有机高分子/膨润土复合物的制备及其在废水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的快速发展,许多生产企业所排放的废水污染问题也日益严重。其中,重金属离子废水的特点是毒效期长、持续、生物不可降解等,它可以通过食物链在生物体内累积而导致生物体致癌、致残、致畸;印染废水成份比较复杂,所含的有毒、有害物质会严重污染环境。因此,这些有害废水的处理显得十分迫切,有关废水处理研究已经受到关注。吸附法是其中一类重要的处理方法。
     膨润土因具有较强的离子交换能力和大的表面积而表现出较强的吸附性能,因此可用于废水处理。为了大幅度提高天然膨润土的吸附能力和拓宽应用领域,本论文采用原位聚合法制备了共聚物改性膨润土--丙烯酸共聚物/膨润土复合物,并研究其对不同类型废水(即含金属离子或含染料化合物水溶液)的吸附作用首先介绍了废水处理的方法,对膨润土的改性及其改性产物在重金属废水和染料废水处理中应用研究进展进行了综述,同时总结了目前膨润土、有机改性中存在的问题。
     其次,以钠基膨润土(NaB)为原料,首次通过原位聚合法,将亲水性单体与疏水性单体在膨润土分散液中进行共聚,制备了两种新型双亲性丙烯酸共聚物/膨润土复合物,即共聚物P(MAV)/NaB复合物与交联共聚物P(MAVM)/NaB复合物。采用红外光谱(FT-IR)、X-射线衍射(XRD)、扫描电镜(SEM)等仪器分析方法,研究了其组成、微观结构、形貌和表面官能团等。
     第三,以P(MAVM)/NaB为吸附剂,分别处理含Pb~(2+)、Cd~(2+)废水,考查了废水pH值、吸附剂用量、金属离子初始浓度,以及吸附温度与吸附时间对其吸附性能的影响。发现吸附处理Pb~(2+)废水时,25°C,当pH=5,P(MAVM)/NaB=0.2 g/L,[Pb~(2+)]=50.0mg/L时,振荡30min条件下吸附效果最好,Pb~(2+)去除率达94.40% ;处理Cd~(2+)废水时, 25°C , pH=6 , P(MAVM)/NaB=1.0g/L ,[Cd~(2+)]=200.0mg/L,振荡60min条件下,去除率为89.54%。进一步对其吸附等温模型和动力学进行了探讨。发现吸附动力学特性符合准二级动力学模型,吸附等温模型较好地符合Freundlich等温式。
     第四,将P(MAV)/NaB复合物用于吸附染料化合物--亚甲基蓝(MB)、品红(BF),考查了水溶液pH值、吸附剂用量、染料初始浓度,以及吸附温度与吸附时间对其吸附性能的影响。发现吸附处理MB废水时,25°C,pH=6-7,[MB]=20.0mg/L, [P(MAVM)/NaB]=0.1 g/L,振荡吸附5 min条件下,MB溶液的脱色率可达为97.73%。发现吸附处理BF废水时,pH=6-7, 25°C,[BF]=100.0 mg/L;[P(MAVM)/NaB]=1.0 g/L,振荡5min条件下,脱色率为95.96%。进一步对其吸附等温模型和动力学进行了探讨。发现吸附动力学特性符合准二级动力学模型,吸附等温模型较好地符合Freundlich等温式。
     总之,将制备的双亲性丙烯酸共聚物/膨润土复合物分别用于金属离子与染料化合物的吸附。发现具有较高的吸附性能,有望用于不同金属离子和染料的处理或富集。
With the rapid development of modern industry, the wastewater discharge pollution problem by many production enterprises is getting worse. The characteristics of heavy metal ions wastewater is valid, lasting, and biological non-degradable. It can accumulate through the food chain resulting in biological organisms, cancer, disability, teratogenic. Printing and dyeing wastewater ingredients are complex, contains poisonous and harmful material can seriously pollute the environment. Therefore, these harmful wastewater treatment appears very urgent, relevant wastewater treatment research has been concerned. Adsorption is one kind of important processing method.
     Due to strong ion-exchange capacity and large surface area, Bentonite shows strong adsorption, it can be used for wastewater treatment. In order to dramatically improve natural bentonite adsorption ability and expand the application field, this paper prepared two new amphiphilic acrylic acid copolymer/bentonite composite by in-situ polymerization, and researched on its adsorption function for the different types of wastewater (contain metal ions or dye compound aqueous)
     Firstly, this paper introduced wastewater treatment methods, bentonite modification, the application of their modified products in heavy metal waste and dye wastewater treatment is reviewed. And summarized the problems of current bentonite, organic modify.
