磁性累托石复合材料制备及其在废水处理上的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了磁性微孔矿物复合材料的国内外研究现状,并阐述了磁性累托石的研究意义。
     研究了共沉淀法制备纳米Fe_3O_4的最佳工艺条件:以氯化铁、硫酸亚铁为原料,按Fe~(3+)与Fe~(2+)摩尔比为4 : 3配置成溶液,用1mol/L的NaOH溶液调节pH值至11,于60℃下搅拌反应1.5 h,80℃晶化1.5 h。通过XRD、SEM、TEM、VSM分析表明,产物主要为Fe_3O_4,其平均晶粒径为14.1 nm,具有超顺磁性,磁饱和强度为56.337 A·m~2/kg,剩磁为1.195 A·m~2/kg,磁矫顽力为0.167A·m~(-1)。
     采用分步复合工艺制备了Fe_3O_4负载型磁性累托石,通过XRD、TEM、VSM分析表明,Fe_3O_4粒子均匀地负着于累托石表面,磁性累托石仍具有良好的磁性,其磁饱和强度随Fe_3O_4载量的增加而增大。运用插层原理,以FeCl_3、FeSO_4及有机插层累托石为原料,制备了Fe_3O_4柱撑磁性累托石,XRD、SEM、磁性、比表面积分析结果表明累托石层间存在有Fe_3O_4。
     将Fe_3O_4负载型磁性累托石用于含金属离子与有机染料模拟废水处理的实验研究表明,对废水中污染物起吸附作用的主要为磁性累托石中的累托石;当废水中污染物浓度一定时,对金属离子的吸附率与对有机物的脱色率随时间增长逐渐增大,在一定时间后趋于饱和;对三种金属离子的吸附率关系为Cu~(2+)>Zn~(2+)>Cd~(2+),对亚甲基蓝的脱色效果较甲基橙好;随着pH值的升高,对废水中金属离子的吸附率与对亚甲基蓝的脱色率增加,对甲基橙的脱色率降低;随着磁性累托石添加量的增加,对金属离子的去除率与对有机染料的脱色率增大;随着废水初始浓度的增大,对金属离子的的去除率与有机染料的脱色率逐渐降低,但磁性累托石对金属离子的吸附率增加。
     将磁性累托石用于亚甲基蓝废水处理后的磁分离回收实验研究表明,各样品磁分离回收率均在96%以上,即在废水处理后利用磁选工艺便可实现该吸附剂的快速回收。
This paper summarized the research status of magnetic microporous mineral composite at home and abroad, and described research significance of magnetic rectorite.
     The optimum conditions of preparation of nano-Fe_3O_4 with coprecipitation method were studied. The solution was deloyed as molar ratio of Fe~(3+)/Fe~(2+) 4 to 3 by using ferric chloride, ferrous sulfate as raw material, and used NaOH to adjust pH value to 11, stirred at 60℃for 1.5 h, crystallized at 80℃. The analysis of XRD, SEM, TEM, and VSM indicated that the products were mainly Fe_3O_4, average granularity of Fe_3O_4 was 14.1 nm, had well characteristic of superparamagnetism, and saturated magnetic intensity, remanence and magnetic coercive force of Fe_3O_4 was 56.337 emu·g~(-1), 1.19480 emu·g~(-1), 0.167A·m~(-1), respectively.
     Magnetic rectorite with Fe_3O_4 loaded was prepared by fractional steps method. The analysis of XRD, TEM, and VSM indicated that the surface of rectorite was covered evenly by Fe_3O_4, and saturated magnetic intensity of magnetic rectorite increased with the content of Fe_3O_4 increasing. Using intercalation principle, magnetic rectorite with Fe_3O_4 pillared was prepared by using ferric chloride, ferrous sulfate and organic-rectorite as raw material. The analysis of XRD, SEM, magnetism and specific surface area indicated that Fe_3O_4 was in the layer of rectorite.
