粉煤灰负载型固体碱催化剂的制备及在生物柴油合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是一种环境友好型、可再生、易于生物降解的绿色环保燃料。目前多采用大豆油、菜籽油等动植物油脂的酯交换反应制备,可以通过均相催化及非均相催化两种方式,其中非均相催化剂由于易再生、可循环使用,对设备腐蚀性小,后处理简便等优点,可以明显简化工艺环节,降低生产成本,是近年来的研究热点。常用的非均相催化剂可以分为固体酸催化剂及固体碱催化剂,其中后者催化活性高,反应时间短,反应条件温和,后处理简便,因此受到广泛重视。
     粉煤灰是燃煤电厂排出的工业废渣,它的主要成份是SiO_2和Al_2O_3,具有吸附、离子交换性能,因此粉煤灰可以作为良好的催化剂载体,目前普遍使用的催化剂载体是氧化铝、氧化钙、氧化镁、氧化硅、二氧化钛、分子筛等,关于粉煤灰负载型催化剂并未大规模研究应用。
     本实验通过浸渍法制备了一系列应用于生物柴油酯交换反应的粉煤灰负载型催化剂,选择了碱金属和碱土金属氢氧化物、硝酸盐、碳酸盐、醋酸盐、氨化物等多种负载的前驱体,从中筛选出具有最高催化活性的催化剂,测定碱强度以及总碱量(H_≥35),并运用SEM,IR,XRD等多种测试手段对其结构进行了分析表征,利用正交实验方法分别对其制备条件以及酯交换反应的条件进行优化。
     实验结果表明,在该系列催化剂中,NaOH/NaNO_3/粉煤灰负载型催化剂对棉籽油合成生物柴油的酯交换反应具有最高的催化活性,通过正交实验得到该催化剂最佳制备条件为NaOH含量为20%、NaNO_3含量为20%、催化剂煅烧温度270℃、煅烧时间4h;该催化剂催化棉籽油的酯交换反应的最佳反应条件为:醇油摩尔比为10:1,反应温度为70℃,反应时间为80min,催化剂用量为1.2%。当将该催化剂在此条件下应用于棉籽油的酯交换反应时,棉籽油的转化率可达到98.75%,并且催化剂在重复使用四次后,活性基本不变,可以循环使用。通过碱强度测定和结构表征,证明该固体碱催化剂已经具有活性中心,固体碱催化剂碱强度高达H_≥43,总碱量(H_≥35)达到5.12mmol/g,符合固体碱的定义。利用粉煤灰作为生物柴油催化剂的载体,体现了废物的再利用,即减轻了环境压力,又能缓解能源危机,因此本研究成果具有较大的实用和经济价值。
Biodiesel was environment-friendly renewable and easy-to-biodegradable. It is produced by transesterification of soybean oil, rapeseed oil and other animal or plant oil with methanol in the presence of homogeneous and heterogeneous catalyst. Traditional biodiesel production technologies of homogeneous catalysts had deficiencies, such as difficult to separate catalysts and bring about some environmental problems. So the research focus on the heterogeneous catalyst in recent years. Common heterogeneous catalysts can be divided into solid acid catalyst and solid base catalyst. The solid base catalyst was higher catalytic activity so could short the reaction time. And the reaction conditions were mild too.
     Coal fly ash is discharged from industrial waste of coal-fried power plant. It mostly contains SiO_2 and Al_2O_3 with adsorption and ion-exchange properties. Therefore, fly ash can serve as a good catalyst carrier. The main catalyst carrier concludes alumina, calcium oxide, magnesium oxide, silica, titanium dioxide, zeolite and so on. Catalysts with fly ash as carrier were not applied widely.
     A series of solid base catalysts with fly ash as carrier were prepared by impregnation and applied into the biodiesel production. Chose alkali metal and alkaline earth metal hydroxide, nitrate, carbonate, acetate, hydrazine as the precursor loaded on fly ash. The catalyst which has the highest activity was obtained, and its base strength and the total alkali content (H_≥35) was determinate. The catalyst was also analyzed and characterized by SEM, IR and XRD. Orthogonal analysis can optimize the best preparation conditions for the highest activity of the catalyst.