     Secondly, based on sodium base bentonite (NaB) as raw material, the hydrophilic monomer and hydrophobic were dispersed with bentonite in aquous solution and copolymerized by in-situ polymerization. Two kind of new amphiphilic acrylic acid copolymer/bentonite composite were prepared, The copolymer P(MAV)/NaB composite and cross-linked copolymer P(MAVM)/NaB composite. Using infrared spectrometry (FT-IR)、X-ray diffraction (XRD), scanning electron microscopy (SEM) instrument analysis methods to study the composition, microstructure, morphology and surface functional group, and so on
     Thirdly, we have treated the Pb~(2+)、Cd~(2+) wastewater using P(MAVM)/NaB as adsorbent. Examine the effect of pH of wastewater, adsorbent dosage, initial concentration of metal ions, adsorption temperature and time on adsorption properties. We have treated the Pb~(2+) wastewater, The optimal condition is as following: pH=5, [Pb~(2+)]=50.0 mg/L, P(MAVM)/NaB=0.2 g/L, oscillating 30 min in 25oC. The removal rate reached to 94.40%. We have treated the Cd~(2+) wastewater. The optimal condition is as following: pH=6, [Cd~(2+)]=200.0mg/L, P(MAVM)/NaB=1.0g/L, oscillating 60 min in 25°C. the removal rate reached to 89.54%。And its adsorption isotherm and kinetic models were discussed. Adsorption kinetics consistent with quasi-second order kinetic model, adsorption isotherm model was fitted to Freundlich isotherm.
     Fourthly, we have treated the MB、BF wastewater using P(MAVM)/NaB as adsorbent. Examine the effect of pH of wastewater, adsorbent dosage, initial concentration of metal ions, adsorption temperature and time on adsorption properties. We have treated the MB wastewater, The optimal condition is as following: pH: 6-7, [MB]=20.0 mg/L, P(MAVM)/NaB=0.1g/L, , oscillating 5 min in 25 oC. Under the condition, the decolorization rate reached to 97.73%. We have treated the BF wastewater. The optimal condition is as following: pH: 6-7, [BF]=100.0mg/L, P(MAVM)/NaB=1.0g/L, oscillating 5 min in 25°C. Under the condition, the decolorization rate reached to 95.96%.And its adsorption isotherm and kinetic models were discussed. Adsorption kinetics consistent with quasi-second order kinetic model, adsorption isotherm model was fitted to Freundlich isotherm.
     In short, the prepared amphiphilic acrylic acid copolymer/bentonite composite were used for dye compounds and the metal ions adsorption. Found to have high adsorption properties, it is expected to be used for different metal ions and dye processing or enrichment
引文
[1] Vaidy, A. A. Datye, K. V. Environmental pollution during chemical processing of syntheric fibres[J]. Color, 1982, (14): 3-10.
    [2]陶志强.改性膨润土的制备及其在水处理中的应用[D].南京,南京理工大学, 2006.
    [3]张颖心,张天胜.改性膨润土及其在环保方面的应用[J].化工新型材料, 2002, 30(4): 33-37.
    [4]吴新明,王林江,谢襄漓,等.钙基膨润土的有机化及其表征[J].矿产综合利用, 2007, (2): 13-16.
    [5]荣葵一,宋秀敏.非金属行为与岩石材料工艺学[M].湖北,武汉工业大学出版社, 1996.
    [6]栾文楼,李明路.膨润土的开发应用[M].北京,地质出版社, 1998.
    [7]黄百顺,印文雅.改性膨润土在有机废水处理中的应用现状[J].安徽水利水电职业技术学院学报, 2006, 6(2): 16-18.
    [8]王代芝,杜冬云,揭武.改性膨润土处理含氟废水研究[J].非金属矿, 2003, 26(6): 42-43.
    [9]叶玲.粘土矿物的改性及其处理有机废水的研究现状[J].中国矿业, 2003, 12(2): 38-40.
    [10] Naseem R, Tahir S. Removal of Pb(Ⅱ)from aqueous/acidic solutions by using bentonite as an adsorbent[J]. Water Res, 2001, 35(16): 3982-3986.
    [11]赵子龙,任建敏,刘高源.膨润土改性及其在废水处理中的应用[J].重庆工商大学学报, 2008, 25(6 ): 614-617.
    [12]邹鹏辉.交联膨润土的制备与表征[D].哈尔滨,哈尔滨工业大学, 2006.
    [13]陶志强.改性膨润土的制备及其在水处理中的应用[D].南京,南京理工大学, 2006.
    [14] Volzone C, Garrido L. Use of modified hydroxy-aluminum bentonites for chromium (III) removal from solutions[J]. J. Environ. Manage, 2008, 88(4): 1640-1648.
    [15] Ramesh A, Hasegawa H, Maki T. et al. Adsorption of inorganic and organic arsenic form aqueous solutions by polymeric Al/Fe modified montmorillonite[J]. Sep. Purif. Technol, 2007, 56(1): 90-100
    [16]王荣民,王艳,何玉凤,等.固体复合聚合硫酸铁絮凝剂及其制备方法[P].中国发明专利, CN101348294A, 2009-01-21.
