (10.4wt%). Kinetic measurements revealed that adding MOF-74-Co decreased the activation energy by26%. XRD and EDS measurements showed that MOF-74-Co was reduced to Co, which is uniformly distributed in the system throughout the whole dehydrogenation process. SEM observation found a loosened porous morphology for the dehydrogenated (MOF-74-Co)-added sample, which facilitates the transport and diffusion of hydrogen. Further hydrogenation examinations reveal that the dehydrogenated (MOF-74-Co)-added sample exhibited a partial reversibility because it absorbed~1.7wt%of hydrogen at220℃and110bar of hydrogen pressure.
引文
[1]S. Enthaler, J. von Langermann and T. Schmidt. Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?. Energy & Environmental Science, 2010,3:1207-1217.
    [2]N. Armaroli and V. Balzani. The Hydrogen Issue. Chem Sus Chem,2011,4:21-36.
    [3]L. Schlapbach and A. Zuttel. Hydrogen-storage materials for mobile applications. Nature, 2001,414:353-358.
    [4]J. Graetz. New approaches to hydrogen storage. Chemistry Society Review,2009,38: 73-82.
    [5]J. O'M. Bockris. The Hydrogen Economy. Environmental Chemistry.1977:549-582.
    [6]U. B. Demirci and P. Miele. Chemical hydrogen storage:'material'gravimetric capacity versus'system'gravimetric capacity. Energy & Environmental Science,2011,4: 3334-3341.
    [7]L. Zhou. Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews,2005,9:395-408.
    [8]R. S. Irani. Hydrogen storage:High-pressure gas containment. MRS BULLETIN,2002, 27:680-682.
    [9]B. Xiao and Q.C.Yuan. Nanoporous metal organic framework materials for hydrogen storage. Particuology,2009,7:129-140.
    [10]P. P. Edwards, V. L. Kuznetsov and W. I. F. David. Hydrogen energy. Philosophical Transactions of the Royal Society A,2007,365:1043-1056.
    [11]A. J. Appleby. Fuel cells and hydrogen fuel. International Journal of Hydrogen Energy, 1994,19:175-180.
    [12]U. Eberle, M. Felderhoff and F. Schuth. Chemical and Physical Solutions for Hydrogen Storage. Angewandte Chemie International Edition,2009,48:6608-6630.
    [13]U. Sahaym and M. G. Norton. Advances in the application of nanotechnology in enabling a'hydrogen economy'. Journal of Materials Science,2008,43:5395-5429.
    [14]L. Schlapbach and A. Zuttel. Hydrogen-storage materials for mobile applications. Nature, 2001,414:353-358.
    [15]P. Jena. Materials for Hydrogen Storage:Past, Present, and Future. The Journal of Physical Chemistry Letters,2011,2:206-211.
    [16]A. J. Kidnay and M. J. Hiza. High pressure adsorption isotherms of neon, hydrogen, and helium at 76 K. Advances in Cryogenic Engineering,1967,12:730-740.
    [17]S. lijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [18]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben. Storage of Hydrogen in Single-Walled Carbon Nanotubes. Nature,1997,386:377-379.
    [19]N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi. Hydrogen Storage in Microporous Metal-Organic Frameworks. Science,2003,300: 1127-1129.
    [20]L. F. Wang and R. T. Yang. New sorbents for hydrogen storage by hydrogen spillover-a review. Energy & Environmental Science,2008,1:268-279.
    [21]G. Sandrock. A panoramic overview of hydrogen storage alloys from a gas reaction point of view. Journal of Alloys and Compounds,1999,293-295:877-888.
    [22]J. H. N. van Vucht, F. A. Kuijpers and H. C. A. M. Bruning. Reversible room-temperature absorption of large quantities of hydrogen by intermetallic compounds. Philips Research Reports,1970,25:133-140.
    [23]S. R. Ovshinsky, M. A. Fetcenko and J. Ross. A Nickel Metal Hydride Battery for Electric Vehicles. Science,1993,260:176-181.
    [24]A. Pebler and E. A. Gulbransen. Thermochemical and structural aspects of reaction of hydrogen with alloys and intermetallic compounds of zirconium. Electrochemical Technology,1966,4:211-215.
    [25]A. Pebler and E. A. Gulbransen. Equilibrium studies on systems ZrCr2-H2, ZrV2-H2 and ZrMo2-H2 between 0℃ and 900℃. Transactions of the Metallurgical Society of AIME, 1967,239:1593-1598.
    [26]D. Shaltiel, I. Jacob and D. Davidov. Hydrogen absorption and desorption properties of AB2 laves-phase pseudobinary compounds. Journal of the Less Common Metals,1977,53: 117-131.
    [27]J. R. Johnson and J. J. Reilly. Reaction of hydrogen with the low-temperature form (C15) of TiCr2. Inorganic Chemistry,1978,17:3103-3108.
    [28]T. Gamo, Y. Moriwaki, N. Yanagihara, T. Yamashita and T. Iwaki. Formation and properties of titanium-manganese alloy hydrides. International Journal of Hydrogen Energy,1985,10:39-47.
    [29]J. J. Reilly and R. H. Wiswall. Formation and properties of iron titanium hydride. Inorganic Chemistry,1974,13:218-222.
    [30]B. D. Dunlap, P. J. Viccaro and G. K. Shenoy. Structural relationships in rare earth-transition metal hydrides. Journal of the Less Common Metals,1980,74:75-79.
    [31]张晶,方方,郑时有,朱健,陈国荣,孙大林.AB3型贮氢合金材料的研究进展.稀有金属材料与工程,2008,37:26-930.
    [32]A. Zaluska, L. Zaluski and J. O. Strom-Olsen. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds,1999,288:217-225.
    [33]R. Zidan, B. L. Garcia-Diaz, C. S. Fewox, A. C. Stowe, J. R. Gray and A. G. Harter. Aluminum hydride:a reversible material for hydrogen storage. Chemical Communications,2009:3717-3719.
    [34]H. Reule, M. Hirscher, A. Weiβhardt and H. Kronmuller, Hydrogen desorption properties of mechanically alloyed MgH2 composite materials. Journal of Alloys and Compounds, 2000,305:246-252.
    [35]M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch and R. Bormann. Hydrogen storage in magnesium-based hydrides and hydride composites, Scripta Materialia,2007,56:841-846.
    [36]D. S. Sholl. Using density functional theory to study hydrogen diffusing in metals:a brief overview. Journal of Alloys and Compounds,2007,446:462-468.
    [37]L. E. A. Berlouis, E. Cabrera, E. Hall-Barientos, P. J. Hall, S. B. Dodd, S. Morris and M. A. Imam. A thermal analysis investigation of the hydriding properties of nanoerystalline Mg-Ni based alloys prepared by high energy ball milling. Journal of Alloys and Compounds,2000,305:82-89.
    [38]A. Zaluska, L. Zaluski and J. O. Strom-Olsen. Structure, catalysis and atomic reactions on the nano-scale:a systematic approach to metal hydrides for hydrogen storage. Applied Physics A-Materials Science & Processing,2001,72:157-165.
    [39]G. Barkhordarian, T. Klassen and R. Bormann. Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. Journal of Alloys and Compounds,2004,364:242-246.