     The expriment that magnetic rectorite with Fe_3O_4 loaded used to dispose analogue metal ions and organic dye wastewater indicated that the adsorption of contaminant in wastewater on magnetic rectorite was mainly rectorite. When the concentration of contaminant in wastewater was fixed, the adsorption rate of metal ions and decoloration rate of organic dye on magnetic rectorite increased with time prolonging, and adsorption tended to saturation after certain time. The relationship of the adsorption rate of metal ions was Cu~(2+)>Zn~(2+)>Cd~(2+), and the decoloration rate of methylene blue was better than metbyl orange. With pH value increasing, the adsorption rate of metal ions and decoloration rate of methylene blue on magnetic rectorite increased, but the decoloration rate of metbyl orange on magnetic rectorite reduced. The removal rate of metal ions and decoloration rate of organic dye on magnetic rectorite increased with addition amount of magnetic rectorite increasing. With the initial concentration of wastewater increasing, the removal rate of metal ions and decoloration rate of organic dye on magnetic rectorite reduced, and the adsorption rate of metal ions increased. The magnetic separation and recovery experiments that magnetic rectorite was used to dispose analogue methylene blue wastewater indicated that magnetic separation and recovery rate of all samples reached to over 96%, which indicated the adsorbent was easily recovered by using magnetic separation process after wastewater treatment.
引文
[1]潘兆橹.结晶学及矿物学下册[M]. 1994,地质出版社:北京
    [2] Xueqing Yue, Ruijun Zhang, Fucheng Zhang. etal. Decomposition of crude oil absorbed into expanded graphite/TiO2/NiO composites[J]. Desalination, 2009,×××:4
    [3] Toyoda, M. and M. Inagaki. Heavy oil sorption using exfoliated graphite: New application of exfoliated graphite to protect heavy oil pollution[J]. Carbon, 2000, 38: 199~210
    [4]云中客.磁性石墨[J].物理新闻与动态, 2004, 33(4):297
    [5] H.R.OBCRHHNKOB等,磁性石墨对弹性体胶料性能的影响[J].橡胶参考资料, 1995, 9(25): 13~15
    [6]彭俊芳,康飞宇,黄正宏.填充氧化物颗粒的石墨基复合材料[J].材料科学与工程, 2002, 20(4): 469~472
    [7]张晏清,孙庆荣.磁性膨胀石墨的制备及性能[J].材料导报, 2007, 21(5): 129~131
    [8]张高生,曲久辉,刘会娟等.活性炭/铁氧化物磁性复合吸附材料的制备及去除水中酸性橙Ⅱ的研究[J].环境科学学报, 2006, 26(11): 1763~1768
    [9]陈学刚,宋怀河,陈晓红等.纳米金属粒子/炭复合材料及其研究进展[J].炭素技术, 2000, (5): 16~21
    [10]曹慧群,邵科,李耀刚.新型碳纳米管磁性复合材料的制备及磁性能[J].硅酸盐学报, 2008, 36(9): 1247~1276
    [11] Qi Zhang, Meifang Zhu, Qinghong Zhang, etal. The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes[J]. Composites Science and Technology, 2009, 69: 633~638
    [12] Na Yang, Shenmin Zhu, Di Zhang, etal. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal[J]. Materials Letters, 2008, 62: 645~647
    [13] Maohua Teng, Shaowei Tsai, Wenan Chiou. Magnetic packing of graphite encapsulated nickel nanoparticles[J]. Journal of Alloys and Compounds, 2009,×××: 3
