EDTAD-磁性酵母菌的制备、表征以及对Ca~(2+)、Cd~(2+)、Pb~(2+)废水和亚甲基蓝废水的处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电镀、印染、机电等工业的迅速发展,大量重金属废水和染料废水排放到环境中,引起了严重的水资源污染,危害到环境生物和人类的健康。所以开展环境废水处理技术的研究迫在眉睫,这对于人类和环境生物的健康以及电镀、印染、机电等工业的快速、友好发展具有举足轻重的作用。目前,单一技术的处理方法普遍存在处理效率低、费用高、二次污染等问题。针对以上问题,以廉价的生物材料为基础,利用高效的化学修饰手段,结合特殊磁性的纳米材料为研究对象来处理重金属废水和染料废水已成为水处理研究的热点。
     本研究以面包酵母菌为研究材料,在戊二醛的交联下将纳米Fe304负载到面包酵母表面,制备出磁性酵母菌(FB),然后在无水环境下利用EDTAD对EF进行了成功修饰,制备出EDTAD-磁性酵母菌(EFB)。然后利用FB和EFB材料对重金属废水(Pb2+、Cd2+和Ca2+)和染料(亚甲基蓝)废水进行了处理。探讨了溶液pH值、金属离子/染料起始浓度、处理时间、处理温度等对两种吸附剂吸附能力的影响。
     通过对含Pb2+、Cd2+和Ca2+废水的处理,结果显示EFB对三种金属离子的吸附量明显高于FB,且EFB对三种金属离子的吸附量随着pH值的增加而逐渐增加,吸附过程符合假二级吸附模型和Langmuira等温吸附方程,且在30℃,pH6时对Pb2+(pH5.5)、Cd2+和Ca2+三种金属离子分别有最大吸附量为99.26,48.70和33.46mg/g,共存离子实验显示EFB对金属离子的结合能力如下:Na+,K+     利用扫描电子显微镜(SEM)、X射线衍射(XRD)、Zeta电位、红外光谱(IR)、表面滴定、磁响应分析等对FB和EFB及吸附后的材料进行了表征。结果显示制备的材料表面粗糙,纳米Fe3O4负载到酵母菌表面,且磁响应灵敏;EDTAD修饰后EFB表面氨基或羧基数量增加,且增加的基团在吸附重金属离子和染料分子时有重要作用。
With the striking development of some industries in our country such as steel production, electroplateing, dyeing and printing industry etc., there exists a severe water resource crisis due to a large amount of water contaminated by heavy metals and dye. metals. The heavy metals and dye contained in waste water not only causes the harm of health for environmental biological but also influences the survival of human. Therefore, the research on disposing heavy metal ions and dye molecules in waster water has quite practical application significance for resolving the water resource crisis and promoting the intensive development of industry, such as leather tanning, mining, smelting, electroplating, etc. The conventional processes were sometimes restricted by the technique, economy and secondary pollution. Recently, the utilization of biomass and agricultural waste materials for the research object, chemically modifield, special properties nanometer materials to removal heavy metal ions and dye molecules has been research hotspot.
     In the experiment the magnetic Fe3O4 baker's yeast biomass (FB) was prepared by combining baker'syeast biomass and nano-Fe3O4 using glutaraldehyde as a cross-link agent, and was chemically treated with ethylene-diaminetetraacetic dianhydride(EDTAD). The magnetic Fe3O4 baker's yeast biomass (FB) and EDTAD-magnetic Fe3O4 baker's yeast biomass(EFB) were utilized as biosorbents to adsorb heavy metal ions(Ca2+, Cd2+, Pb2+) and dye molecules in the aqueous solution. All the effect condition on adsorption, such as pH value, contact time, initial concentration of heavy metal ions(Ca2+, Cd2+, Pb2+) and dye molecules, coexisting ions, temperature and ehtion experiment were discussed.