    [40]L. Zaluski, A. Zaluska and J. O. Strom-Olsen. Nanocrystalline metal hydride. Journal of Alloys and Compounds,1997,253:70-79.
    [41]K. Jeon, H. R. Moon, A. M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan and J. J. Urban. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nature Materials,2011,10:286-290.
    [42]B. Bogdanovic and M. Schwickardi. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. Journal of Alloys and Compounds, 253-254:1-9.
    [43]B. Bogdanovic, M. Felderhoff, S. Kaskel, A. Pommerin, K. Schlichte and F. Schuth. Improved hydrogen storage properties of Ti-doped sodium alanate using titanium nanoparticles as doping agents. Advanced Materials,2003,15:1012-1015.
    [44]M. Fichtner, O. Fuhr, O. Kircher and J. Rothe. Small Ti clusters for catalysis of hydrogen exchange in NaAlH4. Nanotechology,2003,14:778-785.
    [45]B. Bogdanovic, M. Felderhoff, A. Pommerin, F. Schuth and N. Spielkamp. Advanced Hydrogen-Storage Materials Based on Sc-, Ce-, and Pr-Doped NaAlH4. Advanced Materials,2006,18:1198-1201.
    [46]S. S. Srinivasan, H. W. Brinks, B. C. Hauback, D. L. Sun and C. M. Jensen. Long term cycling behavior of titanium doped NaAlH4 prepared through solvent mediated milling of NaH and Al with titanium dopant precursors. Journal of Alloys and Compounds,2004, 377:283-289.
    [47]M. Felderhoff, K. Klementiev, W. Grunert, B. Spliethoff, B. Tesche, J. M. B. von Colbe, B. Bogdanovic, M. Hartel, A. Pommerin, F. Schuth and C. Weldenthaler. Combined TEM-EDX and XAFS studies of Ti-doped sodium alanate. Physical Chemitry Chemical Physics,2004,6:4369-4374.
    [48]F. Fang, J. Zhang, J. Zhu, G. R. Chen, D. L. Sun, B. He, Z. Wei and S. Q. Wei. Nature and Role of Ti Species in the Hydrogenation of a NaH/Al Mixture. Journal of Physical Chemistry C,2007,111:3476-3479.
    [49]J. J. Liu and Q. F. Ge. A precursor state for formation of TiA13 complex in reversible hydrogen desorption/adsorption from Ti-doped NaAlH4. Chemical Communications,2006: 1822-1824.
    [50]D. L. Sun, T. Kiyobayashi, H. T. Takeshita, N. Kuriyama, C. M. Jensen. X-ray diffraction studies of titanium and zirconium doped NaAlH4. elucidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties. Journal of Alloys and Compounds,2002,337:L8-L11.
    [51]P. Wang, X. R. Kang and H. M. Cheng. Exploration of the Nature of Active Ti Species in Metallic Ti-Doped NaAlH4. Journal of Physical Chemistry B,2005,109,20131-20136.
    [52]J. Wang, A. D. Ebner and J. A. Ritter. Physiochemical Pathway for Cyclic Dehydrogenation and Rehydrogenation of LiAlH4. Jouranl of the American Chemical Society,2006,128:5949-5954.
    [53]M. Fichtner, O. Fuhr and O. Kircher. Magnesium alanate-a material for reversible hydrogen storage?. Journal of Alloys and Compounds,2003,356-357:418-422.
    [54]B. Bogdanovic, M. Felderhoff and G. Streukens. Hydrogen storage in complex metal hydrides. Journal of the Serbian Chemical Society,2009,74:183-196.
    [55]A. Zuttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron and Ch. Emmenegger. Hydrogen storage properties of LiBH4. Journal of Alloys and Compounds,2003,356-357: 515-520;
    [56]J. H. Kim, J. H. Shim and Y. W. Cho. On the reversibility of hydrogen storage in Ti-and Nb-catalyzed Ca(BH4)2. Journal of Power Sources,2008,181:140-143.
    [57]S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata and A. Zuttel. Dehydriding and rehydriding reactions of LiBH4. Journal of Alloys and Compounds,2005, 404-406:427-430.
    [58]E. Ronnebro and E. H. Majzoub. Calcium Borohydride for Hydrogen Storage:□Catalysis and Reversibility. Journal of Physical Chemistry B,2007,111:12045-12047.
    [59]S. J. Hwang, R. C. Bowman, J. W. Reiter, J. Rijssenbeek, G. L. Soloverchik, J. C. Zhao, H. Kabbour, C. C. Ahn. NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides. Journal of Physical Chemistry C,2008, 112:3164-3169.
    [60]L. L. Wang, D. D. Graham, I. M. Robertson and D. D. Johnson. On the Reversibility of Hydrogen-Storage Reactions in Ca(BH4)2:Characterization via Experiment and Theory. Journal of Physical Chemistry C,2009,113:20088-20096.
    [61]H. W. Li, Y. Yan, S. I. Orimo, A. Zuttel A and C. M. Jensen. Recent Progress in Metal Borohydrides for Hydrogen Storage. Energies,2011,4:185-214.
    [62]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction of hydrogen with metal nitrides and imides. Nature,2002,420:302-304.
    [63]P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin and K. L. Tan. Interaction between Lithium Amide and Lithium Hydride. Journal of Physical Chemistry B,2003,107:10967-10970.
    [64]Z. T. Xiong, J. J. Hu, G T. Wu, P. Chen, W. F. Luo, K. Gross and J. Wang. Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system. Journal of Alloys and Compounds,2005,398:235-239.
    [65]W. F. Luo, J. Wang, K. Stewart, M. Clift and K. Gross. Li-Mg-N-H:Recent investigations and development. Journal of Alloys and Compounds,2007,446-447:336-341.
    [66]G. Wolf, J. Baumann, F. Baitalow and F. P. Hoffmann, Calorimetric process monitoring of thermal decomposition of B-N-H compounds, Thermochimica Acta,2000,343:19-25.
    [67]R. J. Keaton, J. M. Blacquiere and R. T. Baker. Base Metal Catalyzed Dehydrogenation of Ammonia-Borane for Chemical Hydrogen Storage. Journal of the American Chemical Society,2007,129:1844-1845.
    [68]F. Y. Cheng, H. Ma, Y. M. Li and J. Chen. Ni1-xPtx (x=0-0.12) Hollow Spheres as Cata]ysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry,2007,46: 788-794.
    [69]J. M. Yan, X. B. Zhang, S. Han, H. Shioyama and Q. Xu. Iron-Nanoparticle-Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane for Chemical Hydrogen Storage. Angewandte Chemie International Edition,2008,47:2287-2289.
    [70]F. H. Stephens, R. T. Baker, M. H. Matus, D. J. Grant and D. A. Dixon. Acid Initiation of Ammonia-Borane Dehydrogenation for Hydrogen Storage. Angewandte Chemie International Edition,2007,46:746-749.
    [71]A. Gutowska, L. Y. Li, Y. S. Shin, C. M. Wang, X. H. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey. Nanoscaffold Mediates Hydrogen Release and the Reactivity of Ammonia Borane. Angewandte Chemie International Edition,2005,44:3578-3582.