    [14] Gaosheng Zhang, Jiuhui Qu, Huijuan Liu, etal. CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration[J]. Chemosphere, 2007, 68: 1058~1066
    [15]闫冠杰.可循环磁性天然沸石的制备及其吸附性能研究[D].湖南长沙:中南大学,2009
    [16] Athanasios B. Bourlinos, Radek Zboril, Dimitrios Petridis. A simple route towards magnetically modified zeolites[J]. Microporous and Mesoporous Materials, 2003, 58: 155~162
    [17] Jinlong Jiang, Jianfeng Yao, Changfeng Zeng, etal. Preparation of magnetic hollow ZSM-5/Ni composite spheres[J]. Microporous and Mesoporous Materials, 2008, 112: 450~457
    [18] In Wook Nah, Kyung-Yub Hwang, Choong Jeon, etal. Removal of Pb ion from water by magnetically modified zeolite[J]. Minerals Engineering, 2006, 19: 1452~1455
    [19] Luiz C.A. Oliveira, Diego I. Petkowiczb, Alessandra Smaniotto, etal. Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water[J]. Water Research, 2004, 38: 3699~3704
    [20] Luiz C.A. Oliveira, Rachel. V.R.A. Rios, JoséD. Fabris, etal. Activated carbon/ iron oxide magnetic composites for the adsorption of contaminants in water[J]. Carbon, 2002, 40: 2177~2183
    [21] Luiz C.A. Oliveira, Rachel. V.R.A. Rios, JoséD. Fabris, etal. Clay–iron oxide magnetic composites for the adsorption of contaminants in water[J]. Applied Clay Science, 2003, 22: 169~177
    [22] Jilin Cao, Xiuwu Liu, Rui Fu, etal. Magnetic P zeolites: Synthesis, characterization and the behavior in potassium extraction from seawater[J]. Separation and Purification Technology, 2008, 63: 92~100
    [23]曹吉林,邢冬强,刘秀伍等.超声波合成磁性4a沸石分子筛[J].物理化学学报, 2007, 23(12): 1893~1898
    [24]曹吉林,闫栋梁,刘秀伍等.磁性4a沸石制备及其对水中氯乙酸吸附[J].离子交换与吸附, 2008, 24(5): 400~407
    [25]哈斯其木格,李松澎,徐爱菊等.制备沸石基纳米非晶软磁材料的新方法及其磁性[J].高等学校化学学报, 2003, 24(9): 1633~1636
    [26]袁明亮,闫冠杰,谭美易等.磁性沸石的制备与表征及其对Pb2+的吸附性能[J].过程工程学报, 2009,9(4): 707~711
    [27]高薇.凹凸棒石/磁性铁氧化物/TiO2复合材料的制备与性能研究[D].安徽合肥:合肥工业大学, 2008
    [28]汤庆国,沈上越,冉松林等.纳米磁性微粒(流体)的制备及性能[J].硅酸盐学报, 2005, 33(11): 1352~1355
    [29]汤庆国,沈上越,梁金生等.磁性凹凸棒石靶向药物载体材料的制备及性能[J].硅酸盐学报, 2006, 34(01): 93~97
    [30]汤庆国,沈上越,梁金生等.凹凸棒石及其磁性药物载体的吸附及解吸性能[J].硅酸盐学报, 2006, 34(06): 739~743
    [31]沈上越,汤庆国,杨眉等.磁性坡缕石复合材料的制备及性能[J].硅酸盐学报, 2006, 34(7): 875~878
    [32]汪华锋,盛晓波,林萍华等.磁性坡缕石靶向药物载体的原位制备及性能[J].硅酸盐学报, 2009, 37(04): 506~511
    [33]庆承松,谢晶晶,陈天虎等.凹凸棒石-TiO2-磁性颗粒纳米复合材料的制备[J].矿物岩石地球化学通报, 2006, 25(4): 310~313
    [34]庆承松,宋浩,陈天虎等.凹凸棒石/γ-Fe2O3/碳纳米材料的制备及其对苯酚的吸附作用[J].环境科学研究, 2009, 22(3): 277~283
    [35] Yushan Liu, Peng Liu, Zhixing Su, etal. Attapulgite–Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Applied Surface Science, 2008, 255: 2020~2025
    [36]曹吉林,陈学青,刘秀伍等.磁性膨润土净水剂制备及其应用[J].天津大学学报, 2007, 40(4): 457~462
    [37]王维清,冯启明,董发勤等.磁性膨润土的制备及其性能[J].硅酸盐学报, 2010, 38(4): 684~688