    [17]郑宾国,李春光,刘群,等.交联改性膨润土处理Cr(Ⅵ)废水的研究[J].非金属矿, 2010, 33(2): 57-59.
    [18]李梦耀,王莉平,车红荣.改性提高膨润土阳离子交换容量研究[J].地球科学与环境学报, 2005, 27(3): 30-32.
    [19]叶巧明,刘兴奋. CTMAB插层有机膨润土的结构分析[J].硅酸盐通报, 2004, (5): 40-43
    [20]朱利中,陈宝梁,沈韩艳,等.双阳离子有机膨润土吸附处理水中有机物的性能[J].中国环境科学, 1999, 19 (4): 325-329.
    [21]朱利中,陈宝梁.有机膨润土在废水处理中的应用及其进展[J].环境科学进展, 1998, 6 (3): 53-60
    [22] Atia A. Adsorption of chromate and molybdate by cetylpyridinium bentonite[J]. Appl. Clay Sci, 2008, 41(1-2): 73-84.
    [23]郑玉婴,张汉辉,蔡伟龙,等.有机膨润土的制剂备性能表征[J].光谱学与光谱分析, 2005, 25(1): 62-64
    [24] Bentouami M S. Cadmium removal from aqueous solutions by hydroxy 8 quinoline intercalated bentonite[J]. J. Colloid Interface Sci., 2006, 29(2): 270-277.
    [25]陈培榕,吴耀国,刘保超.膨润土的改性及其在重金属吸附中的研究进展[J].化工进展, 2009, 28(9): 1647-1652.·
    [26] Kommann X, Linbderg H, Berglund L A. Synthesis of epoxy-clay nanoeomposites: influence of the nature of the clay on structure[J]. Polymer, 2001, 42: 1303-1310. [ 27 ] Ma J F, Zhu L Z. Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water[J]. J. Hazard. Mater. B, 2006, 136(3): 982-988.
    [28] Zhu L Z, Zhu R L. Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water[J]. Sep. Purif. Technol, 2007, 54(1): 71-76.
    [29]杨莹琴,陈慧娟.壳聚糖插层膨润土的制备及其对Zn2+的吸附[J].信阳师范学院学报, 2007, 20(3): 338-340
    [30]孙家寿,刘习习,鲍世聪,等.铝锆交联膨润土对废水中铬的吸附研究[J].非金属矿, 2000. 23(3): 13-14.
    [31]郭海霞,杨维,张洪波.无机-有机复合膨润土用于焦化废水的深度处理[J].中国给水排水, 2008, 24(21): 57-59-63
    [32] Perez P, Tohji O, Umetsu K, et a1. Theory and pratice of the removal of heavy-metal ions by their precipitation as ferrite-type compounds from aqueous solution at ambient temperature[J]. Metall Rev MMLI, 2001, 17(2): 137-179.
    [33] Apiratikul R, Pavasant P. Batch and colunln studies of biosorption of heavy metals by eaulerpa lentillifera[J]. Bioresour Teehnol, 2008, 91(8): 2766-2777.
    [34] Sofia A C, Sandra F, Margarida M, et a1. Removal of chrominm from eletroplating industry effluents by ion exchange resins[J]. J Hazard Mater, 2007, 144(3): 634-638. [ 35 ] Lee H I, Jung Y J, Kim S, et a1. Preparation and application of chelating polymer-mesoporous carbon composite for copper-ion adsorption[J]. Carbon, 2009, 47(4): 1043-1049.
    [36]罗志勇,张胜涛,郑泽根,等.电化学法处理重金属废水的研究进展[J].中国给水排水, 2009, 25(16): 6-10
    [37]杨玉身,周集体,杨风林.微电解法降解染料的研究[J].上海环境科学, 1996, 15(7): 30-35.
    [38] Daniliuc L. Performance and Economic Aspects of the Dffluents by Electro-Floccuation Using the Dequaflox[J]. Tribune del Ean (in french), 1995, 48(576): 37-39
    [39]李长波.赵国峥,张洪林,等.生物吸附剂处理含重金属废水研究进展[J].化学与生物工程, 2006,23(2): 10-12
    [40] Wang X S, Qin Y. Equilibrium sorption isotherms for Cu2+ on rice bran[J]. Process Biochem, 2005, 40(2): 677-680.
    [41]张玉刚,龙新宪,陈雪梅.微生物处理重金属废水的研究进展[J].环境科学与技术, 2008, 31(6): 58-63
    [42] Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Res. 2003, 37(18): 431l-4330.
    [43] Mustafa I, Delia T S. Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines[J]. Process Biochem, 2003, 38(8): 1183-1192.
    [44]李江,甄宝勤,吸附法处理重金属废水的研究进展[J].应用化工, 2004, 34(10): 591-600
    [45]晏得珍,何玉凤,王艳,等.膨润土的改性及其在废水处理中的应用研究进展[J].水处理技术, 2009, 35(5): 25-30
    [46] Zohra B, Aicha K, Fatima S, et al. Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide[J]. Chem Eng J, 2008, 136(2): 295-305.