    [72]Z. T. Xiong, C. K. Yong, G T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David. High-capacity hydrogen storage in lithium and sodium amidoboranes. Nature Materials,2008,7:138-141.
    [73]H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell. Calcium Amidotrihydroborate:A Hydrogen Storage Material. Angewandte Chemie International Edition,2007,46:8995-8997.
    [74]X. D. Kang, Z. Z. Fang, L. Y. Kong, H. M. Cheng, X. D. Yao, G Q. Lu and P. Wang. Ammonia Borane Destabilized by Lithium Hydride:An Advanced On-Board Hydrogen Storage Mnaterial. Advanced Materials,2008,20:2756-2759.
    [75]Y. S. Chua, P. Chen, G T. Wu and Z. T. Xiong. Development of amidoboranes for hydrogen storage. Chemical Communications,2011,47:5116-5129.
    [76]H. G Pan, S. B. Shi, Y. F. Liu, B. Li, Y. J. Yang and M. X. Gao. Improved hydrogen storage kinetics of the Li-Mg-N-H system by addition of Mg(BH4)2. Dalton Transactions, 2013,42:3802-3811.
    [77]B. Li, Y. F. Liu, J. Gu, M. X. Gao and H. G. Pan. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system. Chemistry-An Asian Journal,2013,8:374-384.
    [78]Mechanistic investigations in significantly improved hydrogen storage performances of the Ca(BH4)2-added 2LiNH2/MgH2 system. International Journal of Hydrogen Energy, 2013,38:5030-5038.
    [79]F. E. Pinkerton, G P. Meisner, M. S. Meyer, M. P. Balogh and M. D. Kundrat. Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. Journal of Physical Chemistry B,2005,109:6-8.
    [80]D. J. Siegel, C. Wolverton, V. Ozolins. Reaction energetics and crystal structure of Li4BN3H10 from first principles. Physical Review B,2007,75:014101-(1-11).
    [81]Y. Kojima, M. Matsumoto, Y. Kawai, T. Haga, N. Ohba, K. Miwa, S. I. Towata, Y. Nakamori and S. I. Orimo. Hydrogen Absorption and Desorption by the Li-Al-N-H System. Journal of Physical Chemistry B,2006,110:9632-9636.
    [82]J. Lu and Z. Z Fang. Dehydrogenation of a Combined LiAlH4/LiNH2 System. Journal of Physical Chemistry B,2005,109:20830-20834.
    [83]Z. T. Xiong, G. T. Wu, J. J. Hu, Y. F. Liu, P. Chen, W. F. Luo and J. Wang. Reversible Hydrogen Storage by a Li-Al-N-H Complex. Advanced Functional Materials,2007,17: 1137-1142.
    [84]B. D. James and M. G. H. Wallbridge. Metal Tetrahydroborates. Progress in Inorganic Chemistry,1970,11,99-231.
    [85]H. J. Schlesinger and H. C. Brown. Metallo Borohydrides. Ⅲ. Lithium Borohydride. Journal of the American Chemistry Society,1940,62,3429-3435.
    [86]A. Zuttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron and Ch. Emmenegger. LiBH4 a new hydrogen storage material. Journal of Power Sources,2003,118:1-7.
    [87]A. Zuttel, A. Borgschulte and S. I. Orimo. Tetrahydroborates as new hydrogen storage materials. Scripta Materialia,2007,56:823-828.
    [88]P. M. Harris and E. P. Meibohm. The Crystal Structure of Lithium Borohydride LiBH4. Journal of the American Chemical Society,1947,69:1231-1232.
    [89]J. P. Soulie, G. Renaudin, R. Cerny and K. Yvon. Lithium boro-hydride LiBH4: I. Crystal structure. Journal of Alloys and Compounds,2002,346:200-205.
    [90]C. Li, P. Peng, D. W. Zhou and L. Wan. Research progress in LiBH4 for hydrogen storage: A review. International Journal of Hydrogen Energy,2011,36:14512-14526.
    [91]M. R. Hartman, J. J. Rush, T. J. Udovic, R. C. Bowman and S.-J. Hwang. Structure and vibrational dynamics of isotopically labeled lithium borohydrideusing neutron diffraction and spectroscopy. Journal of Solid State Chemistry,2007,180:1298-1305.
    [92]Y. Filinchuk, D. Chernyshov and R. Cerny. Lightest Borohydride Probed by Synchrotron X-ray Diffraction:Experiment Calls for a New Theoretical Revision. Journal of Physical Chemistry C,2008,112:10579-10584.
    [93]Y. Filinchuk, D. Chernyshov, A. Nevidomskyy and V. Dmitriev. High-pressure polymorphism as a step towards destabilization of LiBH4. Angewandte Chemie International Edition,2008,47:529-532.
    [94]T. J. Frankcombe, G. J. Kroes and A. Ziittel. Theoretical calculation of the energy of formation of LiBH4. Chemical Physics Letters,2005,405:73-78.
    [95]C. W. F. T. Pistorius. Melting and Polymorphism of LiBH4 to 45 kbar. Zeitschrift fur Physikalische Chemie,1974,88:253-263.
    [96]P. Vajeeston, P. Ravindran, A. Kjekshus and H. Fjellvag. Structural stability of alkali boron tetrahydrides ABH4 (A=Li, Na, K, Rb, Cs) from first principle calculation. Journal of Alloys and Compounds,2005,387:97-104.
    [97]A. V. Talyzin, O. Andersson, B. Sundqvist, A. Kurnosov and L. Dubrovinsky. High-pressure phase transition in LiBH4. Journal of Solid State Chemistry,2007,180: 510-517.
    [98]A. Ziittel, A. Borgschulte and S. Orimo. Tetrahydroborates as New Hydrogen Storage Materials. Scripta Materialia,2007,56:823-828.
    [99]S. Orimo, Y. Nakamori, N. Ohba, K. Miwa, M. Aoki, S. Towata and A. Zuttel. Experimental studies on intermediate compound of LiBH4. Applied Physics Letters,2006, 89:021920-(1-3).
    [100]N. Ohba, K. Miwa, M. Aoki, T. Noritake, S. Towata, Y. Nakamori, S. Orimo and A. Zuttel. First-principles study on the stability of intermediate compounds of LiBH4. Physical Review B,2006,74,075110-(1-5).
    [101]S.-J. Hwang, R. C. Bowman, J. W. Reiter, J. Rijssenbeek, G. L. Soloveichik, J.-C. Zhao, H. Kabbour and C. C. Ahn. NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides. Journal of Physical Chemistry C, 2008,112:3164-3169.
    [102]V. Ozolins, E. H. Majzoub and C. Wolverton. First-Principles Predition of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System. Journal of the American Chemical Society,2009,131:230-237.
    [103]J.-H. Her, M. Yousufuddin, W. Zhou, S. S. Jalisatgi, J. G. Kulleck, J. A. Zan, S. J. Hwang, R. C. Bowman and T. J. Udovic. Crystal Structure of Li2B12H12:a Possible Intermediate Species in the Decomposition of LiBH4. Inorganic Chemistry.2008,47:9757-9759.