     The adsorption properties of EFB for Pb2+, Cd2+, and Ca2+ions were evaluated. The results showed that the uptakes of EFB for the three metal ions were higher than that of FB, and the adsorption capability of Pb2+, Cd2+, andCa2+ions increased with an increase in pH. The adsorption process was followed by the pseudo-second-order kinetic model and Langmuir isotherm equation. The maximum adsorption capacities of 99.26mg/g for Pb2+ at pH5.5,48.70mg/g for Cd2+ at pH6.0, and 33.46mg/g for Ca2+at pH6.0 were observed at 30℃. The coexisting ions experiments were indicate that the EFB combined with metal ions followed the order:Na+, K+< Mg2+< Ca2+<     The FB and EFB were investigated by IR, SEM, XRD, Zeta potential, potentiometric titration and magnetic response analysis. The results revealed that the FB and EFB possessed not only a favorable superparamagnetism, but also those surface were tough. The number of carboxyl and amino groups which were magnificent relevant to the three metal ions and dye molecules on surface of EFB was increased by chemically treated with EDTAD.
引文
[1]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2001
    [2]王钌文,姜风有.重金属废水治理技术[M].北京:冶金工业出版社,1993
    [3]Srivastava N K, Majumder C B. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater[J]. J. Hazard. Mater,2008,151:1-8
    [4]贾燕,汪洋.重金属废水处理技术的概况及前景展望[J].中国西部科技,2007,4:10-14
    [5]肖锦华.中国城市土壤重金属污染研究进展及治理对策[J].环境科学与管理,2009,4(34):25-28
    [6]戴树桂,岳贵春,于晓蓉等.环境化学[M].北京:高等教育出版杜,1997.
    [7]Luoma S N. Can we determine the biological availability of sedimentbound trace elements?[J]. Hydrobiologia.1989,176/177:379—396.
    [8]Florence T M. Trace element tvpeclation and aquatic mxicolngy[J]. Trends in Anal. Chem.1983,2:162—166.
    [9]Khezami L, Capart R. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies[J]. J. Hazard. Mater.2005,123:223-231.
    [10]Paulino A T, Minasse F A S, Guilherme M R, Reis A V, Muniz E C, Nozaki J. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters[J]. J. Colloid Interface Sci.2006,301:479-487.
    [11]Oyaro N, Juddy O, Murago E N M., Gitonga E. The contents of Pb, Cu, Zn and Cd in meat in[J]. Food Agric. Environ.2007.5:119-121.
    [12]Shpiner R, Vathi S, Stuckey D C. Treatment of oil well "produced water" by waste stabilization ponds:Removal of heavy metals[J]. Water research.2009,43:4258-4268.
    [13]Nanseu-Njiki C P, Tchamango S R, Ngom P C, Darchen A, Ngameni E. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes[J]. J. Hazard. Mater. 2009.168:1430-1436.
    [14]Ku Y, Jung I L. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Res.2001,35:135-142.
    [15]Mirbagheri S A, Hosseini S N. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse[J]. Desalination,2005,171:85-93.
    [16]Charerntanyarak L. Heavy metals removal by chemical coagulation and precipitation[J]. Wat. Sci. Technol.1999,39:135-138.
    [17]Ozverdi, A, Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. J. Hazard. Mater.2006,13:626-632.
    [18]Helena Montid, Joan A, VilehezJoaquim. Casal. Mathematieal modeling of accidental gas releasei[J]. J. Hazard. Mater.1998,(59):121-133.
    [19]牛晓霞.含铬废水的处理方法综述[J].洛阳大学学报,1999,14(4):39-43.
    [20]Matlock M M, Howerton B S, Aelstyn M A V, Nordstrom F L, Atwood D A. Advanced mercury removal from gold leachate solutions prior to gold and silver extraction:a field study from an active gold mine in Peru[J]. Environ. Sci. Technol.2002,(b)6:1636-1639.
    [21]Chang Y K, Chang J E, Lin T T, Hsu Y M. Integrated copper-containing wastewater treatment using xanthate process[J]. J. Hazard. Mater.2002,94:89-99.
    [22]余守慧,梁唬琪.用十六烷基三甲基卤化按处理含铬废水[J].水处理技术,1982(3):47-49
    [23]Gabriela Huarn, On Pino, Lueiana Maria, Souzade Mesquim, Manrieio Leonardo Torero,et al. Biosorption of cadmium by green coconut shell powder[J]. Minerals Engineering 2006,19(5):380-387.
    [24]叶锦韶,尹华,澎辉.柱生物曝气法吸附处理含铬废水[J].环境污染治理技术与设备,2006,7(1):102-105.