    [47] Homagai P L, Ghimire K N, Inoue K. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse[J]. Bioresour. Technol., 2010, 101(6): 2067-2069.
    [48] Visa M, Bogatu C, Duta A. Simultaneous adsorption of dyes and heavy metals frommulticomponent solutions using ?y ash[J]. Appl Surf Sci, 2010, 256(17): 5486-5491
    [49]卢红梅,钟宏.赤泥沉降用新型高分子絮凝剂的结构表征及分析[J].矿冶工程, 2003, 23(4): 35-38.
    [50] Yue Q Y, Gao B Y, Wang Y, et al. Synthesis of polyamine flocculants and their potential use in treating dye wastewater[J]. J Hazard Mater., 2008, 152(1): 221-227.
    [51] Gao B Y, Wang Y, Yue Q Y, et al. Color removal from simulated dye water and actual textile wastewater using a composite coagulant prepared by ployferric chloride and polydimethyldiallylammonium chloride[J]. Sep Purif Technol, 2007, 54(2): 157-163.
    [52] Fu Y, Yu S L. Characterization and coagulation performance of solid poly-silicic-ferric (PSF) coagulant[J]. J Non-Cryst Solids, 2007, 353(22-23): 2206-2213.
    [53] Shi B Y, Li G H, Wang D S, et al. Removal of direct dyes by coagulation: The performance of preformed polymeric aluminum species[J]. J Hazard Mater, 2007, 143(1-2): 567-574.
    [54] Yuan Y L, Wen Y Z, Li X Y, et al. Treatment of wastewater from dye manufacturing industry by coagulation[J]. J Zhejiang Univ Sci A, 2006, 7(2): Suppl, 340-344.
    [55] Wei J C, Gao B Y, Yue Q Y, et al. Effect of dosing method on color removal performance and flocculation dynamics of polyferric-organic polymer dual-coagulant in synthetic dyeing solution[J]. Chem Eng J, 2009, 151(1-3): 176-182.
    [56] Ahmad A L, Wong S S, Teng T T, et al. Improvement of alum and PAC coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater[J]. Chem Eng J, 2008, 137(3): 510-517.
    [57] Qiu Z M, Jiang W T, He Z J. Post-treatment of banknote printing wastewater using polysilicate ferro-aluminum sulfate (PSFA)[J]. J Hazard Mater, 2009, 166(2-3): 740-745.
    [58] Ahmad A L, Wong S S, Teng T T, et al. Improvement of alum and PAC coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater[J]. Chem Eng J, 2008, 137(3): 510-517.
    [59]李芳蓉.膨润土的改性及其在废水处理中的应用[D].兰州,西北师范大学, 2007.
    [60]韩冬,安兴才,李杰.混凝沉淀法处理马铃薯淀粉废水的应用研究[J].水处理技术, 2009, 35(2): 68-71. [ 61 ] Fkunaga, Masami. Treatment of wastewater containing starch[P]. Japan patent:JP05096281 A2, 1993-04-20.
    [62] Janin A, Zaviska F, Drogui P, et al, Mercier G. Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation[J]. Hydrometallurgy, 2009, 96(4): 318-326.
    [63] Matlock M M, Howerton B S, Atwood D A. Chemical precipitation of heavy metals from acid mine drainage[J]. Water Res, 2002, 36(19): 4757-4764.
    [64] Chen Q Y, Luo Z H, Hills C, et al. Precipitation of heavy metals from wastewater using simulated ?ue gas: Sequent additions of ?y ash, lime and carbon dioxide[J]. Water Res, 2009, 43(10): 2605-2614.
    [65]黄兰.重金属螯合剂的合成及其在废水处理中的应用[D].广州.中山大学, 2006
    [66]王文丰,黄翠萍.螯合沉淀法处理含重金属离子废水[J],中国给水排水, 2003, 18(11): 49-50
    [67]邓玉珍.选矿药剂概论[M].北京:冶金工业出版社, 1994,第一版, 53.
    [68]王晓滨,段洪东,秦大伟.螯合剂合成新方法及其在化学化工中的应用[J].山东轻工业学院学报, 2007, 21(3): 57-62
    [69]周建华.螯合剂对苎麻吸收、积累重金属的影响及其机理研究[D].广州,中山大学, 2008
    [70]高鸣远.螯合剂处理重金属污水实验研究[J].江苏环境科技, 2004, 17(4): 3-5
    [71]钟玉凤,吴少林,戴玉芬,等.有机螯合剂在环境保护中的应用[J].江西科学, 2007, 25(3): 351-354, 358.
    [72]郑庆峰.含重金属危险固体废物药剂稳定化处理及机理研究[D],杭州,浙江工业大学, 2000.