     The results showed that the catalyst with NaOH and NaNO_3 loaded on fly ash has the highest activity. The optimum conditions for catalyst preparation were obtained as follows: NaOH content of 20%, NaNO_3 content of 20%, the catalyst calcination temperature of 270℃and the calcination time of 4h. The optimum reaction conditions for the transesterification between cottonseed oil and methanol were determined as methanol/oil mole ratio of 10:1, catalyst dosage(catalyst/oil) of 1.2%, reaction time of 80min and reaction temperature of 70℃. The base catalyst exhibits excellent catalytic activity and the conversion of biodiesel production reaches over 98.75% under the optimum reaction conditions. After the catalyst was used repeatedly four times, the activity decreased less. The characterization showed that the catalyst had active sites. The highest base strength (H- )of the base catalyst reaches over 43, and the basicity is 5.12mmol/g. Using fly ash as a carrier of biodiesel catalyst reflects the recycling of waste, reduces the environmental pressure, eases the energy crisis. Therefore, this study has great practical and economic value.
引文
安文杰,许德平,王海京. 2005.生物柴油化学制备方法.粮食与油脂. (7): 3~6
    薄向利,夏代宽,邱添. 2005.超临界流体技术制备生物柴油的研究进展.粮油加工与食品机械(12): 60~63
    蔡钒,张斌斌,林静,张国玉,方维平,杨乐夫. 2008.酯交换制生物柴油的CaO固体碱催化剂.物理化学学报. 24(10): 1817~1823
    曹宏远,曹维良,张敬畅. 2005.固体酸Zr(SO4)2·4H2O催化制备生物柴油.北京化工大学学报. 32(6): 61~63
    曹龙奎,张学娟,包鸿慧,黄威. 2005.生物柴油制备技术及应用前景.农产品加工学刊. (3): 67~70
    陈和,王金福. 2006a.固体酸催化棉籽油酯交换制备生物柴油.过程工程学报. 4(6): 571~575
    陈和,王金福. 2006b.棉籽油酯交换制备生物柴油固体碱催化过程研究.高校化学工程学报. 20(4): 593~597
    陈伟,黄志良,刘羽,何前军,许涛. 2008.多孔HAp固体碱酯交换催化剂制备与表征.武汉工程大学学报. (1):70~73
    陈英,谢颖,梁秋梅,陈金平,李敬添.钙基固体碱催化剂用于花生油酯交换制备生物柴油.中国油脂, 2009, (3) : 29~34
    陈志锋,吴虹,宗敏华. 2006.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油.催化学报. 27(2):146~150
    陈忠明,陶克毅. 1994.固体碱催化剂的研究进展.化工进展. (3): 18~25
    储伟. 2006.催化剂工程.成都:四川大学出版社: 216~222
    崔士贞,刘纯山. 2005.固体碱催化大豆油酯交换反应的研究.工业催化. (7): 32~35
    代永刚,马毓霞,南喜平,王曙文,王海岩.生物柴油的现状及发展前景.粮油食品科技. 14(1): 17~19
    丁元生,罗志臣,王浔,韩笑言. 2004. Na-Na_2CO_3/γ-Al_2O_3型固体超强碱催化剂的制备及表征.精细石油化工. (1): 31~34
    丁元生,王亚红,王浔,崔昌亿. 2001. Na-KOH/γ-Al_2O_3型固体超强碱催化剂的制备及其性能研究.吉林化工学院学报. 18(3): 12~14
    董国君,王越,李婷. 2008.氧化锆负载硝酸盐固体碱催化剂的制备与表征.应用化工. (3): 22-25
    段柳,卢定强,陈建辉,吴雅霜,凌岫泉. 2008.固体碱催化制备生物柴油的气相色谱分析法.粮油加工. 2 (2) : 59~60