    [38]赵晓东,冯启明,王维清.磁性膨润土的制备及其性能研究[J].非金属矿, 2010, 33(2): 15~20
    [39] Zuzana Orolínová, Annamaria Mockovciaková. Structural study of bentonite/iron oxide composites[J]. Materials Chemistry and Physics, 2009, 114: 956~961
    [40] Luiz C.A. Oliveira, Rachel. V.R.A. Rios, JoséD. Fabris, etal. Clay–iron oxide magnetic composites for the adsorptionof contaminants in water[J]. Applied Clay Science, 2003, 22: 169~177
    [41]江涛,刘源骏.累托石[M].武汉:湖北科学技术出版社, 1989
    [42]李玲,向航等.功能材料与纳米技术[M].北京:化学工业出版社, 2002: 3~5
    [43]余声明.纳米磁性技术的发展如日中天[J].世界产品与技术, 2001, 6: 14~16
    [44]薛群基,徐康.纳米化学[J].化学进展, 2000, 12(4): 431~444
    [45]高银浩,张文庆.纳米磁性材料的制备及应用的新进展[J].广州化工, 2009, 37(5): 6~8
    [46]蒋秉植,杨健美.磁性流体的制备、应用及其稳定性的解析[J].化学进展, 1997, 9(1): 69~78
    [47]苑星海,林穗云,黄建伟.共沉淀法制备纳米Fe3O4磁性粒子的工艺研究[J].嘉应学院学报, 2007, 25(3): 39~42
    [48]彭龙,徐光亮,刘莉.水热法制备磁性材料粉体的研究进展[J].磁性材料及器件, 2005, 36(3): 13~15
    [49]陈兴,邓兆祥,李宇鹏等.水热法制备超顺磁性铁氧体纳米微粒[J].无机化学学报, 2002, 18(5): 460~464
    [50]陈祖耀,张大杰,钱逸泰,喷雾热解法制备超细粉末及其应用[J].硅酸盐通报, 1988, 7(6): 54~56
    [51] A.Vital, A. Angermann, R. Dittmann, etal. Highly sinter-active (Mg-Cu)-Zn ferrite nanoparticles prepared by flame spray synthesis[J]. Acta Materialia, 2007, 55(6): 1955~1964
    [52] Min Ha Kim, Due Soo Jung, Yun Chan Kang, etal. Nanosized barium ferrite powders prepared by spray pyrolysis from citric acid solution[J]. Ceramics International, 2009, 35(5): 1933~1937
    [53] DongHwang Chen, XinRong He. Synthesis of nickel ferrite nanoparticles by sol-gel method[J]. Materials Research Bulletin. 2001, 36(7-8): 1369~1377
    [54] Shifeng Yan, Jingbo Yin, Enle Zhou, etal. Study on the synthesis of NiZnCu ferrite nanoparticles by PVA sol-gel method and their magnetic properties[J]. Journal of Alloys and Compounds, 2008, 450(1-2): 417~420
    [55]李荫远,李国栋.铁氧体物理化学[M].北京:科学出版社, 1978
    [56] S.Chikazumi, S.Taketom, and Mukita, Physics of magnetic fluids[J]. Magn.mater, 1987, 65: 245~251
    [57] Zahn.M.,Magnetic fluid and nanoparticle applications to nano-technology[J]. Journal of nanoparticle rearch, 2001, 3: 73~78
    [58] JianHua Meng, GuiQin Yang, LeMei Yan, etal. synthesis and characterization of magnetic nanometer pigment Fe3O4 [J]. 2005, 66: 109~113
    [59]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社, 1985
    [60]蔡进红,代建清,陈文国,等. Fe3+/Ba2+/Co2+/Zn2+/Cu2+在NH4HCO3-NH3·H2O和NaOH-NaCO3体系中的热力学分析[J].无机化学学报, 2009, 25(5): 888~889
    [61]王煜明.非晶体及晶体缺陷的X射线衍射[M].北京:科学出版社.1988: 76~85
    [62]曹吉林,付睿,刘秀伍等.磁性核p型沸石的合成及表征[J].无机化学学报, 2007, 23(12): 2065~2071
    [63] Berry L G. Mineralogy, Concepts, Descriptions, Determinations [M]. San Francisco: Freeman, 1983, 550~551
    [64]陆琦,管俊芳,刘惠芳等.柱撑粘土的晶体结构模型[J].矿物岩石地球化学通报, 2002, 21(4): 217~220
    [65]徐传云,张明杰,沈秀娣等.钙基、钙钠基蒙脱石与亚甲基蓝反应的研究[J].建材地质, 1997, (3): 26~30
    [66]何永祥.天然沸石对水体中甲基橙和亚甲基蓝的吸附研究[D].河南郑州:郑州大学, 2007