高效脱硫剂制备原理与技术开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综合治理SO_2的污染问题具有十分重要的意义。本文在快速水合脱硫剂的基础上,本着提高脱硫剂的固硫反应速度和粉煤灰对含钙细颗粒担载效果的目的,研究了快速水合脱硫剂的制备过程,并在此基础上提出了改进的脱硫剂制备方法,同时研究了石灰块制备浆液的输送过程。
     石灰块的水合过程是决定脱硫剂在短时间内达到较高钙利用率的关键过程,其决定因素是Ca(OH)_2在水溶液中的粒径分布。为了实现Ca(OH)_2颗粒在水溶液中的细粉化,本文研究了不同水合制备条件下浆液中Ca(OH)_2的粒径分布规律,包括改变原料石灰产地、原料石灰尺寸和液固质量百分比,发现Ca(OH)_2在水溶液中发生严重的团聚现象。本文同时讨论了添加分散剂对浆液中Ca(OH)_2粒径分布的影响,研究结果表明六偏磷酸钠对减轻团聚有一定的作用。
     另外,本文利用中试规模的浆液制备与输送系统,开展了石灰块水合制备的新式脱硫剂浆液和工业上采用的建材粉脱硫剂浆液的输送特性研究。研究结果表明,新式脱硫剂浆液的粒径小于工业脱硫剂浆液的粒径,不同的取样位置和输送速度对两种浆液的粒径分布基本没有影响。在相同的浓度下,新式脱硫剂浆液的阻力与工业脱硫剂相当,新式脱硫剂浆液放置100小时后,尽管其输送阻力增大,但仍能正常运行。
     增强粉煤灰对含钙细颗粒的担载能力,减轻脱硫剂的磨耗剥落是提高快速水合脱硫剂在循环流化床中钙利用率的有效措施。本文利用振筛方法研究了不同粉煤灰粒径和粉煤灰改性方法对粉煤灰担载效果的影响。研究结果表明,粉煤灰的粒径越大,其担载效果越好,所制备脱硫剂经过振筛实验后仍能保持较高的固硫能力。通过火法、碱法和酸法改变粉煤灰的表面形态后,所制备脱硫剂的担载能力增强,并且脱硫剂振筛前后的固硫能力比原始粉煤灰脱硫剂有所提高。通过表面阳离子活性剂改变粉煤灰的表面电位后,未能增强粉煤灰对含钙细颗粒的担载能力,且所制得脱硫剂的固硫能力有所下降。
It is very important to control SO_2 pollution in China. In order to improve the sorbent activity and the adhesion between the fine Ca(OH)_2 particles and the fly ash particles, the sorbent preparation process was investigated for rapidly hydrated sorbent. The preparation mechanism was analyzed and the improved preparation method was proposed. In addition, the transportation process of a new sorbent slurry made by lime was investigated.
     As for rapidly hydrated sorbent, the key point of realizing high desulfurization efficiency in short time is the lime hydration process, which is determined seriously by the Ca(OH)_2 particle size distribution in the sorbent slurry. To improve the Ca(OH)_2 particle distribution with reduced particle size in water, various preparation parameters were investigated, including the lime composition, lime size and the liquid-solid ratio. The results show that Ca(OH)_2 particles agglomerate in water. Furthermore, the effect of dispersant on the Ca(OH)_2 particle size in water was investigated. The results show that sodium hexametaphosphate can reduce Ca(OH)_2 agglomeration in water.
     The particle size distributions and transportation characteristic of the new sorbent slurry made by lime and industrial sorbent slurry have been studied in a pilot-scale slurry preparation and transportation system. The results show that the particle size of the new sorbent was smaller than that of industrial sorbent. Transportation velocity and different measurement positions had little effects on the particle size distribution of both sorbent slurries. The transportation resistance of the new sorbent slurry was almost equivalent with the industrial sorbent slurry for the same slurry concentration. After the new sorbent was kept static for 100 hours, the slurry can still be successfully transportation although the transportation resistance increased.
     It is an effective method to improve the calcium utility of rapidly hydrated sorbent in circulating fluidized beds by enhancing the adhesion between the fine Ca(OH)_2 particles and the fly ash particles and reducing the attrition rate of the sorbent. Vairous fly ash particle sizes and modification methods were investigated to enhance the ability of fly ash carrying fine particle by sieving experiment.