    [25]罗道成,易平贵,刘俊峰.改性壳聚糖对电镀废水中重金属离子的吸附[J].材料保护,2002,35(1):11-12.
    [26]王骋,姚秉华,谢伟.重金属镉离子的支撑液膜分离研究[J].水处理技,2004,30(5):266-269.
    [27]Chaudhari S, Tsre V. Analysis and Evaluation of Heavy Metal Uptake and Release by Insoluble Starch Xanthate in aqueous Environment[J]. Water Sciece.Technoigy,1996,34(10):161-168
    [28]朱一民,千忠安,苏秀娟,等.钙基膨润十对水相中铜离子的吸附.[J]东北人学学报(自然科学版),2006,27(1):99-102
    [29]Klabunde K.J.纳米材料化学[M].北京:化学工业出版社,2004
    [30]Shu Huei Hsieh, Jao-Jia Horng. Adsorption behavior of heavy metal ions by carbon nanotubes grown on microsized Al2O3 particle[J]. Journal of University of Science and Technology Bejing,2007, 14(1):77—84
    [31]Sunbaek Bang, Manish Patel, Lee Lippincott, Xiaoguang Meng. Removal of arsenic from groundwater by granular titanium dioxide adsorbent[J]. Chemosphere 2005,60:389-397
    [32]陆超华,谢文造.近江牡蛎作为海洋重金属Cu污染监测生物的研究棚[J].海洋环境科学,1998,17(2):17-23.
    [33]Salt D E, Blaylock M, Kumar N P B A, et al. Photoremediation:a novel strategy for the removal of toxic metal from the environment using plants[J]. Biotechnilogy,1995,13:468-474
    [34]浩云涛,李建宏,潘欣.椭圆小球藻(Chlorellaellipsoidea)对4种重金属的耐受性及集[J].湖泊科学,2001,13(2):158—162
    [35]张志杰,王志盈.凤眼莲对铅,锡废水净化能力的研究[J].环境科学,1989,10(5):14-17
    [36]周风帆,王新光.利用风眼莲(EichhomiaerassipesSom is)净化水中放射性核素60钴、65锌和137铯的研究[J].中国环境科学,1989,9(1):26--30
    [37]刘萍,曾光明,黄瑾辉等.生物吸附在含重金属废水处理中的研究进展[J].工业用水与废水,2004,35(5):1--5
    [38]邱延省,唐海峰.生物吸附法处理重金属废水的研究现状及发展[J].南方冶金学院学报,2003,24(4):65—69
    [39]Roig M G. Biochemical process for the removal of uranium from acid mine drainages[J]. Water Res.1997,31(8):2073-2083
    [40]Williams C J, Aderhold D, Edyvean R G. Comparison between biosorbent for the removal of metal ions from aqueous solution[J]. Water Res,1998,32(1):216-224
    [41]Duygu H O, Halil K, Basudeb S, et al. Use of Rhizopus oligosporus produced from food processing wastewater as a biosorbent for Cu(Ⅱ)ions removal from the aqueous solutions[J]. Bioresource Technology,2007,10,24:1-6
    [42]王亚雄,郭瑾珑,刘瑞霞.微生物吸附剂对重金属的吸附特性[J].环境科学,2001,22(6):72-75
    [43]化工百科全书编辑部.化工百科全书[M].北京:化学工业出版社.1997.
    [44]李家珍.染料,染色工业废水处理[M].北京:化学工业出版社.1997.
    [45]Ogawa T et al. The respiratory inhibition of activated sludge by dyes[J]. J.Soc.Fiber Sci. Techno l.Jpn,1978,34:175-180
    [46]Hu T L. Kinetic of azoreductase and assessntnt of toxicity of metabolic products from azo dyes by Pseudomonas luteola[J]. Water Sci Technol 2001;43(2):261-269
    [47]余瑞兰,郭叶华.化工废水非挥发性有机污染物致突变性的研究[J].癌变.畸变.突变.1995(7):3,176-179
    [48]曲克明,陈民山,马绍赛,辛福言.3种工业废水对牙鲆胚胎的毒性效应[J].中国水产科学.2003(10):2,155—159
    [49]Anliker R. Colorchemistryandthe environment[J]. EcotoxicoLEnviron. Saf.1997,1:211-237
    [50]Zhu Qirang. Chemical pollution and transport of organic dyes in water soil-orop systems of the Chinese coast[J]. Bulletin of Environmental Contamination and Toxicology,2001,66(6):784-793
    [51]李绍锋,张秀忠,张德明,等.Fenton试剂氧化降解活性染料的试验研究[J].给水排水,2002,28(3):46-49
    [52]谭湘萍.载银Ti02半导体催化剂对印染废水的光降解研究[J].环境污染与防治,1994,16(5):5-7.
