粘土基陶粒的研制及其对重金属离子的吸附
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粘土类吸附剂由于其特殊结构而具有良好的吸附和离子交换性能及其低廉的价格和丰富的储量,在废水处理众多领域表现出广阔的应用前景,但直接使用粘土粉料或改性粘土进行水处理,易造成二次污染,且不利于回收再利用。沿着对天然粘土材料进行改性或人工设计组装性能优越的吸附材料的研究思路,针对上述问题,本研究以粘土为骨料,通过添加无机造孔剂,在低温欠烧状态下来烧制陶粒,得到性能优良、可回收利用的廉价吸附材料,研究了陶粒性能、改性及其对水中重金属离子吸附方面的应用。
     以粘土为骨料,选用煤粉(5%)和石墨(15%)作为复合造孔剂,添加1.5%蛭石改性,烧制成功粘土质多孔陶粒,其显气孔率为67.87%、体积密度可达0.93g/cm3。陶粒性能受造孔剂种类、复合造孔剂配比和蛭石添加量的影响,随石墨添加量的增加,显气孔率先增后减,体积密度呈相反的变化趋势;蛭石的添加,可以补偿部分陶粒体积收缩,且能改善陶粒孔型和结构,提高显气孔率,降低体积密度,提高陶粒抗粉化率。
     粘土质多孔陶粒体密度低、气孔率高、表面粗糙,对污水中重金属离子Cu2+、Pb2+和Cd2+具有较好的吸附性能。吸附过程由表面吸附和平衡吸附两阶段形成,吸附初期有较高的吸附速率,在一定时间内即可达到吸附平衡。陶粒中-OH、C-O基团参与了吸附,形成了新相,但没有破坏陶粒本身结构。Cu2+吸附动力学更符合Freundlich方程,吸附反应属于多层吸附,Pb2+和Cd2+符合准二级吸附速率方程和颗粒内扩散模型,并由此确定吸附为化学吸附,且吸附过程由多个步骤控制。
For their special structure, good adsorption and ion exchange properties, low prices and abundant reserves, clay adsorbents show broad application prospects in many areas as wastewater treatment. But directly using clay powder or modified clay water treatment could easily lead to secondary pollution and not conducive to recycle. Along the research ideas to modify natural clay material or design assembled superior performance as the adsorption material. In view of all above problems, in this study, clay was used as aggregate, adding inorganic as pore-forming agent, sintering ceramic at lower temperature to receive excellent performance, low-cost adsorption and recycle- able materials. Ceramic properties were studied, as well as modified ceramic and its application on the adsorption of heavy metal ions.
     Clay as aggregate, pulverized coal (5%) and graphite (15%) composite as pore-forming agent, 1.5% vermiculite as modifier, porous ceramic clay sintered successfully, apparent porosity is 67.87%, the volume density reaches 0.93g/cm3. Performance is impacted by the pore-forming agent types, complex pore- forming agent ratio and vermiculite agent. With an increase of the amount of graphite, porosity significantly first increases then begins to reduce, bulk density showes the opposite trend. Vermiculite adding can compensate for part of the ceramic volume contraction, improve shapes and structure of pore, improve porosity, lower bulk density and improve the rate of powder resistance.
     With low density, high porosity and rough surface, porous ceramic based clay have better adsorption properties body of heavy metal ions like Cu2+, Pb2+ and Cd2+ in sewage. Adsorption process includes the outside surface adsorption and equilibrium adsorption, which begins with high adsorption rate and reachs equilibrium within certain period of time. -OH and C-O in ceramic participate in the adsorption process and a new phase forms, the very structure of ceramic hasn’t been destroyed. Cu2+ adsorption kinetics is more consistent with Freundlich equation, adsorption reactions are multi-layer adsorption. The Pb2+ and Cd2+ adsorption processes more in line with Quasi-two adsorption rate equation and Intragranular transport model, which means the adsorption process includes chemical adsorption and controls by several steps.
引文
[1]邢福俊,王霞.试论城市水资源环境与城市经济增长关系[J].生态经济,2001,(9):54-57.
    [2] Aleya Begum, Md, Nurul Amin.Selected elemental composition of the muscle tis- sue of three species of fish:tilapia niltica cirrhina ntrigala and clarius batrachus from fresh water Dhanmondi Lake in Bangledesh.Food Chemistry, 2005(93): 439-443.