    [73] Takafuji M, Ide S, Ihara H,et a1. Preparation of poly(1-vinylimidazole). Grafted magnetic nanoparticles and their application for removal of metal ions[J]. Chem. Mater, 2004, 16(10): 1977-1983
    [74] Bulbul Sonmez H, ESenkal B, Bicak N. Poly(acrylamide)grafts on spherical bead polymers for extremely selective removal of mercuric ions from aqueous solutions[J]. J. Polym. Sci., Part A: Polym. Chem, 2002, 40(17): 3068-3078
    [75]许晓韡.聚丙烯酸修饰壳聚糖纳米球锌卟啉结合体的制备与性能研究[D].兰州,西北师范大学, 2010
    [76]廖强强,环境友好型淀粉改性重金属捕集剂的结构与其性能的关系研究[D].上海,同济大学理学院, 2009
    [77]胡春红,吕彤,张远.淀粉接枝丙烯酸甲酯与乙二胺合成高分子螯合剂[J].应用化学, 2007, 24(6): 716-719
    [78]相波,李倩倩,李义久,等.二硫代氨基甲酸改性淀粉对重金属吸附选择性的研究[J].水处理技术, 2006, 32(8): 38-41
    [79]刘胜凤.壳聚糖-膨润土复合吸附剂对水中重金属离子的吸附性能研究[D].山东,中国海洋大学, 2007
    [80]王琼生,万清黎.粘土-壳聚糖复合吸附剂吸附铬(Ⅵ)离子性能的研究[J].福建师范大学学报, 2006, 22(2): 64-67
    [81]李增新,王国明,王彤,等.沸石-壳聚糖吸附剂吸附废水中的Ni2+[J].化工环保, 2009, 29(1): 5-9
    [82] Stathi P, Litina K, Gournis D, et al. Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation[J]. J. Colloid Interface Sci, 2007, 316(2): 298-309.
    [83]孙洪良,朱利中.表面活性剂改性的螫合剂有机膨润土对水中有机污染物和重金属协同吸附研究[J].高等学校化学学报, 2007, 28(8): 1475-1479
    [84]孙洪良,朱利中.膨润土纳米复合材料的制备、表征及吸附性能研究[J].无机化学学报, 2007, 23(7): 1148-1152. [ 85 ] Hyunbae J. Adsorption of anionic dye and surfactant from water onto organic-montmorillonite[J]. Sep. Sci. Technol, 2000, 35(3): 353-365.
    [86]李倩,新型阳离子聚合物/膨润土复合吸附材料的制备、表征及其吸附性能研究[D].济南,山东大学, 2008
    [87] Al-Asheh S, Banat F, Abu-Aitah L. Adsorption of phenol using different types of activated Benmnites[J]. Sep. Sci. Technol, 2003, 33(1): 1-10.
    [88]张红梅,彭先佳,栾兆坤,等. PDMDAAC-膨润土对对硝基苯酚吸附特性的研究[J].环境化学, 2005, 24(2): 205-207.
    [89]李静.聚环氧氯丙烷二甲胺/膨润土复合材料的吸附性能研究[D].济南,山东大学, 2009
    [90]何华玲.膨润土的改性及其在印染中的应用[D].洛阳,河南科技大学, 2009
    [91]孙洪良,朱利中.表面活性剂改性的螯合剂有机膨润土对水中有机污染物和重金属的协同吸附研究[J].高等学校化学学报, 2007, 28(8): 1475-1488
    [92]孙洪良,朱利中.膨润土纳米复合材料的制备、表征及吸附性能研究[J].无机化学学报, 2007, 23(7): 1148-1152
    [93]任海贝,李明玉,李光军.新型复合插层有机膨润土的制备及脱色性能[J].暨南大学学报, 2006, 27(1): 108-111
    [94]李倩,岳钦艳,高宝玉,等.阳离子聚合物/膨润土纳米复合吸附材料的性能及对红色染料的脱色[J].化工学报, 2006, 57(2): 436-441
    [95]李凡修,辛焰,陈武.共聚物类阻垢剂的研制进展[J].工业水处理, 2000, 20(3): 7-10
    [1]张英,孙晓日,王荣鹏.螯合分散剂的合成和性能研究[J].广州化工, 2009, 37(2): 131-132.
    [2] Kavlak S, Can H K, Guner A. Interaction of Poly(maleic anhydride-alt-acrylic acid) with Transition Metal Cations, Ni2+, Cu2+, and Cd2+: A Study by UV¨CVis Spectroscopy and Viscosimetry[J]. J. Appl. Polym. Sci., 2004, 92(4): 2698-2705
    [3]李凡修,辛焰,陈武.共聚物类阻垢剂的研制进展[J].工业水处理, 2000, 20(3): 7-10.
    [4]赖坤容.改性聚丙烯酸钠的合成及其对水中重金属离子Pb2+, Zn2+, Ni2+的去除研究[D].西安,西北大学, 2004.