    [53]程沧沧,胡俊文.Ti02.Fe3+体系降解耐酸大红染料的研究[J].环境污染与防治,1998,20(4):17-19
    [54]胡文荣等.超声波臭氧氧化偶氮染料的脱色效能[J].中国给水排水,1999.15(11).1
    [55]李海英,石宝龙,柳荣展.染料废水闪电解脱色效率与染料结构的关系[J].青岛大学学报,1999,14(1):21-25
    [56]许海梁,杨卫身,周集体等.偶氮染料废水的电解处理[J].化工环保,1999,19(1):32-356.
    [57]Saito T, et al. Adsorp tion of Dyes by. Activated Carbon (SMAC[J]). Mizu Gijutsu,1988 29
    (2)55-87[58]马志毅,张国洪.处理印染废水专用活性炭的研究[J].环境科学学报,1997,17(3).328-333
    [59]陈欣志.离子纤维用于阳离子印染废水脱色处理技术[J].工业水处理,1989.4.27
    [60]S Karcher, A Kommuller,M Jekel. Removal of Reactive Dyes by Sorption/Complexion with Cucurbituril[J]. W at Sci Tech,1999.40 (4-5):425-433
    [61]彭书传.硅藻土复合净水剂处理印染废水[J].环境科学与技术,1998.(1).24-28
    [62]郭丽.用活化煤处理印染废水[J].环境工程学报,1992.1(4).7-13
    [63]吴云海,冯仕训,李斌,米娴妙,徐洁.废弃啤酒酵母吸附水中酸性湖蓝A的实验研究[J].环境工程学报,2010.8(4)1805-1810
    [64]刘金芝,贾兴涛,王慧,盛睿,康琪.花生壳活性炭对溶液中亚甲基蓝和亮绿的吸附[J].常熟理工学院学报,2010.2(24)45-47.
    [65]黄泱,林永兴.茶叶资源化你用及对染料废水的去除[J].漳州师范学院学报,2010,2,102-106
    [66]黄淑惠.吸附金(Au3+)的真菌筛选[J].微生物学通报,1991,18:11-14
    [67]Hosea M, Greene B, MePherson R, Henzl M, Alexander M D, Damall D w. Accumulation of elemental gold on the alga Chtorella vulgaris[J], lnorganiea ChemieaActa,1986,123(3):161-165
    [68]Wang Jianlong. Biosorption of coppe(II)by chemically modified biomass of saccharomyce Cerevisiae[J]. Process Biochemisty,2002.37(8):847-850
    [69]张云松,王仁国,陈沿利,等.乙醇、氢氧化钠预处理面包酵母凶吸附Cu2+性能的影响[J].环境化学,2008,27(2):206--209
    [70]E Forgacs, T Cserhatia, G Oros. Removal of synthetic dyes from waste waters:a review[J]. Environ. Int.30 (2004) 953-971.
    [71]Z. Aksu. Reactive dye bioaccumulation by Saccharomyces cerevisiae[J]. Process Biochem. (2003) 1437-1444.
    [72]Waihung Lo, Hong Chua,Kim-hung Lam, et al. A comparative investigation on the biosorption of lead by filamentous fung biomass[J]. Chemosphere,1999,39(15):2723-2736
    [73]Ping Xinsheng, Yen Pengting, J Paul Chert,et al. Sorption of lead, copper, cadmium, zine and nickel by marine algal biomass:characterization of biosorption capacity and investigation of mechanism[J]. Journal of colloidal and interface scienee.2004,275(1):131-141
    [74]S.markai, Y Andres, G Montaavon,et al. Study of the interaction between Europium(III) and Bacillus subtilis:fixation sites, biosorption modeling and reversibility[J]. Journal of Colloidal and Interface Science,2003,262(2):351-361
    [75]J L Wang, Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae[J], Process Biochem.37 (2002) 847-850.