    [104]O. Friedrichs, A. Remhof, S.-J. Hwang and A. Zuttel. Role of Li2B12H12for the Formation and Decomposition of LiBH4. Chemistry of Materials,2009,22:3265-3268.
    [105]R. L. Corey, D. T. Shane, R. C. Bowman and M. S. Conradi. Atomic Motions in LiBH4 by NMR. Journal of Physical Chemistry C,2008,112:18706-18710.
    [106]A. V. Skripov, A. V. Soloninin, Y. Filinchuk and D. Chernyshov. Nuclear Magnetic Resonance Study of the Rotational Motion and the Phase Transition in LiBH4. Journal of Physical Chemistry C,2008,112:18701-18705.
    [107]A. Borgschulte, A. Zuttel, P. Hug, A. M. Racu and J. Schoenes. Hydrogen-Deuterium Exchange in Bulk LiBH4. Journal of Physical Chemistry A,2008,112:4749-4753.
    [108]T. J. Frankcombe and G J. Kroes. Quasiharmonic approximation applied to LiBH4 and its decomposition products. Physical Review B,2006,73:174302.
    [109]F. Buchter, Z. Lodziana, P. Mauron, A. Remhof, O. Friedrichs, A. Borgschulte, A. Zuttel, D. Sheptyakov, Th. Strassle and A. J. Ramirez-Cuesta. Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4. Physical Review B, 2008,78:094302..
    [110]E. R. Andresen, R. Gremaud, A. Borgschulte, A. J. Ramirez-Cuesta, A. Zuttel and P. Hamm. Vibrational Dynamics of LiBH4 by Infrared Pump-Probe and 2D Spectroscopy. Journal of Physical Chemistry A,2009,113:12838-12846.
    [111]P. Mauron, F. Buchter, O. Friedrichs, A. Remhof, M. Bielmann, C. N. Zwichy and A. Zuttel. Stability and Reversibility of LiBH4. Journal of Physical Chemisty B,2008,112, 906-910.
    [112]S. Orimo, Y. Nakamori, G Kitahara, K. Miwa, N. Ohba, S. Towata and A. Zuttel. Dehydriding and rehydriding reactions of LiBH4. Journal of Alloys and Compounds,2005, 404-406:427-430.
    [113]M. D. Riktor, M. H. S(?)rby, K. Chlopek, M. Fichtner, F. Buchter, A. Zuttel and B. C. Hauback. In situ synchrotron diffraction studies of phase transitions and thermal decomposition of Mg(BH4)2 and Ca(BH4)2. Journal of Materials Chemistry,2007,17: 4939-4942.
    [114]O. Friedrichs, F. Buchter, A. Borgschulte, A. Remhof, C. N. Zwicky, Ph. Mauron, M. Bielmann and A. Zuttel. Direct synthesis of Li[BH4] and Li[BD4] from the elements. Acta Materialia,2008,56:949-954.
    [115]A. Remhof, O. Friedrichs, F. Buchter, Ph. Mauron, A. Ziittel and D. Wallacher. Solid-state synthesis of LiBD4 observed by in situneutron diffraction. Physical Chemistry Chemical Physics,2008,10,5859-5862.
    [116]O. Friedrichs, A. Borgschulte, S. Kato, F. Buchter, R. Gremaud, A. Remhof and A. Zuttel. Low-Temperature Synthesis of LiBH4 by Gas-Solid Reaction. Chemistry-A European Journal,2009,15,5531-5534.
    [117]O. Friedrichs, A. Remhof, A. Borgschulte, F. Buchter, S.I. Orimo and A. Zuttel. Breaking the passivation-the road to a solvent fee borohydride synthesis. Physical Chemistry Chemical Physics.2010,12,10919-10922.
    [118]G. Barkhordarian, T. Klassen, M. Dornheim and R. Bormann. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. Journal of Alloys Compounds,2007,440:L18-L21.
    [119]Y. Nakamori, K. Miwa, A. Ninomiya, H. W. Li, N. Ohba, S. I. Towata, A. Zuttel and S. I. Orimo. Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites:First-principles calculations and experiments. Physical Review B,2006, 74:045126.
    [120]Y.'Nakamori and S. I. Orimo. Borohydrides as hydrogen storage materials. Solid-State Hydrogen Storage:Materials and Chemistry, Woodhead Publishing in Materials,2008: 420-449.
    [121]H. W. Li, S. Orimo, Y. Nakamori, K. Miwa, N. Ohba, S. Towata and A. Zuttel. Materials designing of metal borohydrides:Viewpoints from thermodynamical stabilities. Journal of Alloys and Compounds,2007,446-447:315-318.
    [122]K. Miwa, N. Ohba, S. Towata, Y. Nakamori and S. Orimo. First-principles study on copper-substituted lithium borohydride, (Li1-xCux)BH4. Journal of Alloys and Compounds, 2005,404:140-143.
    [123]E. A. Nickels, M. O. Jones, W. I. F. David, S. R. Johnson, R. L. Lowton, M. Sommariva and P. P. Edwards. Tuning the decomposition temperature in complex hydrides:Synthesis of a mixed alkali metal borohydride. Angewandte Chemie International Edition,2008,47: 2817-2819.
    [124]H. Hagemann, M. Longhini, J. W. Kaminski,T. A. Wesolowski, R. Cerny, N. Penin, M. H. Sorby, B. C. Hauback, G. Severa and C. M. Jensen. LiSc(BH4)4:A novel salt of Li+ and discrete Sc(BH4)4- complex anions. Journal of Physical Chemistry A,2008,112: 7551-7555.
    [125]C. Kim, S. J. Hwang, R. C. Bowman, J. W. Reiter, J. A. Zan, J. G. Kulleck, H. Kabbour, E. H. Majzoub and V. Ozolins. LiSc(BH4)4 as a Hydrogen Storage Material:Multinuclear High-Resolution Solid-State NMR and First-Principles Density Functional Theory Studies. Journal of Physical Chemistry C,2009,113:9956-9968.
    [126]P. Choudhury, S. S. Srinivasan, V. R. Bhethanabotla, Y. Goswami, K. McGrath and E. K. Stefanakos. Nano-Ni doped Li-Mn-B-H system as a new hydrogen storage candidate. International Journal of Hydrogen Energy,2009,34:6325-6334.
    [127]D. Ravnsbaek, Y. Filinchuk, Y. Cerenius, H. J. Jakobsen, F. Besenbacher, J. Skibsted and T. R. Jensen. A Series of Mixed-Metal Borohydrides. Angewandte Chemie International Edition,2009,48:6659-6663.
    [128]I. Lindemann, R. D. Ferrer, L. Dunsch, Y. Filinchuk, R. Cerny, H. Hagemann, V. D'Anna, L. M. L. Daku, L. Schultz and O. Gutfleisch. Al3Li4(BH4)13:A Complex Double-Cation Borohydride with a New Structure. Chemistry-A European Journal,2010,16:8707-8712.
    [129]Z. Z. Fang, X. D. Kang, P. Wang, H. W. Li and S. I. Orimo. Unexpected dehydrogenation behavior of LiBH4/Mg(BH4)2mixture associated with the in situ formation of dual-cation borohydride. Journal of Alloys and Compounds,2010,491:L1-L4.