    [5]刘星,汪树军,刘红研.马来酸酐/苯乙烯/醋酸乙烯酯三元共聚衍生物的制备及对柴油低温流动性的影响[J].石油学报, 2005, 21(6):57-61.
    [6] Xing C M, Yang W T. A Novel, Facile Method for the Preparation of Uniform, Reactive Maleic Anhydride/Vinyl Acetate Copolymer Micro- and Nanospheres[J]. Macromol Rapid Commun., 2004, 25(17): 1568-1574.
    [7] He Y F, Li F R, Wang R M, etal. Preparation of xanthated bentonite and its removal behavior for Pb (II) ions, Water Sci. Technol., 2010, 61(5): 1235-1243
    [8] Can H K, Dogan. A L, Rzaev Z M. O., et al. Synthesis, Characterization, and Antitumor Activity of Poly(maleic anhydride-co-vinyl acetate-co-acrylic acid)[J]. J. Appl. Polym. Sci., 2006, 100(5): 3425-3432.
    [9]马建新.由钙基膨润土制备Ti-PILC及其吸附和光催化性能[D].硕士学位论文,山西:山西大学, 2006.
    [10]冯奇,王培铭.煤矸石热活化及水泥水化的红外分析[J].建筑材料学报, 2005, 8(3): 215-219.
    [11]徐燕莉,杨国武,郭新华.功能有机膨润土的制备及在颜料防沉中的应用[J].染料与染色, 2003,40(2): 4-6.
    [12] Andini S, R. Cioffi, Montagnaro F, et al. Simultaneous adsorption of chlorophenol andheavy metal ions on organophilic bentonite[J]. Applied Clay Science., 2006, 31(1-2): 126-133. [ 13 ] Margarita Darder, Montserrat Colilla, Eduardo Ruiz-Hitzky. Biopolymer-Clay Nanocoposites Based on Chitosan Intercalated in Montmorillonite[J]. Chem Mater., 2003, 15(20): 774-3780.
    [14]侯振宇.油井高钙,锶,钡环境下高效阻垢剂的制备[D].西安,西北工业大学, 2006. [ 15 ] Zheng Y, Gao T P, and Wang A Q. Preparation, Swelling, and Slow-Release Characteristics of Superabsorbent Composite Containing Sodium Humate[J]. Ind. Eng. Chem. Res. 2008, 47, 1766-1773.
    [16] Tong Z H, Deng Y L Synthesis of Water-Based Polystyrene-Nanoclay Composite Suspension via Miniemulsion Polymerization [J]. Ind. Eng. Chem. Res. 2006, 45(8): 2641-2645.
    [17]姜桂兰,张培萍.膨润土的加工与应用[M].北京,化学工业出版社, 2005
    [18]涂逢樟,钟春龙,林竹光,等.湿法钠化改型钙基膨润土研究[J].功能材料, 2007, 38 (1): 53-56.
    [19]孙红娟,彭同江.新疆奇台和吉木萨尔蒙脱石的矿物学研究[J].中国非金属矿工业导刊, 2004, (4): 437-400.
    [1]黄玉娥.污水污泥中重金属去除方法研究[D].长沙,湖南大学, 2007.
    [2]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社, 2000.
    [3]陈静生,周家义.中国水环境金属研究[M].北京:中国环境科学出版社, 1988.
    [4]唐云梯,刘人和.环境管理概论[M].北京:中国环境科学出版社, 1992.
    [5]徐厚恩.中国污染物有毒危险性评价[M].北京:北京医科大学、中国协和医科大学联合出版社, 1997.
    [6] Khan A Q, Kuek L, Chaudbry T M, et al. Roles of plants, mycorthizae and phytochelators in Cu contaminated land reclamation[J]. Chemosphere, 2000, 41(1-2): 197-207
    [7] Baker A J M, McGrath S P, Reeves R D, et al. Chapter 5. Metal hyperaccumulator plants: a review of the ecology and physiology of biological resource for phytoremediation of metal-polluted soils[M]. Phytoremediation of Contaminated Soil and Water. CRC Press LLC,Boca Raton Florida, 1999, 85-107.
    [8] Shibi I G, Anirudhan T S. Polymer-grafted banana (Musa paradisiaca) stalk as an adsorbent for the removal of lead(II) and cadmium(II) ions from aqueous solutions:kinetic and equilibrium studies[J]. J Chem Technol Biotechnol, 2006, 81(3): 433-444.