    [76]R Han, H Li, Y Li, J Zhang, H Xiao, J Shi, Biosorption of copper and lead ions by waste beer yeast[J], J Hazard Mater. B137 (2006) 1569-1576.
    [77]Y S Zhang, W G Liu, M Xu, F Zheng, M.J Zhao. Study of the mechanisms of Cu2+biosorption by ethanol/caustic-pretreated baker's yeast biomass [J]. J. Hazard. Mater.178 (2010) 1085-1093.
    [78]I. Safarik, L. Ptackova, M. Safarikova, Adsorption of dyeson magnetically labeled baker's yeast cells[J], Eur Cells Mater.3 (2002) 52-55.
    [79]Junxia Yu, Mi Tong, Xiaomei Sun, Buhai Li. A simple method to prepare poly (amic acid)-modified biomass for enhancement of lead and cadmium adsorption[J]. Biochemical Engineering Journal 33 (2007) 126-133
    [80]Yu Tian, Chuyi Ji, Maojun Zhao, Meng Xu, Yunsong Zhang, Renguo Wang. Preparation and characterization of baker's yeast modified by nano-Fe3O4:Application of biosorption of methyl violet in aqueous solution[J]. Chem. Eng. J.165 (2010)474-481 (IF:2.87)
    [81]S.G. Wang, Y.H. Li, X.Y. Gong, Z. Luan, C. Xu, Surface characteristics of modified carbon nanotubes and its application in lead adsorption from aqueous solution[J]. Chin. Sci. Bull,48 (2003) 441-443
    [82]J.Y. Wei, Y.J. Zhang, F. Tan, H.L. Liu, J.L. Wang, Y. Cai, X.H. Qian, A novel Desalting method on target for MALDI-TOF-MS analysis based on Fe304/TiO2nanoparticles[J]. Chin J Anal Chem,35 (2007)1-7.
    [83]秦圣英.EDTA二酐及其衍生物,化学研究与应用[J].1993,5(4):1-13
    [84]王晓斌,黄国林.纳米Fe3O4颗粒的制备及应用[J],化工时刊.2010,9(24):38-43
    [85]J X Yu, M Tong, X M Sun, B H Li, Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast[J]. Bioresour.Technol.99 (2008) 2588-2593
    [86]B.F.Turner, J.B.Fein, Protofit:a program for determining surface protonation constants from titration data[J]. Comput.Geosci.32(2006)1344-1356.
    [87]王仁国等.无机及分析化学[M],北京:中国农业出版社,2006
    [88]P X Sheng, Y P Ting, J P Chen, L Hong. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass:characterization of biosorptive capacity and investigation of mechanisms [J]. J.Colloid Inter face Sci.275 (2004):131-141.
    [89]H Bessbousse, T Rhlaloub, J F.Verchere, L Lebruna. Mercury removal from wastewater using apoly(vinylalcohol)/poly(vinylimidazole) complexing membrane[J]. Chem.Eng.J.164 (2010):37-48.
    [90]P A Marques, H M Pinheiro, J A Teixeira, M F Rosa, Removal efficiency of Cu2+, Cd2+, Pb2+ by waste brewery biomass:pH and cation association effects[J]. Desalination 124(1999)137-144.
    [91]Y Goksungur, S uren, U Guvenc. Biosorption of cadmium and lead ions by ethanol treated waste baker's yeast biomass[J]. Bioresour.Technol.96(2005) 103-109.
    [92]J X Yu, M Tong, X M Sun, B H Li. Cystine-modified biomassfor Cd(Ⅱ) and Pb(Ⅱ) biosorption[J]. J.Hazard.Mater.143(2007)277-284.
    [93]S Veli, B Pekey. Removal of copper from aqueous solution by ion exchange resins[J]. Fresenius Environ.Bull.13(2004)244-250.
    [94]Y S Ho, G McKay. Pseudo-second order model for sorption processes[J]. Process Biochem. 34(1999)451-465.
    [95]R Nadeem, M.H.Nasir, M.S.Hanif,Pb(Ⅱ) sorption by acidically modified Cicer arientinum biomass[J]. Chem.Eng. J.150(2009)40-48.