    [3]孙传尧.大洋多金属结核及富钴结壳矿物材料的研究述评[J].国外金属矿选矿,2003,9:4-6.
    [4]李伟.海洋矿产开采技术[J].中国矿业,2003,(12)1:45-46.
    [5]简曲.中国大洋采矿技术发展述评[J].采矿技术,2001,2(1):9-11.
    [6] Chung J.S.Deep-ocean mining:Technologies for manganese nodules and crusts. Intern J of offshore and polar Engineering,1996,6(4):244-254.
    [7]梁平.洋底富钴结壳的开采方法[J].金属矿山,2002,11:20-22.
    [8]罗春雷.钴结壳开采装置及方法[J].中南工业大学学报,2002,6(33):6-8.
    [9] Lay G.F.,Wiltshire J.C., Saxena N.Formulation of specialty glasses and glazes employing marine mineral tailings. Recent Advances in Marine Science and Technology, 1997, 347.
    [10]蒋训雄.常温常压硫酸浸出富钴结壳研究[J].有色金属(冶炼部分),2002,3:2-5.
    [11]沈裕军.富钴结壳的还原熔炼研究[J].矿冶工程,2004,(24)4:44-46.
    [12]蒋训雄.酸浸-萃取工艺从富钴结壳矿中提取钴、镍、铜、锰[J].矿冶,2002,(11)1:67-70.
    [13]陆杰斌.中国水资源危机成因的经济分析及其解决办法[J].中国农学通报, 2005, 21 (5) : 400- 448.
    [14]刘喜峰,徐红松,宋文娟等.我国北方地区水资源问题及对策[J].河南水利与南水北调,2007,13(5):21-50.
    [15]刘继艳,陈长富,户朝旺.浅析我国水资源现状及节水的必要性和途径[J].农业经济与科技,2009,20 (4):56-64.
    [16]夏厚林,徐先顺,谢秀琼等.元胡止痛片中重金属及铅镉汞的测定[J].中成制药,2004,26 (3):203-205.
    [17] Weber J . Wastewater Treatment [J]. Metal Finishing , 1999 , 97 (1) : 801~802 , 806 , 810 , 812 , 814 , 816 , 818.
    [18] Thornton G.J.P., Walsh P.D. Heavy metals in the waters of the Nanty-Fendrod: change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Valley, South Wales, UK. The Science of the Total Environment, 2001, 278 (1~3):45-55.
    [19] Helle V. A., Jesper K., Christian P., et al. Environmental risk assessment of surface water and sediments in Copenhagen harbour. Water Science and Technology,1998, 37(6,7):263-272.
    [20] Rybicka E. H. Environmental impact of mining and smelting industries in Poland. Fuel and Energy Abstracts , 1997, 38(3):186-189.
    [21] Rashed M N. Monitoring of environmental heavy metals in fish from Nasser Lake.Environment International, 2001, 27(1): 27-33.
    [22]陈红,叶兆杰,方士等.不同状态MnO2对废水中As3+的吸附性能研究[J].中国环境科学,1998,18(2):12-13.
    [23] Chaudhari S.,Tare V.Analysis and Evaluation of Heavy Metal Uptake and Release by Insoluble Starch Xanthate in Aqueous Environment. Wat Sci Tech, 1996, 34 (10): 161-168.
    [24]郭嘉,陈延林.新型离子交换纤维的应用研究及展望[J].高科技纤维与应用, 2005,30(6):35-38.
    [25] KIM S., MOON S. H., KIM K. W., et al.Pilot scale study on the exsitu electro kinetic removal of heavy from municipal waste water sludges. Water Research, 2002, 36: 4765-4774.
    [26]叶正华.吸附分离过程基础[M].北京:化学工业出版社,1988:1-16.
    [27]杨晓玲.用气浮法处理含重金属废水[J].云南冶金,2000,29( 4):38- 40.
    [28]赵庆良,李伟光.特种废水处理技术[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [29]马士军.微生物絮凝剂的开发及应用[J].工业水处理,1997,12 (1) :7-10.
    [30]李玉梅.中国水资源问题及对策[J].学习时报,2006,13 (2):3-5.
    [31]王锐刚,张雁秋.粘土矿物治理重金属污染的机理及应用[J].中国矿业,2007,16(2):103-105.
    [32]吴大清,刁桂仪,彭金莲等.混合矿物体系表面吸附反应动力学研究[J].中国科学(D辑),2000,30(1):25-32.