     The results show that a bigger particle size of calcium sorbent had a lower attrition rate and remained high sulfur dioxide removal ability after sieving experiment. Fly ash modified through fire, alkali and acid methods changed the fly ash surface morphology and the sorbent prepared by these modified fly ash had lower attrition rate and higher sulfur dioxide removal ability than the original fly ash. However, fly ash modified through cationic surfactants to change its surface electric properties had no effect on the adhesion ability between the fine Ca(OH)_2 particles and the fly ash particles while the sulfur dioxide removal ability of sorbent made from this modified fly ash sorbent greatly reduced.
引文
[1]毛健雄,毛健全,赵树民,等.煤的清洁燃烧.北京:科学出版社, 1998, 1~4.
    [2]中国电力企业联合会. 2007年中国电力工业统计快报, 2008.
    [3]中国经济信息网. 2007年中国煤炭行业年度报告, 2008.
    [4]国家环境保护总局.中国环境统计公报, 2006.
    [5]郝吉明.燃煤二氧化硫污染控制技术手册.北京:化学工业出版社, 2001.
    [6]管一明,李仁刚.湿式石灰石烟气脱硫工艺现状和发展.电力环境保护, 1999, 15(2): 53-58.
    [7]曾汉才.我国燃煤电厂的烟气脱硫问题.电站系统工程, 1994, 10(5): 27-32.
    [8]尚洪山.价廉、易得、可弃置/可循环体系用于低中温干法烟道气脱硫的研究[博士学位论文].北京:北京大学化学与分子工程学院, 2002.
    [9]肖文德,吴志泉.二氧化硫脱除与回收.北京:化学工业出版社, 2001, 72-184.
    [10] Agnihotri R, Chauk S S, Mahuli S K, et al. Sorbent/ash reactivation for enhanced SO2 capture using a novel carbonation technique. Ind. Eng. Chem. Res., 1999, 38(3): 812-819.
    [11] Jozewicz W, Chang C S, Brna T G, et al. Reaction of solids from furnace injection of limestone for SO2 control. Environ.Sci.Technol., 1987, 21(7): 664-670.
    [12] Taylor H F W. The chemistry of cement. Academic Press: London, 1964.
    [13] Tsuchiai H, Ishizuka T, Ueno T, et al, Highly active absorbent for SO2 removal prepared from coal fly ash. Ind. Eng. Chem. Res., 1995, 34(4):1404-1411.
    [14] Tsuchiai H, Ishizuka T. Study of flue desulfurization absorbent prepared from coal fly ash: effects of the compositionof the absorbent on the activity. Ind. Eng. Chem Res. 1996, 35(4): 2322-2326.
    [15]马双忱,赵毅.新型脱硫剂在燃媒电厂烟气治理中的研究与开发,环境保护, 2001, 2:44-46.
    [16] Juan C. Matinez T, et al.Reaction of fly ash and Ca(OH)2 mixtures for SO2 removal of flue gas. Ind. Eng. Chem. Res., 1991, 30(9): 2143-2147.
    [17] Davini P. Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems. Fuel, 1996, 75(6): 713-716.
    [18] Ueno T. Process for preparing desulfurization and denitrating agents. U. S. Patent No. 4629721, Dec. 16, 1986.
    [19] Peterson J R, Rochelle G T. Aquous reaction of fly ash and Ca(OH)2 to produce calcium silicate absorbents for flue gas desulfurization. Environ. Sci. Technol. 1988, 22(11): 1299-1304.
    [20] Claus L B. Legislation for the management of coal-use residues.Technical report No.IEACR/68.London:IEA Coal Research,1994:20-21.
    [21] Kind K K, Wasserman P D, Rochelle G T. Effects of salts on preparation and use of calcium silicates for flue gas desulfurization. Environ. Sci. Technol. 1994, 28(2): 277-283.
    [22] Al-Shawabkeh A, Matsuda H. Comparative reactivity of treated FBC- and PCC-fly ash for SO2 removal. Canadian Journal of Chemical Engineering, 1995, 73: 678-685.
    [23]侯波.中温干法烟气脱硫过程实验研究[博士学位论文].北京:清华大学热能工程系, 2004.
    [24]侯波,祁海鹰,由长福,等.用于中温烟气脱硫的新型钙基脱硫剂.工程热物理学报, 2004, 25(1): 159-162.