    [9] Zou W H, Han R Q, Chen Z Z, et al. Characterization and Properties of Manganese Oxide Coated Zeolite as Adsorbent for Removal of Copper(II) and Lead(II) Ions from Solution[J]. J. Chem. Eng. Data 2006, 51(2): 534-541
    [10] Ghaedi M, Ahmadi F, Soylak M. Simultaneous Preconcentration of copper, nickel,cobalt and lend ions prior to their flame atomic absorption spectrometric determination[J]. Ann Chim, 2007, 97(5-6): 277-285
    [11] He Y F, Li F R, Wang R M, et al. Preparation of xanthated bentonite and its removal behavior for Pb(II) ions. Water Sci Technol, 2010, 61(5): 1235-1243
    [12] Yamazaki A. Song J M, Winnik F M.et al. Synthesis and solution properties of fluorescently labeled amphiphilic (N-alkylacryla-mide) oligomers[J], Macromolecules, 1998, 31, (1): 109-115
    [13] Ofomaja A E. Equilibrium sorption of methylene blue using mansonia wood sawdust as Biosorbent[J]. Desalination and Water Treatment, 2009 3(1-3): 1-10.
    [14] Veli S, Alyuz B. Adsorption of copper and zinc from aqueous solutions by using natural clay[J]. Journal of Hazardous Materials, 2007, 149(1): 226-233.
    [15] Erdem B, ?zcan A, G?k ?. Immobilization of 2, 2-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions[J]. Journal of Hazardous Materials, 2009, 163(1): 418–426.
    [16]米兰.分子发光光谱在重金属分析中的研究及其应用[D].成都,四川师范大学, 2008.
    [17]苏峰.海带对镉离子的生物吸附研究[D].长沙,湖南大学, 2009.
    [18]叶玮,刘荣,艾碧英.双硫腙加OP乳化剂直接比色法测定废水中的镉[J].化学分析计量, 2008, 17(3):45-46.
    [19] Goel Jyotsna, Kadirvelu K, Rajagopal C, et al. Cadmium(II) Uptake from Aqueous Solution by Adsorption onto Carbon Aerogel Using a Response Surface Methodological Approach[J]. Ind. Eng. Chem. Res. 2006, 45(19): 6531-6537
    [20] Goel J, Kadirvelu K, Rajagopal C. Competitive sorption of Cu(II), Pb(II), Hg(II) ions fromaqueous solution using coconut shell based activated carbon[J]. Adsorpt. Sci. Technol. 2004, 22(3): 257-273
    [21] Moreno-Castilla, C.; Alvarez-Merino, M. A.; Lopez Ramon, et al. Cadmium ion adsorption on different carbon adsorbents from aqueous solutions. Effect of surface chemistry, pore texture, ionic strength, and dissolved natural organic matter[J]. Langmuir, 2004, 20(19): 8142-8148
    [22] S?lener M, Tunali S, ?zcan A S, et al. Adsorption characteristics of lead(II) ions onto the from aqueous solutions clay/poly(methoxyethyl)acrylamide (PMEA) composite[J]. Desalination, 2008, 223(1-3): 308-322
    [23] Wang S, Yu D M. Adsorption of Cd(II), Pb(II), and Ag(I) in Aqueous Solution on Hollow Chitosan Microspheres[J]. J. Appl. Polym. Sci, 2010, 118(2): 733–739
    [24] Deng S B, Ting Y P. Fungal Biomass with Grafted Poly(acrylic acid) for Enhancement of Cu(II) and Cd(II) Biosorption[J]. Langmuir 2005, 21(13): 5940-5948
    [25]王金磊.有机-无机复合高吸水树脂的制备与性能研究[D].甘肃:中国科学院兰州化学物理研究所, 2009.
    [1] Reife A.“Dyes, environmental chemistry”. In: Kirk-Othmerencyclopedia of chemical technology. 4th ed[M]. Washington: John Wiley & Sons, 1993. p753.
    [2] Pagga U, Braun D. The degradation of dye stu?s: partII. Behaviour of dyestu?s in aerobic biodegradation tests[J]. Chemosphere, 1986, 15(4): 479-484
    [3]孙影芝,龚仁敏,张小平,等.杨超甘蓝皮生物吸附去除水中的阳离子染料[J].中国环境科学, 2005, 25(B06): 61-64
    [4] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study[J]. Dyes Pigm, 2001,51(1): 25-40
    [5] Hajjaji M, Arfaoui H El. Adsorption of methylene blue and zinc ions on raw and acid-activated bentonite from Morocco[J]. Appl. Clay Sci, 2009, 46 (4): 418–421
    [6] Ghosh D, Krishna G. Bhattacharyya. Adsorption of methylene blue on kaolinite[J]. Appl. Clay Sci, 2002, 20(6): 295– 300
    [7] Crandall A, Oldberg E, Ivy A C. Contributions to the physiology of the pancreas: theelimination of dyes in the external secretion of the pancreas[J]. Am. J. Physiol. 1929, 89: 223-229.
    [8]沈明,杨梦兵,王中伟.阳离子染料废水治理技术及进展[J].天津化工, 2009, 23(5): 8-11
    [9]彭晓文,邱廷省,陈明.微生物絮凝剂的絮凝特性及废水处理研究[J].皮革科学与工程, 2004, 14(1): 43-46.