    [96]L Y Wang, L Q Yang, Y F Li, Y Zhang, X J Ma, Z F Ye. Study on adsorption mechanism of Pb(II) and Cu(II) in aqueous solution using PS-EDTA resin[J]. Chem. Eng. J.163(2010)364-372.
    [97]J X Yu, M Tong X M Sun, B H Li. A simple method to prepar epoly(amicacid)-modified biomass for enhancement of lead and cadmium adsorption[J]. Biochem. Eng. J.33(2007)126-133.
    [98]R Nadeem, M. A Hanif, F Shaheen, S Perveen, M.N Zafar, T Iqbal. Physical and chemical modification of distillery sludge for Pb(II) biosorption, J.Hazard. Mater[J]v.150(2008)335-342.
    [99]S Dahiya, R M.Tripathi, A G Hegde. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass[J]. J.Hazard.Mater.150 (2008)376-386..
    [100]N Olaru, A Andriescu, L Olaru, On the hydrolysis of cellulose acetate in toluene/acetic acid/watersystem[J]. Eur.Polym.J.37(2001) 865-867.
    [101]W L Marshall, E U Franck, J.Phys.Chem.Ref.Data (1981)295.
    [102]M C Madhusudhan, K S M S Raghavarao, Sanjay Nene. Integrated process for extraction and purification of alcohol dehydrogenase from Baker's yeast involving precipitation and aqueous two phase extraction[J]. Biochemical Engineering Journal 38 (2008) 414-420
    [103]Marques P, Rosa M F, Pinheiro H M. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass[J]. Bioprocess Engineering,2000,23(2):135—141.
    [104]Paula Alexandra Marques, Helena Maria Pinheiro, JosdAntvnio Teixeira, Maria Femanda Rosa. Removal efficiency of Cu2+, Cd2+and Pb2+ by waste brewery biomass:pH and cation association efleets[J]. Desalination,1999,124, (3):137—144
    [105]Soares E V Duaae A, Boaventura R A et al. Viability and release of complexing compoundsduring accumulation of heavy metals by a brewer's yeast[J]. Applied Microbiolgogy and Biotechnology,2002,58(6):836-841
    [106]P Skountzou, M Soupioni, A Bekatorou, M. Kanellaki, A A Koutinas, R. Marchant, I M Banat. Lead(II) uptake during baker's yeast production by aerobic fermentation of molasses[J]. Process Biochemistry 38 (2003) 1479-1482
    [107]Vasudevan P, Padmavathy V, Dhingra S C. Biosorption of monovalent and divalent ions on baker's yeast[J]. Biores Tech,2002,82:285—289
    [108]J.A.Dean, Lange's Handbook of Chemistry,5th ed[M]., McGraw-HillInc,1998.
    [109]O Anjaneya, M Santoshkumar, S Nayak Anand, T B Karegoudar, Biosorption of acid violet dye from aqueous solutions using native biomass of a new isolate of Penicillium[J]. Int Biodeter.63 (2009) 782-787.
    [110]B H Hameed. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste[J]. J.Hazard. Mater.154 (2008) 204-212.
    [111]L Ping, Y J Su, Y Wang, B Liu, L M Sun, Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder[J]. J. Hazard. Mater.179 (2010) 43-148.
    [112]Y Nathan, L G Benning, V R Phoenix, F G Ferris, Characterization of metalcy anobacteria sorption reactions:a combined macroscopic and infrared spectroscopic investigation[J]. Environ.Sci.Technol.38(2004)775-782.
    [113]A E Ofomaja, Y S Ho. Effect of temperature and pH on methyl violet biosorption by Mansoniawood sawdust[J]. Bioresour Technol.99 (2008) 5411-5417.
    [114]V Padmavathy Biosorption of nickel(Ⅱ) ions by baker's yeast:kinetic, thermodynamic 1 c and desorption studies[J]. Bioresour. Technol.99 (2008) 3100-3109.