    [33]刘王君,秦善.层状硅酸盐对重金属污染的防治[J].岩石矿物学,2001,20 (4): 461-466.
    [34]何宏平,郭九皋,谢先德等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2):231-235.
    [35]刘云,吴平霄.黏土矿物与重金属界面反应的研究进展[J].环境污染治理技术与设备,200,7(1):17-21.
    [36]温淑瑶,马毅杰.膨润土改性机理研究进展[J].污染防治技术,1999,12(3):178-180.
    [37]刘学良,刘莺,王进防等.改性的膨润土或沸石在废水处理中的应用展望.环境污染治理技术与设备,2000,1 (4):57-61.
    [38]王晓蓉,吴顺年,李万山.有机黏土矿物对污染环境修复的研究进展,环境化学,1997,16 (1):1-13.
    [39]曾秀琼,刘维屏.无机-有机柱撑膨润土的制备及其在水处理中的应用进展.环境污染治理技术与设备,2001,2(2):10-13.
    [40] Berninger K., Pennanen J. Heavy metals in perch (perca fluviatilis L.) from two acidified lakes in the Salpausselka Eskerarea in Finland. Water, Air and Soil Pollution, 1995, 81(3~4): 283-294.
    [41] Woo N C. Pb on Groundwater Particles, Door County, Wisconsin. Environ- mental Geology, 1994, 24(2):150-156.
    [42] Freedman Y E, Magatz M G, Long G L,et al. Interaction of metals with mineral surface in a natural groundwater environment.Chemical Geology, 1994, 116: 111- 121.
    [43] Manning P. G., Wang X. W. The binding of Pb, Zn, and other metal ions in suspended riverine particulate matter.The Canadian Mineralogist, 1995, 33: 679~ 687.
    [44] He Hongping, Guo Jiugao, Xie Xiande,et al. Location and migration of cations in Cu2+ adsorbed montmo rillonite. Environment International, 2001, 26(5/6): 347- 352.
    [45]吴大清,刁桂仪,彭金莲等.矿物对金属离子的竞争吸附实验研究[J].地球化学,1997,26(6):25-32.
    [46]鲁安怀.环境矿物材料在土壤、水体、大气污染治理中的利用[J].岩石矿物学杂志,1999,18(4):292-300.
    [47]吴宏海,吴大清,彭金莲.重金属离子与方解石表面反应的实验研究[J].岩石矿物学杂志,1999,18(4):301-308.
    [48]何宏平,郭九皋,谢先德等.蒙脱石、伊利石和高岭石对Cu2+、Pb2+、Zn2+、Cd2+、Cr3+的吸附选择性及pH影响的实验研究[J].矿物学报,1999,19(2):115-119.
    [49]朱利中,陈宝梁.有机膨润土在废水处理中的应用及其进展.环境科学进展, 1998,6(3):53-61.
    [50] Su-Hsia Lin, Ruey-Shin Juang.Heavy metal removal from water by sorption using surfactant modified montmorillonite. Tournal of Hazardous Materials, 2002, B92: 315-316.
    [51] R. Naseem and S. S. Tahir. Removal of Pb (Ⅱ) f rom aqueous/ acidic solutions by using bentonite as an adsorbent [Z].
    [52] B. S. Krishna. ,D. S. R. Murty. ,B. S. J ai Prakash. Surfactant modified clay as adsorbent for chromate [J ] .Applied Clay Science,2001,20:65 - 71.
    [53] E. Alvarez-Ayuso ,A. Ganchez2Sanchez. Removal of heavy metals f rom waste waters by natural and Naex-changed bentonite[J]. Clays and Clay Minerals ,2003 ,51 (5) :475– 480.
    [54] Krikorian, Nadine, Martin, et al. Extraction of selected heavy metals using modi- fyed clays. Journal of Environmental Science and Engineering, 2005, 40 (3): 601-608.
    [55] Mathialagan and Viraraghavan. Adsorption of cadmium from aqueous solutions by vermiculite. Separation Science and Technology, 2003, 38(1): 57-76.
    [56]孙家寿,刘羽.铝锆交联膨润土对废水中铬的吸附研究[J].非金矿,2000,23 (3):13-14.
    [57]孙家寿,刘羽.交联粘土矿吸附特性研究(Ⅶ)-铝锆交联膨润土对废水中铬的吸附研究[J].武汉化工学院学报,2000,22(4):37-39.