    [130]E. G. Bardaji, Z. Zhao-Karger, N. Boucharat, A. Nale, M. J. van Setten, W. Lohstroh, E. Rohm, M. Catti and M. Fichtner. LiBH4-Mg(BH4)2:A Physical Mixture of Metal Borohydrides as Hydrogen Storage Material. Journal of Physical Chemistry C,2011,115: 6095-6101.
    [131]J. Y. Lee, D. Ravnsbaek, Y. S. Lee, Y. Kim, Y. Cerenius, J. H. Shim, T. R. Jensen, N. H. Hur and Y. W. Cho. Decomposition Reactions and Reversibility of the LiBH4-Ca(BH4)2 Composite. Journal of Physical Chemistry C,2009,113:15080-15086.
    [132]J. J. Vajo, S. L. Skeith and F. Mertens. Reversible storage of hydrogen in destabilized LiBH4. Journal of Physical Chemistry B,2005,109:3719-3722.
    [133]F. E. Pinkerton, M. S. Meyer. G. P. Meisner, M. P. Balogh and J. J. Vajo. Phase Boundaries and Reversibility of LiBH4/MgH2 Hydrogen Storage Material. Journal of Physical Chemistry C,2007,111:12881-12885.
    [134]J. J. Vajo, T. T. Salguero, A. F. Gross, S. L. Skeith and G. L. Olson. Thermodynamic destabilization and reaction kinetics in light metal hydride systems. Journal of Alloys and Compounds,2007,446-447:409-414.
    [135]T. Nakagawa, T. Ichikawa, N. Hanada, Y. Kojima and H. Fujii. Thermal analysis on the Li-Mg-B-H systems. Journal of Alloys and Compounds,2007,446-447:306-309.
    [136]U. Bosenberg, S. Doppiu, L. Mosegaard, G Barkhordarian, N. Eigen, A. Borgschulte, T. R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim and R. Bormann. Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia,2007,55:3951-3958.
    [137]S. V. Alapati, J. K. Johnson and D. S. Sholl. First principles screening of destabilized metal hydrides for high capacity H2 storage using scandium. Journal of Alloys and Compounds,2007,446-447:23-27.
    [138]F. Pendolino, P. Mauron, A. Borgschulte and A. Ziittel. Effect of Boron on the Activation Energy of the Decomposition of LiBH4. Journal of Physical Chemistry C,2009,113: 17231-17234.
    [139]O. Friedrichs, J. W. Kim, A. Remhof, F. Buchter, A. Borgschulte, D. Wallacher, Y. W. Cho, M. Fichtner, K. H. Oh and A. Zuttel. The effect of Al on the hydrogen sorption mechanism of LiBH4. Physical Chemistry Chemical Physics,2009,11:1515-1520.
    [140]Y. Zhang, Q. F. Tian, J. Zhang, S. S. Liu and L. X. Sun. The Dehydrogenation Reactions and Kinetics of 2LiBH4-Al Composite. Journal of Physical Chemistry C,2009,113: 18424-18430.
    [141]J. Yang, A. Sudik and C. Wolverton. Destabilizing LiBH4 with a Metal (M=Mg, Al, Ti, V, Cr, or Sc) or Metal Hydride (MH2=MgH2, TiH2, or CaH2). Journal of Physical Chemistry C,2007,111:19134-19140.
    [142]F. E. Pinkerton and M. S. Meyer. Reversible hydrogen storage in the lithium borohydride-calcium hydride coupled system. Journal of Alloys and Compounds,2008, 464:L1-L4.
    [143]S. A. Jin, Y. S. Lee, J. H. Shim and Y. W. Cho. Reversible hydrogen storage in LiBH4-MH2 (M=Ce, Ca) composites. Journal of Physical Chemistry C,2008,112: 9520-9524.
    [144]P. Mauron, M. Bielmann, A. Remhof, A. Zuttel, J. H. Shim and Y. W. Cho. Stability of the LiBH4/CeH2 Composite System Determined by Dynamic pcT Measurements. Journal of Physical Chemistry C,2010,114:16801-16805.
    [145]J. H. Shim, Y. S. Lee, J. Y. Suh, W. Cho, S. S. Han and Y. W. Cho. Thermodynamics of the dehydrogenation of the LiBH4-YH3 composite:Experimental and theoretical studies. Journal of Alloys and Compounds,2012,510:L9-L12.
    [146]Y. Zhang, W. S. Zhang, M. Q. Fan, S. S. Liu, H. L. Chu, Y. H. Zhang, X. Y. Gao and L. X. Sun. Enhanced hydrogen storage performance of LiBH4-SiO2-TiF3 composite. Journal of Physical Chemistry C,2008,112:4005-4010.
    [147]X. B. Yu, D. A. Grant and G. S. Walker. Low-temperature dehydrogenation of LiBH4 through destabilization with TiO2. Journal of Physical Chemistry C,2008,112: 11059-11062.
    [148]Z. Z. Fang, L. P. Ma, X. D. Kang, P. J. Wang, P. Wang and H. M. Cheng. In situ formation and rapid decomposition of Ti(BH4)3 by mechanical milling LiBH4 with TiF3. Applied Physics Letters,2009,94:044104.
    [149]Y. F. Liu, H. Zhou, Y. F. Ding, M. X. Gao and H. G Pan. Low-Temperature Hydrogen Desorption from LiBH4-TiF4 Composite. Functional Materials Letters,2011,4:395-399.
    [150]M. Au, A. R. Jurgensen,W. A. Spencer, D. L. Anton, F. E. Pinkerton, S. J. Hwang, C. Kim and R. C. Bowman. Stability and Reversibility of Lithium Borohydrides Doped by Metal Halides and Hydrides. Journal of Physical Chemistry C,2008,112:18661-18671.
    [151]M. Au and A. Jurgensen. Modified lithium borohydrides for reversible hydrogen storage. Journal of Physical Chemistry B,2006,110:7062-7067.
    [152]M. Au, A. Jurgensen and K. Zeigler. Modified lithium borohydrides for reversible hydrogen storage (2). Journal of Physical Chemistry B,2006,110:26482-26487.
    [153]P. Choudhury, V. R. Bhethanabotla and E. Stefanakos. First principles study to identify the reversible reaction step of a multinary hydrogen storage "Li-Mg-B-N-H" system. International Journal of Hydrogen Energy,2010,35:9002-9011.
    [154]R. W. P. Wagemans, J. H. van Lenthe, P. E. de Jongh, A. J. van Dillen and K. P. de Jong. Hydrogen Storage in Magnesium Clusters:Quantum Chemical Study. Journal of the American Chemical Society,2005,127:16675-16680.
    [155]T. K. Nielsen, F. Besenbacher and T. R. Jensen. Nanoconfined hydrides for energy storage. Nanoscale,2011,3,2086-2098.
    [156]X. F. Liu, D. Peaslee, C. Z. Jost, T. F. Baumann and E. H. Majzoub. Systematic Pore-Size Effects of Nanoconfinement of LiBH4:Elimination of Diborane Release and Tunable Behavior for Hydrogen Storage Applications. Chemistry of Materials,2011,23: 1331-1336.