    [10]李蒙英,倪建国,等.真菌和细菌对染料的吸附脱色及再生能力的研究[J].环境科学学报, 2002, 22(6): 779-783.
    [11] Cione A. P. P., Neumann M. G., Gessner F. Time-dependent spectropho-tometric study of the interaction of basic dyes with clays. III. Mixed dye aggregates on SWy-1 and laponite[J]. J. Colloid Interf Sci. 1998, 198: 106-112.
    [12] Gurses A, Dogar C, Yalcin M, et al. The adsorption kinetics of the cationic dye, methylene blue, onto clay[J]. J. Hazard. Mater, 2006, 131(1-3): 217–228
    [13] Xu L H, Zhu L Z. Structures of OTMA- and DODMA-bentonite and their sorption characteristics towards organic compounds[J]. J. Colloid Interface Sci, 2009, 331(1): 8-14.
    [14] Gupta V K, Mittal A, Gajbe V, et al. Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents[J]. J. Colloid Interface Sci, 2008, 319(1): 30-39.
    [15] Almeida C. A. P, Debacher N A, Downs A J. et al. Removal of methylene blue from colored effluents by adsorption on montmorillonite clay[J]. J. Colloid Interface Sci. 2009, 332 (1):46–53.
    [16] Nasuha N, Hameed B H, Azam T. et al. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue[J]. J. Hazard. Mater, 2010, 175(1-3): 126-132.
    [17] Liu Y, Zheng Y, Wang A Q, Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-poly (acrylic acid)/vermiculite hydrogel composites[J]. J. Environ. Sci , 2010, 22(4): 486-493
    [18] Hamdaoui O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. J. Hazard. Mater. 2006, 135(1-3): 264-273
    [19] Hameed B. H, Din A. T. M, Ahmad A. L. Adsorption of methylene blue onto bam- boo-based activated carbon: kinetics and equilibrium studies[J]. J Hazard. Mater, 2007, 141(3): 819-825.
    [20] Sheng J W , Xie Y N, Zhou Y. Adsorption of methylene blue from aqueous solution on pyrophyllite[J]. Appl. Clay Sci, 2009, 46(4):422-424
    [21] Gupta V K., Mittal A, Gajbe V, et al. Adsorption of basic fuchsin using waste materials-bottom ash and deoiled soya-as adsorbents[J]. J. Colloid Interface Sci, 2008, 319(1):30-39
    [22] Rodr?guez A, Ovejero G, Mestanza M, et al. Removal of Dyes from Wastewaters by Adsorption on Sepiolite and Pansil[J]. Ind. Eng. Chem. Res, 2010, 49(7): 3207-3216
    [23]高景峰,陈冉妮,苏凯,等.好氧颗粒污泥对酸性红B的生物吸附模型研究[J].安全与环境学报, 2010, 10(1):25-30
    [24] Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons a comparative study[J]. Dyes and Pigm, 2001, 51(1): 25-40.
    [25]赵涛.纳米吸附材料的制备及其在染料废水处理中的应用[J].湖北,武汉工业学院, 2008
    [26] Zhang Z Y, Zhang Z B, Fernandez Y, et al. Adsorption isotherms and kinetics of methylene blue on a low-cost adsorbent recovered from a spent catalyst of vinyl acetate synthesis[J]. Appl. Surf. Sci, 2010, 256(8): 2569-2576
    [27] Weber T W, Chakkravorti R K. Pore and solid diffusion models for fixed bed adsorbers[J]. AlChE J, 1974, 20 (2): 228-238
    [28] Fytianos K., Voudrias E., Kokkalis E., Sorption-desorption behaviour of 2, -dichlorophenol by marine sediments[J], Chemosphere, 2000, 40(1): 3-6
    [29] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens[J], Handlingar, 1898, 24(4): 1-39
    [30] Dogan M, Abak H, Alkan M. Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters[J]. J. Hazard. Mater, 2009, 164(1): 172-181
    [31] Gurses A, Dogarc C, Yalc?n M, et al. The adsorption kinetics of the cationic dye, methylene blue, onto clay[J]. J. Hazard. Mater B, 2006, 131(1-3):217-228
    [32] Bujdak J, Komadel P. Interaction of methylene blue with reduced charge montmorillonite[J]. J Phys Chem B, 1997, 101(44): 9065–9068.
    [33]谢复青.改性钢渣处理碱性品红染料废水研究[J].广东化工, 2005, 32(9):75-76
    [34] Yi J Z, Zhang L M. Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels[J]. Bioresour. Technol, 2008, 99(7): 2182-2186
    [35]刘正芹.染料生物降解脱色及印染废水FABR/O处理工艺研究[D].上海.东华大学, 2007
    [36] Carlson G, Silverstein J. Effect of molecularize and charge on biofilm sorption of organic Matter[J]. Water Res, 1998, 32(5): l580-l592.