    [58]孙家寿,张泽强.累托石层孔材料在废水处理中的应用研究(Ⅰ)-含Cr(Ⅵ)废水的处理[J].武汉化工学院学报,2002,24(1):51-54.
    [59]苏玉红,王强.有机膨润土对重金属离子吸附性能研究[J].新疆有色属,2002, 3:24-26.
    [60]杨华明,张华.Ca-基膨润土制备重金属废水吸附剂的研究[J].金属矿山, 2004,9:57-59.
    [61]马小隆,刘晓明.钙基膨润土的改性方法及对Pb2+吸附性能的研究[J].有色矿冶,2005,21(4):44-47.
    [62]杜冬云,孙文.钙基累托石对模拟废水中镉的吸附[J].离子交换与吸附,2004,20(6):519-525.
    [63]彭书传,李辉夫.纯凹凸棒石吸附Cu2+的实验研究[J].安徽农业大学学报,2005,32(2):212-215.
    [64]彭书传,黄川徽.坡缕石对Zn2+的吸附性能及吸附工艺条件优化研究[J].岩石矿物学杂志,2004,23(3) :282-286.
    [65]陈天虎,史晓莉.水悬浮体系中凹凸棒石与Cu2+作用机理[J].高校地质学报, 2004,10(3):385-391.
    [66]彭书传,黄川徽.盐酸活化凹凸棒石吸附Cr3+工艺条件的优化研究[J].合肥工业大学学报(自然科学版),2003,26(3):332-335.
    [67]吴宏海,吴大清,彭金莲.重金属离子与石英表面反应实验研究[J].地球化学, 1998,27 (5):523-531.
    [68]何宏平,郭九皋,谢先德等.蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J].矿物学报,1999,19(2): 231-235.
    [69]罗道成,易平贵,陈安国.多孔质沸石颗粒对矿井水中吸附性能的研究[J].水处理技术,2003,29(6):338-340.
    [70]韩润平,石杰,李建军等.生物材料对重金属离子的吸附富集作用[J].化学通报,2000(7):12-15.
    [71]李贞.硅藻土的开发与应用[A].第二届全国环境科学研究生学术讨论会论文摘要,1988( 2):91-92.
    [72] Fushimi Hiromu. Zeolite applys in heavey meatals watewater.Waseda Daigku Rikogaku Kenkyusho Hokoku,1980,89:88-101.
    [73]宋和付,陈安国.膨润土吸附去除Zn2+、Cd2+的研究[J].材料保护,2001, 34( 9):40-41.
    [74]王格慧,宋湛谦,王连生.树皮的化学改性及其吸附特性研究[J].林产化学与工业,2002,22(2):12-16.
    [75] Cadena F., Ritzvi R., Peters R. W. Feasibility studies for the removal of heavy me- tals from solution using tailored bentonite. Drexel University.
    [76] Proceedings of the- twenty-second mid atlandic industrial waste conference. Philadel phia: Hazardous and industrial wastes ,1990,77-94.
    [77]邵红,王冬梅,梁彦秋等.铁硅交联膨润土对Cr6+的吸附研究[J].沈阳化工学院学报,2004,18(2):100-103.
    [78] Virote Boonamnuay vitaya. Removal of heavymetals by adsorbent prepared frompyrolyzed coffee residues and clay. Separation and Purification Technology. 2004, 35:11-22.
    [79] Cynthia A. Coles, Raymond N. Yong. Aspects of kaolinite characterization and retention of Pb and Cd. Applied Clay Science, 2002, 22:39-45.
    [80]郭继香,袁存光,郑参军等.用蛭石吸附法脱除污水中的重金属[J].石油大学学报(自然科学版),1998,22(2):60-63.
    [81]吴平霄,廖宗文,毛小云.高表面活性矿物对Zn2+的吸附机理及环境意义[J].矿物学报,2001,21(3):335-340.
    [82]谭光群,李晖,彭同江.蛭石对重金属离子吸附作用的研究[J].四川大学学报,2001,33(3):58-61.
    [83]陈方明,陆琦.非金属矿物材料在废水处理中的应用[J].矿产保护与利用,2004,(1):18~21.
    [84] Beate Riebe, Stefan Dultz, Claus Bunnenberg. Temperature effects on iodine adsorption on organo-clay minerals: Influence of pretreatment and adsorption temperature. Applied Clay Science, 2005, 28: 9~16.