    [157]X. F. Liu, D. Peaslee, C. Z. Jost and E. H. Majzoub. Controlling the Decomposition Pathway of LiBH4 via Confinement in Highly Ordered Nanoporous Carbon. Journal of Physical Chemistry C,2010,114:14036-14041.
    [158]Z. Z. Fang, P. Wang, T. E. Rufford, X. D. Kang, G. Q. Lu and H. M. Cheng. Kinetic-and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Materialia,2008.56:6257-6263.
    [159]A. F. Gross, J. J. Vajo, S. L. Van Atta and G. L. Olson. Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. Journal of Physical Chemistry C, 2008,112:5651-5657.
    [160]H. S. Lee, Y. S. Lee, J. Y. Suh, M. Kim, J. S. Yu, Y. W. Cho. Enhanced Desorption and Absorption Properties of Eutectic LiBH4-Ca(BH4)2 Infiltrated into Mesoporous Carbon. Journal of Physical Chemistry C,2011,115:20027-20035.
    [161]T. K. Nielsen, U. Bosenberg, R. Gosalawsit, M. Dornheim, Y. Cerenius, F. Besenbacher and T. R. Jensen. A Reversible Nanoconfined Chemical Reaction. ACS Nano,2010,4: 3903-3908.
    [162]P. Ngene, M. R. van Zwienen and P. E. de Jongh. Reversibility of the hydrogen desorption from LiBH4:A synergetic effect of nanoconfinement and Ni addition. Chemical Communications,2010,46:8201-8203.
    [163]D. T. Shane, R. L. Corey, C. Mclntosh, L. H. Rayhel, R. C. Bowman, J. J. Vajo, A. F. Gross and M. S. Conradi. LiBH4 in Carbon Aerogel Nanoscaffolds:An NMR Study of Atomic Motions. Journal of Physical Chemistry C,2010,114:4008-4014.
    [164]H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii. Synthesis and Decomposition Reactions of the Metal Amides in Metal-N-H Hydrogen Storage System. Journal of Power Sources,2006,156:166-170.
    [165]H. Jacobs and R. Juza. New determination of crystal structure of lithium amide. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1972,391:271-279.
    [166]J. B. Yang, X. D. Zhou, Q. Cai, W. J. James and W. B. Yelon. Crystal and electronic structures of LiNH2. Applied Physics Letters,2006,88:041914.
    [167]J. P. O. Bohger, R. R. Essmann and H. Jacobs.Infrared and Raman studies on the internal modes of lithium amide. Journal of Molecular Structure,1995,348:325-328.
    [168]T. Ichikawa and S. Isobe. The structural properties of amides and imides as hydrogen storage materials. Zeitschrift Fur Kristallographie,2008,223:660-665.
    [169]M. H. Sorby, Y. Nakamura, H. W. Brinks, T. Ichikawa, S. Hino, H. Fujii and B. C. Hauback. The crystal structure of LiND2 and Mg(ND2)2.Journal of Alloys and Compounds,2007,428:297-301.
    [170]S. Orimo, Y. Nakamori, G Kitahara, K. Miwa, N. Ohba, T. Noritake and S. Towata. Destabilization and enhanced dehydriding reaction of LiNH2:an electronic structure viewpoint. Applied Physics A-Materials Science & Processing,2004,79:1765-1767.
    [171]Y. Song and Z. X. Guo. Electronic structure, stability and bonding of the Li-N-H hydrogen storage system. Physical Review B,2006,74:195120.
    [172]Y. Zhong, H. Zhou, C. Hu, D. Wang and G Rao. Pressure-induced structural transitions of LiNH2:A first-principle study. Journal of Alloys and Compounds,2012,544:129-133.
    [173]X. Huang, D. Li, F. Li, X. Jin, S. Jiang, W. Li, X. Yang, Q. Zhou, B. Zou, Q. Cui, B. Liu and T. Cui. Large Volume Collapse during Pressure-Induced Phase Transition in Lithium Amide. Journal of Physical Chemistry C,2012,116:9744-9749.
    [174]R. Juza. Amides of the alkali and the alkaline erath metals. Angewandte Chemie International Edition,1964,3:471-481.
    [175]J. J. Hu, Z. T. Xiong, G T. Wu, P. Chen, K. Murata and K. Sakata. Effects of ball-milling conditions on dehydrogenation of Mg(NH2)2-MgH2. Journal of Power Sources,2006,159: 120-125.
    [176]Y. Nakamori, G. Kitahara and S. Orimo. Synthesis and dehydriding studies of Mg-N-H systems. Journal of Power Sources,2004,138:309-312.
    [177]S. Hino, T. Ichikawa, H. Y. Leng and H. Fujii. Hydrogen desorption properties of the Ca-N-H system. Journal of Alloys and Compounds,2005,398:62-66.
    [178]Z. T. Xiong, P. Chen, G. T. Wu, J. Y. Lin and K. L. Tan. Investigations into the interaction between hydrogen and calcium nitride. Journal of Materials Chemistry,2003,13: 1676-1680.
    [179]W. F. Luo. (LiNH2-MgH2):a viable hydrogen storage system. Journal of Alloys and Compounds,2004,381:284-287.
    [180]Z. T. Xiong, G. T. Wu, J. J. Hu and P. Chen. Ternary imides for hydrogen storage. Advanced Materials,2004,16:1522-1525.
    [181]H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujii. New metal-N-H system composed of Mg(NH2)2 and LiH for hydrogen storage. Journal of Physical Chemistry B,2004,108:8763-8765.
    [182]Y. Nakamori, G Kitahara, K. Miwa, S. Towata and S. Orimo. Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2. Applied Physics A-Materials Science & Processing,2005,80:1-3.
    [183]H. L. Chu, Z. T. Xiong, G T. Wu, T. He, C. Z. Wu and P. Chen. Hydrogen storage properties of Li-Ca-N-H system with different molar ratios of LiNH2/CaH2. International Journal of Hydrogen Energy,2010,35:8317-8321.
    [184]K. Tokoyoda, S. Hino, T. Ichikawa, K. Okamoto and H. Fujii. Hydrogen desorption/absorption properties of Li-Ca-N-H system. Journal of Alloys and Compounds, 2007,439:337-341.
    [185]Y. F. Liu, T. Liu, Z. T. Xiong, J. J. Hu, G T. Wu, P. Chen, A. T. S. Wee, P. Yang, K. Murata and K. Sakata. Synthesis and structural characterization of a new alkaline earth imide: MgCa(NH)2. European Journal of Inorganic Chemistry,2006,4368-4373.
    [186]D. A. Sheppard, M. Paskevicius and C. E. Buckley. Hydrogen Desorption from the NaNH2-MgH2 System. Journal of Physical Chemistry C,2011,115:8407-8413.
    [187]Y. Nakamori, A. Ninomiya, G. Kitahara, M. Aoki, T. Noritake, K. Miwa, Y. Kojima and S. Orimo. Dehydriding reactions of mixed complex hydrides. Journal of Power Sources. 2006,155:447-455.