    [25] Hou B, Qi H Y, You C F, et al. Dry desulfurization in a circulating fluidized bed (CFB) with chain reactions at moderate temperatures. Energy & Fuels, 2005, 19(1): 73-78.
    [26]侯波,祁海鹰,由长福,等.燃煤烟气中的CO2和NO对中温烟气脱硫的作用.工程热物理学报, 2004, 25(6): 1061-1064.
    [27] Tadres T F. Advances in colloid and interface science, 1993, (46):1.
    [28]卢寿慈.工业悬浮液——性能,调制及加工.北京:化学工业出版社, 2003.
    [29]吴幼权.粉煤灰改性及其吸附性能研究[硕士学位论文].重庆:重庆大学环境科学系, 2006.
    [30]于立竟.粉煤灰的火法改性及其在废水处理中的应用.矿物岩石地球化学通报, 2006, (04): 343-347.
    [31]李方文,魏先勋,马淞江,等.粉煤灰改性吸附材料的研究.重庆环境科学, 2003, 25(6): 25-28.
    [32]彭敏.粉煤灰的形貌、组成分析及其应用[硕士学位论文].湘潭:湘潭大学化学学院, 2004.
    [33]相会强,杨宏,巩有奎,等.改性粉煤灰去除磷酸盐的试验研究及机理分析.环境科学与技术, 2005, (5): 18-20.
    [34]王艳磊,李坚,冀宏,等.粉煤灰改性及制作NOx复合吸附剂的探讨.煤炭学报, 2007(4): 437-440.
    [35]李晔.粉煤灰各组分絮凝性——酸碱处理对絮凝性的影响及其影响机理的研究[硕士学位论文].郑州:郑州大学材料系, 2006.
    [36]曹先艳. PDMDAAC改性粉煤灰及其性能和应用研究[硕士学位论文].济南:山东大学环境工程, 2005.
    [37]田英姿,陈克复,张恒. Malvern粒度仪的使用和测试分析.中国造纸, 2003, (12): 33-35.
    [38]郝爱民,李新生.钙基吸收剂的表面特性对脱除SO2的影响.煤炭转化, 1996, 19(3): 91-95.
    [39] Li Y. Study on the formation of CaSO4 in dry flue gas desulfurization process [Dissertation]. Tokyo: University of Tokyo, Japan, 1999.
    [40]薛健,高翔.石灰干式消化过程参数对消化产物特性影响的实验研究,能源工程, 2006, (4): 44-48.
    [41] Zhang J, Zhao S W, You C F, et al. Rapid hydration preparation of calcium-based sorbent made from lime and fly ash. Ind. Eng. Chem. Res. 2007, 46(16): 5340-5345.
    [42]刘洪涛,葛世荣,朱华.微粒团聚的尺度效应及其分形表征.润滑与密封, 2006, (12): 1-4.
    [43]李葵英.界面与胶体的物理化学.哈尔滨:哈尔滨工业大学出版社, 1998, 183-197.
    [44]黄浪欢,曾令可,罗民华.湿化学方法制备纳米粉体时团聚现象的探讨.佛山陶瓷, 2001,(10): 11-13.
    [45]丁中建,沈玲.超细粒子在干湿状态下的团聚机理.滁州师专学报, 2003, (03): 88-90.
    [46]任俊,卢寿慈.超细粉体在液相中的分散.中国粉体工业, 2006/05:13-17.
    [47]顾峰,沈悦,徐超,等.分散剂聚合度对纳米氧化铝粉体特性的影响.功能材料, 2005,(02): 318-320.
    [48]李超,杜建华,韩文政.聚乙二醇对纳米SiO2水悬浮液分散稳定性的影响.装甲兵工程学院学报, 2007, (3): 74-77.
    [49]周琦,邵忠宝,贺春林,等.表面活性剂对镍-磷-纳米氧化铝复合镀的影响.中国腐蚀与防护学报, 2007, (01): 27-30.
    [50]陈涛,李珍.电气石湿法超细粉碎及分散机理研究.非金属矿,2005,(06):40-42.
    [51] Juan A, Vanessa F, Francisco G, et al. Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers. Fuel,1997,76(3):257-265.
    [52]楼宏铭,邱学青,欧阳新平,等.马尾松木素磺酸钠分散、阻垢、缓蚀性能的研究.精细化工, 2001, (10): 588-591.
    [53]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社, 2005.
    [54]夏启斌,李忠,邱显扬,等.六偏磷酸钠对蛇纹石的分散机理研究.矿冶工程, 2002, (02): 51-55.