    [115]Robinson T, Chandran B, Nigam P. Effect of tnetreatments of three waste residues, wheat sh-aw, corncobs and barley husks on dye adsorption. BioresourceTechnology[J].2002,85(2):119-124
    [116]Morals L C, Freitas M,Goncalves E P, ct aL Reactive dyes removal from wastewatets by adsorption eucalyptus bark:variables that defme the process[J]. Water Research,1999,33(4): 979-988
    [117]Oma Duggan. Study ofthe physical and chemical characteristics ofa range chemically treated, lignite based carbon[J]. Water science and Technology,1997,35(7);21—27
    [118]L. Abramian, H. El-Rassy, Adsorption kinetics and thermodynamics of azo-dye Orange Ⅱ onto highly porous titania aerogel, Chem. Eng. J.150 (2009) 403-410.
    [119]X F Sun, S G Wang, X W Liu, W X Gong, N Bao, B Y Gao, H Y Zhang, Biosorption of Malachite Green from aqueous solutions onto aerobic granules:kinetic and equilibrium studies[J]. Bioresour. Technol.99 (2008) 3475-3483.
    [120]A Kilislioglu, B Bilgin, Thermodynamic and kinetic investigations of uranium adsorption on Amberlite IR-118H resin[J] Appl. Radiat. Isot.58 (2003) 155-160.
    [121]S W Won, K Hyun-Jong, C Soo-Hyung, C Bong-Woo, K Ki-Ju, Y Yeoung-Sang. Performance, kinetics and equilibrium in biosorption of anionic dye Reactive Black 5 by the waste biomass of Corynebacterium glutamicum as a low-cost biosorbent[J], Chem. Eng. J.121 (2006) 37-43.
    [122]B F Turner, J B Fein, Protofit:a program for determining surface protonation constants from titrationdata[J]. Comput.Geosci.32(2006)1344-1356.
    [123]A Barkleit, H Moll, G Bernhard, Interaction of uranium(Ⅵ) with lipopolysaccharide[J]. J.Chem.Soc.,DaltonTrans.21(2008)2879-2886.
    [124]Y Nathan, L G Benning, V R Phoenix, F G.Ferris, Characterization of metalcyanobacteria sorption reactions:a combined macroscopic and infrared pectroscopic investigation[J]. Environ.Sci. Technol.38(2004)775-782.
    [125]蔡元元,高福平,周晶,欧阳伟炜,唐劲天.PEI修饰磁性Fe304纳米粒的制备和表征[J].科技导报.2010,28(19):68-72.
    [126]E Kiefer, L Sigg, P Schosseler. Chemical and spectroscopic characterization of algae surfaces[J]. Environ.Sci.Technol.31(1997)759-764.
    [127]M Bansala, U Garg, D Singh, V K Garg. Removal of Cr(Ⅵ) from aqueous ssolution using pre-consumer processing agricultural waste:acase study of ricehusk[J]. J. Hazard. Mater.162 (2009)312-320.
    [128]K Nakanish. Infrared Absorption Spectroscopy-Practical, Holden-DayInc[MJ]. San Francisco, 1962, pp.38-47.
    [129]D Brady, A D Stoll, L Starke, J R Duncan. Chemical and enzymatic extraction of heavy-metal binding polymers from isolated cellwalls of Saccharomyces cerevisiae[J]. Biotechnol. Bioeng.44(1994)297-302.
    [130]Gu I NX, M an SQ. Surface enhanced Raman scattering of m ethylene blue adsorbed on capshaped silver nanoparticles[J]. Chemical Physics Letters,2007,447 (4-6):305-309.
    [131]Yunsong Zhang, Weiguo. Liu, Meng. Xu, Fei. Zheng, Mao.Jun Zhao. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker's yeast biomass[J]. J. Hazard. Mater.178 (2010) 1085-1093
    [132]Meng Xu, Yunsong Zhang, Zhiming Zhang, Yaou Shen, Maojun Zhao, Guangtang Pan. Study on the selective adsorption of Ca2+, Cd2+, and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride[J]. Chem. Eng. J.168.(2011)
    [133]谢林,许孟,张云松,李婷,干仁国,雷三忠.混酸预处理多壁碳纳米管吸附Cr3+性能的影响[J].四川农业大学学报(2010)28:227-233.
    [134]荆煦英,陈式棣,么恩云.红外光谱实用指南[M].天津:天津科技出版社,1992,pp322-327.
    [135]Chen J Y, Peng Q. Infrared spectral comparison of aminol evulinic acid and its hexyl ester [J]. Spectrochim Acta PartA,2003,59:2571-2576.