    [85]蔡伟铭,胡中雄.土力学和基础工程.北京:中国建筑工业出版社,1991.
    [86]高大钊,袁聚云.土质学和土力学.第三版.北京:人民交通出版社,2002.
    [87]高大钊主编.土质学和土力学.北京:中国建筑工业出版社,1998.
    [88] Brito M.E. Boundaries in porous alumina. Journal of Materials Science Leffers. 2002, 20: 2053-2055.
    [89]应文绍,胡钟灵.蛙石膨胀度影响因素简析[J].非金属矿,1994,100:31-48.
    [90] Brindley G. W. Hydrobiotite, a Regular 1:1 Interstratification of Biotite and Vermiculite Layers. American Mineralogist, 1983, 68: 420-425.
    [91]王正海,曹贞源.蛭石的应用现状及开发前景[J].保温材料与建筑节能,1998,6.
    [92]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(2):24-27.
    [93]周勇,刘杏芹,杨萍华.多孔α-Al2O3陶瓷的制备及其研究.中国科学技术大学学报,1997,27(2):1-8.
    [94]陆佩文主编.无极材料学基础.武汉:武汉工业大学出版社,1996.
    [95]江昕,尹美珍.陶粒材料的制备技术及应用.现代技术陶瓷,2002(1):15-19.
    [96] Nettle ship L. Application of Porous Ceramics. Engineering Materials,1996,122-305.
    [97]刘福生,彭同江,张建洪.蛭石改性处理研究现状评述[J].矿产综合利用,2002,(1):24-27.
    [98]安成强,崔作兴,郝建军.电镀三废治理技术.北京:国防工业出版社,2002. 18-19.
    [99]张开明,黄苏珍,原海燕等.铜污染的植物毒害、抗性机理及其植物修复.江苏环境科技,2005,18 (1):4-9.
    [100] Langmuir I. J Am Chem Soc, 1918,40:1361.
    [101]刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究[J].土壤肥料,2002(2):30-34.
    [102]于颖,周启星,王新.黑土和棕壤对铜的吸附研究[J].应用生态学报,2003,14(5):761-765.
    [103] Harter R. D., Baker D. E. Application and misapplications of the langmuir equation to soil adsorption phenomena. Soil Sci . Soc. Am.J.,1977, 41: 1677-1680.
    [104] Hassler,Thord Gustavg.Method for controlling pitch on a paper-making machine: US,5626720 [p]. 1997-05-06.
    [105] Xinghua Wen, Hongxiao Tang. Surface complexation model for the heavy metal adsorption on natural sediment. Sci Technol, 1998, 32:870-874.
    [106] Hui K. S., Chao C. Y. H., Kot S. C. Removal of mixed heavy metalions in wastewater by zeolite 4A and residual products fromrecycled coal fly ash. Journal of Hazardous Materials, 2005, 127 B(1-3):89-101.
    [107] Unlu N., Ersoz M. Adsorption characteristics of heavy metal ionsonto a low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials, 2006, 136(2): 272-280.
    [108]丁世敏,封享华,汪玉庭等.交联壳聚糖多孔微球对染料的吸附平衡及吸附动力学分析[J].分析科学学报,2005,21(2):127-130.
    [109] Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science,2004, 278(1):18-25.
    [110] Manassero M, Pasqualini E, Sani D. Potassium sorption isotherms of a natural clayey-silt for pollutant containment. Environmental Geotechnics[C]. Rotterdam: alkema A Publishers, 1998. 235-240.
    [111] SUN Q., YAN L. The adsorption of basic dyes from aqueous solution on modified peatresin particle. Water Res, 2003, 37:1535-1544.
    [112] Agrawal A, Sahu K. Kinetic and isotherm studies of cadmiumadsorption on manganese nodule residue. Journal of HazardousMaterials, 2006, 137(2): 915-924.
    [113] Azizian S. Kinetic models of sorption: a theoretical analysis. J. colloid interface sci., 2004 , 276:47-52.
    [114] SUN Q., YAN L. The adsorption of basic dyes from aqueous solution on modified peatresin particle. Water Res, 2003, 37: 1535~1544.
    [115] HAN Run.ping, BAO Gai.ling, ZHU Lu. Spectroscopy and Spectral Analysis, 2004, 24(7): 820.