    [55]李奠础,王娟丽,马建杰,等.六偏磷酸钠对陶瓷釉料中纳米ZnO分散性的影响.现代化工, 2006, (S2): 226-229.
    [56] Zhang J, You C F, Chen C H, et al. Effect of near-wall air curtain on the wall deposition of droplets in a semidry flue gas desulfurization reactor. Environ. Sci. Technol. 2007, 41(12): 4415-4421.
    [57] Wang L, Song Y B, Zhang M C, et al. Modeling study on the impaction and humidification process in desulfurization activation reactor. Chemical Engineering Science, 2005, 60: 951-962.
    [58] Yang H M, Kim S S. Experimental study on the spray characteristics in the spray drying absorber. Environ. Sci. Technol, 2000, 34(21): 4582-4586.
    [59]王乃华,骆仲泱,岑可法.半干法烟气脱硫喷嘴的雾化特性研究.燃料化学学报, 2003, 31(4): 333-336.
    [60]张丽,王建宝,刘义云. CO2活化的石灰石浆液在流化床烟气脱硫中的应用.中国电力, 2007, (01): 80-83.
    [61]谢权云,曾庭华.沙角C电厂660MW机组烟气脱硫系统及其运行分析.电力设备, 2006, (08):234-238.
    [62] Crowe C, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles. Boca Raton: CRC Press,1998.
    [63]白晓宁,胡寿根.浆体管道的阻力特性及其影响因素分析.流体机械, 2000, (11): 26-29.
    [64]孙珑.工程流体力学.北京:中国电力出版社, 2001.
    [65] Matsuoka K, Abe A, Tomita A. Suppression of SO2 emission during coal oxidiation with calcium loaded by hydrothermal or hydration treatment. Energy & Fuels, 2001, (15): 648-652.
    [66] Sadakata M, Li Y. Research Report. The University of Tokyo, 2000.
    [67] Hartman M, Svoboda K, Trnka O, et al., Sulfation of calcium hydroxide and simulation of sulfur dioxide removal in a trandport-line reactor with recirculation. Ind. Eng. Chem. Process Des. Dev. 1983, 22(4): 598-604.
    [68]刘希尧.工业催化剂分析测试表征.北京:烃加工工业出版社, 1990: 21.
    [69]杨海瑞.循环流化床锅炉物料平衡研究[博士学位论文].北京:清华大学热能工程系, 2003.
    [70]吕俊复,杨海瑞,张建胜,等.一种研究飞灰粒径分布和磨耗的简单方法.燃烧科学与技术, 2003, 9(5): 387-390.
    [71]陈新坤.电感耦合等离子光谱法原理与应用.天津:南开大学出版社, 1987.
    [72]李余增.热分析.北京:清华大学出版社, 1987.
    [73]陈镜泓,李传儒.热分析及其应用.北京:科学出版社, 1985.
    [74]樊保国.第四个温度窗口——中温干法烟气脱硫研究[博士学位论文].北京:清华大学热能工程系, 2002.
    [75] Zhang J, You C F, Zhao S W, et al. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization. Environ. Sci. Technol., 2008, 42(5): 1705-1710.
    [76] Chu C Y, Hsueh K W, Hwang S J. Sulfation and attrition of calcium sorbent in a bubbling fluidized bed. Journal of Hazardous Materials, 2000, 80(1-3): 119-133.
    [77]王小高,冯有利,何德海.改性粉煤灰在废水处理中的应用.桂林工学院学报, 2007, 27(2): 245-248.
    [78]滕宗焕,陈建中.改性粉煤灰的吸附机理及其在废水处理中的应用.西南给排水, 2007, 29(4): 23-27.
    [79]杨林锋,翟建平,郑波,等.酸改性粉煤灰去除污水中磷的实验研究.粉煤灰综合利用, 2006, 3: 18-20.
    [80]张信,岳钦艳,张金智.改性粉煤灰去除水中磷及吸附机理研究,粉煤灰综合利2007, 4: 44-48.
    [81]张奇.新型中温烟气脱硫剂制备工业研究[学士学位论文].北京:清华大学热能工程系, 2002.
    [82] Cao X Y, Yue Q Y, Song L Y, et al. The performance and application of fly ash modified by PDMDAAC, Journal of Hazardous Materials, 2007,147(1-2):133-138.