    [188]Z. T. Xiong, G. T. Wu, J. J. Hu, Y. F. Liu, P. Chen, W. F. Luo and J. Wang. Reversible hydrogen storage by a Li-Al-N-H complex. Advanced Functional Materials,2007,17: 1137-1142.
    [189]O. Dolotko, H. Q. Zhang, O. Ugurlu, J. W. Wiench, M. Pruski, L. S. Chumbley and V. Pecharsky. Mechanochemical transformations in Li(Na)AlH4-Li(Na)NH2 systems. Acta Materialia,2007,55:3121-3130.
    [190]Y. Kojima, M. Matsumoto, Y. Kawai, T. Haga, N. Ohba, K. Miwa, S. I. Towata, Y. Nakamori and S. Orimo. Hydrogen absorption and desorption by the Li-Al-N-H system. Journal of Physical Chemistry B,2006,110:9632-9636.
    [191]J. Yang, A. Sudik, D. J. Siegel, D. Halliday, A. Drews, R. O. Carter, C. Wolverton, G J. Lewis, J. W. A. Sachtler, J. J. Low, S. A. Faheem, D. A. Lesch and V. Ozolins. A Self-Catalyzing Hydrogen-Storage Material. Angewandte Chemie International Edition, 2008,47:882-887.
    [192]X. B. Yu, Y. H. Guo, D. L. Sun, Z. X. Yang, A. Ranjbar, Z. P. Guo, H. K. Liu and S. X. Dou. A Combined Hydrogen Storage System of Mg(BH4)2-LiNH2 with Favorable Dehydrogenation. Journal of Physical Chemistry C,2010,114:4733-4737.
    [193]H. L. Chu, Z. T. Xiong, G. T. Wu, J. P. Guo, X. L. Zheng, T. He, C. Z. Wu and P. Chen. Hydrogen Storage Properties of Ca(BH4)2-LiNH2 System. Chemistry-an Asian Journal, 2010,5:1594-1599.
    [194]C. Wu, Y. Bai, J. H. Yang, F. Wu and F. Long. Characterizations of composite NaNH2-NaBHH4 hydrogen storage materials synthesized via ball milling. International Journal of Hydrogen Energy,2012,37:889-893.
    [195]Y. Zhang and Q. F. Tian. The reactions in LiBH4-NaNH2 hydrogen storage system. International Journal of Hydrogen Energy,2011,36:9733-9742.
    [196]H. L. Chu, G. T. Wu, Y. Zhang, Z. T. Xiong, J. P. Guo, T. He and P. Chen. Improved Dehydrogenation Properties of Calcium Borohydride Combined with Alkaline-Earth Metal Amides. Journal of Physical Chemistry C,2011,115:18035-18041
    [197]Y. F. Liu, J. J. Hu, G. T. Wu, Z. T. Xiong and P. Chen. Large Amount of Hydrogen Desorption from the Mixture of Mg (NH2)2 and LiAlH4. Journal of Physical Chemistry C, 2007,111:19161-19164.
    [198]Y. T. Li, F. Fang, Y. Song, Y. S. Li, D. L. Sun, S. Y. Zheng, L. A. Bendersky, Q. A. Zhang, L. Z. Ouyang and M. Zhu. Hydrogen storage of a novel combined system of LiNH2-NaMgH3:synergistic effects of in situ formed alkali and alkaline-earth metal hydrides. Dalton Transactions,2013,42:1810-1819.
    [199]Y. E. Filinchuk, K. Yvon, G. P. Meisner, F. E. Pinkerton and M. P. Balogh. On the Composition and Crystal Structure of the New Quaternary Hydride Phase Li4BN3H10. Inorganic Chemistry,2006,45:1433-1435.
    [200]T. Noritake, M. Aoki, S. Towata, A. Ninomiya, Y. Nakamori and S. Orimo. Crystal structure analysis of novel complex hydrides formed by the combination of LiBH4 and LiNH2. Applied Physics A-Materials Science & Processing,2006,83:277-279.
    [201]P. A. Chater, W. I. F. David, S. R. Johnson, P. P. Edwards and P. A. Anderson. Synthesis and crystal structure of Li4BH4(NH2)3. Chemical Communication,2006:2439-2441.
    [202]H. Wu, W. Zhou, T. J. Udovic, J. J. Rush and T. Yildirim. Structures and crystal chemistry of Li2BNH6 and Li4BN3H10. Chemistry of Materials,2008,20:1245-1247.
    [203]P. A. Chater, W. I. F. David and P. A. Anderson. Synthesis and structure of the new complex hydride Li2BH4NH2. Chemical Communications,2007:4770-4772.
    [204]M. Matsuo, A. Remhof, P. Martelli, R. Caputo, M. Ernst, Y. Miura, T. Sato, H. Oguchi, H. Maekawa, H. Takamura, A. Borgschulte, A. Zuttel and S. Orimo. Complex Hydrides with (BH4)- and (NH2)- Anions as New Lithium Fast-Ion Conductors. Journal of the American Chemical Society,2009,131:16389-16391.
    [205]F. E. Pinkerton and J. F. Herbst. Tetragonal I41/amd crystal structure of Li3BN2 from dehydrogenated Li-B-N-H. Journal of Applied Physics,2006,99:113523-(1-5).
    [206]R. C. DeVries and J. F. Fleischer. The system Li3BN2 at high pressures and temperatures. Materials Research Bulletin,1969,4:433-442.
    [207]H. Yamane, S. Kikkawa and M. Koizumi, High- and low-temperature phases of lithium boron nitride, Li3BN2:preparation, phase relation, crystal structure, and ionic conductivity. Journal of Solid State Chemistry,1987,71:1-11.
    [208]P. Villars. Pearson's Handbook, Crystallographic Data for Intermetallic Phases, (Desk Edition) ASM International, The Materials Information Society, Materials Park, OH, 1997:771.
    [209]H. Yamane, S. Kikkawa, H. Horiuchi and M. Koizumi. Structure of a New Polymorph of Lithium Boron Nitride, Li3BN2. Journal of Solid State Chemistry,1986,65:6-12.
    [210]V. J. Goubeau and W. Anselment. Uber ternare Metall-Bornitride. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1961,310:248-260.
    [211]M. Aoki, K. Miwa, T. Noritake, G Kitahara, Y. Nakamori, S. Orimo and S. Towata. Destabilization of LiBH4 by mixing with UNH2. Applied Physics A-Materials Science & Processing,2005,80:1409-1412.
    [212]G. P. Meisner, M. L. Scullin, M. P. Balogh, F. E. Pinkerton and M. S. Meyer. Hydrogen release from mixtures of lithium borohydride and lithium amide:A phase diagram study. Journal of Physical Chemistry B,2006,110:4186-4192.
    [213]F. E. Pinkerton, M. S. Meyer, G. P. Meisner and M. P. Balogh. Improved hydrogen release from LiB0.33N0.67H2.67 with noble metal additions. Journal of Physical Chemistry B,2006, 110:7967-7974.
    [214]F. E. Pinkerton, M. S. Meyer, G. P. Meisner and M. P. Balogh. Improved hydrogen release from LiB0.33N0.67H2.67 with metal additives:Ni, Fe, and Zn. Journal of Alloys and Compounds,2007,433:282-291.
    [215]F. E. Pinkerton and M. S. Meyer. Hydrogen Desorption Behavior of Nickel-Chloride-Catalyzed Stoichiometric Li4BN3H10. Journal of Physical Chemistry C, 2009,113:11172-11176.
    [216]W. S. Tang, G. T. Wu, T. Liu, A. T. S. Wee, C. K. Yong, Z. T. Xiong, A. T. S. Hor and P. Chen. Cobalt-catalyzed hydrogen desorption from the LiNH2-LiBH4 system. Dalton Transactions,2008:2395-2399.
    [217]Y. F. Liu, K. Luo, Y. F. Zhou, M. X. Gao and H. G. Pan. Diffusion controlled hydrogen desorption reaction for the LiBH4/2LiNH2 system, Journal of Alloys and Compounds, 2009,481:472-479.
    [218]J. Graetz, S. Chaudhuri, T. T. Salguero, J. J. Vajo, M. S. Meyer, F E Pinkerton. Local bonding and atomic environments in Ni-catalyzed complex hydrides. Nanotechnology, 2009,20:204007-(1-8).
    [219]H. Wu, W. Zhou, K. Wang, T. J. Udovic, J. J. Rush, T. Yildirim, L. A. Bendersky, A. F. Gross, S. L. Van Atta, J. J. Vajo, F. E. Pinkerton and M. S. Meyer. Size effects on the hydrogen storage properties of nanoscaffolded Li3BN2H8. Nanotechnology,2009,20: 204002-(1-7).
    [220]A. Sudik, J. Yang, D. Halliday and C. Wolverton. Hydrogen Storage Properties in (LiNH2)2-LiBH4-(MgH2)x Mixtures (X=0.0-1.0). Jouranl of Physical Chemistry C,2008, 112:4384-4390.
    [221]A. Sudik, J. Yang, D. J. Siegel, C. Wolverton, R. O. Carter and A. R. Drews. Impact of Stoichiometry on the Hydrogen Storage Properties of LiNH2-LiBH4-MgH2 Ternary Composites. Jouranl of Physical Chemistry C,2009,113:2004-2013.
    [222]J. J. Hu, Y. F. Liu, G. T. Wu, Z. T. Xiong, Y. S. Chua and P. Chen. Improvement of Hydrogen Storage Properties of the Li-Mg-N-H System by Addition of LiBH4. Chemistry of Materials,2008,20:4398-4402.
    [223]J. J. Hu, M. Fichtner and P. Chen. Investigation on the Properties of the Mixture Consisting of Mg(NH2)2, LiH, and LiBH4 as a Hydrogen Storage Material. Chemistry of Materials,2008,20:7089-7094.
    [224]W. Oelerich, T. Klassen and R. Bormann. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. Journal of Alloys and Compounds,2001,315:237-242.
    [225]G. Barkhordarian, T. Klassen and R. Bormann. Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. Scripta Materrialia,2003,49:213-217.
    [226]X. B. Yu, D. M. Grant and G. S. Walker. Dehydrogenation of LiBH4 Destabilized with Various Oxides. Jouranl of Physical Chemistry C,2009,113:17945-17949.
    [227]A. J. Du, S. C. Smith, X. D. Yao, C. H. Sun, L. Li and G Q. Lu. The role of V2O5 on the dehydrogenation and hydrogenation in magnesium hydride:An ab initio study. Applied Physics Letters,2008,92:163106.
    [228]H. Hirate, H. Sawai, H. Yukawa and M. Morinaga. Role of O-H Bonding in Catalytic Activity of ND2O5 During the Course of Dehydrogenation of MgH2. International Journal of Quantum Chemistry,2011,111:2251-2257.
    [229]M. Somer. Vibrational Spectra and Force Constants of the Anion (BN2)3- in Li3BN2, Ca3B2N4 and Ba3B2N4. Zeitschrift fur Naturforschung B-A Journal of Chemical Sciences, 1991,46:1664-1668.
    [230]V. J. Goubeau and W. Anselment. Uber ternare Metall-Bornitride. Zeitschrift Fur Anorganische Und Allgemeine Chemie,1961,310:248-260.
    [231]Q. Xu and M. Chandra. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. Journal of Power Sources,2006,163: 364-370.
    [232]E. Lester, G Aksomaityte, J. Li, S. Gomez, J. Gonzalez-Gonzalez and M. Poliakoff. Controlled continuous hydrothermal synthesis of cobalt oxide (Co3O4) nanoparticles. Progress in Crystal Growth and Characterization of Materials,2012,58:3-13.
    [233]W. L. Roth. The magnetic structure of Co3O4. Journal of Physics and Chemistry of Solids, 1964,25:1-10.
    [234]M. M. Thackeray, S. D. Baker, K. T. Adendorff and J. B. Goodenough. Lithium insertion into Co3O4:A preliminary investigation. Solid State Ionics,1985,17:175-181.
    [235]D. Larcher, G Sudant, J.-B. Leriche, Y. Chabre and J.-M. Tarascon. The Electrochemical Reduction of Co3O4 in a Lithium Cell. Journal of the Electrochemical Society,2002,149: A234-A241.
    [236]M. C. Cabanas, G Binotto, D. Larcher, A. Lecup, V. Giordani and J. M. Tarascon. Defect chemistry and catalytic activity of nanosized Co3O4. Chemistry of Materials,2009,21: 1939-1947.
    [237]T. F. Hung, H. C. Kuo, C. W. Tsai, H. M. Chen, R. S. Liu, B. J. Weng and J. F. Lee. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride. Journal of Materials Chemistry,2011,21:11754-11759.
    [238]Y. Yamada, K. Yano, Q. Xu and S. Fukuzumi. Cu/Co3O4 Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis. Journal of Physical Chemistry C,2010,114:16456-16462.
    [239]Y. Zhang, Y. F. Liu, T. Liu, M. X. Gao and H. G Pan. Remarkable decrease in dehydrogenation temperature of Li-B-N-H hydrogen storage system with CoO additive. International Journal of Hydrogen Energy,2013,38:13318-13327.
    [240]J. Gu, M. X. Gao, H. G. Pan, Y. F. Liu, B. Li, Y. J. Yang, C. Liang, H. L. Fu and Z. X. Guo. Improved hydrogen storage performance of Ca(BH4)2:a synergetic effect of porous morphology and in situ formed TiO2. Energy & Environmental Science,2013,6:847-858.
    [241]J. J. Vajo, S. L. Skeith, F. Mertens and S. W. Jorgensen. Hydrogen-generating solid-state hydride/hydroxide reactions. Journal of Alloys and Compounds,2005,390:55-61.
    [242]Q. Xu, R. Wang, T. Kiyobajashi, N. Kuriyama and T. Kobayashi. Rection of hydrogen with sodium oxide:A reversible hydrogenation/dehydrogenation system. Journal of Power Sources,2006,155:167-171.
    [243]C. Liang, Y. F. Liu, Z. J. Wei, Y. Jiang, F. Wu, M. X. Gao and H. G Pan. Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2-2LiH system with NaOH additive. International Journal of Hydrogen Energy,2011:2137-2144.