    樊欣梅,张德虎,黄彪,王华杰,韦藤幼,童张法. 2009.负载型膨润土固体碱催化剂的制备及在生物柴油合成中的应用.化工进展. (11): 52~55
    范航,张大年,赵一先. 2000.生物柴油的研究与应用.上海环境科学. 19 (11): 516~518
    方芳,曾虹燕. 2005.气相色谱法测定生物柴油中的脂肪酸甲脂.福建林学院学报. 25(1): 35~37
    高荫愉,陈文伟,阮榕生,林向阳,陈才水. 2004.生物柴油研究进展.可再生能源. (3): 6~10
    龚国珍,梁学正,王箭,权南南,张敬,鲍少华,杨建国. 2008.固体碱K2CO3/Al_2O_3催化酯交换法合成乙二醇甲醚乙酸酯.精细化工. (10): 982~984
    郭登峰,李为民,潘剑波,石红燕,程华. 2007.钙镁负载型固体碱催化剂制备生物柴油.应用化学. 24(10): 1149~1152
    郭登峰,盛梅,罗世平. 2004.气相色谱法测定生物柴油中多种脂肪酸甲酯.中国油脂. 29(4): 44~46
    郭俊宝,彭庆涛,杨光,徐广辉. 2008.固体碱催化剂在麻疯树油合成生物柴油中的应用.可再生能源. 26(2): 43~45
    郭萍梅,黄凤洪,赵军英,郑畅. 2009.固体碱催化剂(K2O/C)的制备及其催化酯交换反应.中国油料作物学报. 31(1): 81~85
    郭伟,马晓建,韩秀丽. 2008.负载型氧化钙固体碱催化剂用于棉籽油制备生物柴油的研究.粮油加工. (3): 63~66
    郭璇,贺华阳,王涛,朱慎林. 2003.超临界流体技术制备生物柴油.现代化工. (23): 15~18
    韩德奇,徐国英,徐会林,刘慧丽. 2002a.生物柴油的现状与发展前景.国际石油经济. 5(10): 20~23
    韩德奇,袁旦,王尽涛,刘慧丽. 2002b.生物柴油的现状与发展前景.石油化工技术经济. 18(4): 32~37
    何东平,张世宏,齐玉堂,姚理,金顺友,罗杰,袁晓洲. 2004.我国生物柴油的发展与展望.粮油加工与食品机械. (9): 10~12
    胡秋龙,刘灿明,吴苏喜,刘祥华,曾凡佳. 2006.生物柴油的应用近况和发展前景.粮食科技与经济. (1): 47~49
    黄庆德,黄凤洪,郭萍梅. 2002.生物柴油生产技术及其开发意义.粮食与油脂. (9): 8~10
    黄仕钧,陈英,谢颖,陈东,马玉刚. 2010.钙基固体碱催化酯交换反应制备生物柴油研究进展. 35(3): 46~50
    黄仲涛.工业催化. 2006.北京:化学工业出版社: 113~131
    贾虎森,许亦农. 2006.生物柴油利用概况及其在中国的发展思路.植物生态学报. 30 (2): 221~230
    姜利寒,颜姝丽,梁斌. 2006.非均相固体碱催化剂(CaO体系)用于生物柴油的制备.工业催化. 14(5): 34~38
    蒋剑春,杨凯华,聂小安. 2004.生物柴油的研究与应用.新能源与新材料. (5): 22~25
    金东日,王清珊,郑兴. 2006.改性粉煤灰的制备及表征.粉煤灰综合利用. (1): 26~27
    金青哲,刘元法,岳鹍. 2006.生物柴油发展现状和趋势.粮油加工与食品机械. (1):57~60
    鞠庆华,曾昌凤,郭卫军,张利雄,徐南平. 2004.酯交换法制备生物柴油的研究进展.化工进展. 23(10): 1053~1057
    李大塘. 1997.固体碱催化剂在化学反应中的应用.湘潭师范学院院报. 18(6): 16~22
    李东旭,陈益民,沈锦林,王玉江,苏姣华. 2000.碱对粉煤灰的活化和微观结构的影响.材料科学与工程. 18(1): 50~52
    李方文,魏先勋,马淞江,张德见,翟云波. 2003.煅烧对粉煤灰合成4A沸石的作用.环境科学与技术. 26(4): 13~17
    李浩南,罗金华,张彩,钟耕. 2006.生物柴油技术研究进展.新能源与新材料. (3): 1~4
    李琳,刘雅敏,买楠,李文静a. 2007. K2CO3/γ-Al_2O_3催化菜籽油酯交换合成生物柴油.石油化工. 36(9): 895~900
    李琳,买楠,刘雅敏,李文静b. 2007. KOH/Al_2O_3固体碱催化酯交换合成生物柴油的研究.中南民族大学学报(自然科学版). (3):23~25
    李为民,郑晓林,徐春明,徐鸽,邬国英. 2005.固体碱法制备生物柴油及其性能.化工学报.56(4): 711~716
    李永荣,辛忠,刘群,孟鑫. 2009.负载型固体碱催化棕榈油酯交换制备生物柴油.石油化工. 38(7): 795~800
    李泳,张兆霞. 2009.以贝壳粉为载体的固体碱生物柴油催化剂的制备及其应用研究.化学与生物工程. 26(2): 39~41
    刘维桥,孙桂大. 2000.固体催化剂实用研究方法.北京:中国石化出版社: 57~121
    刘文豹,赵德智,韩雪松,苗树运,杨培志. 2006.正交法探讨制备生物柴油的优化条件.粮油与饲料工业. (5): 24~25
    刘祥华,刘灿明,吴苏喜,曾凡佳,胡秋龙. 2006.气相色谱法测定生物柴油中脂肪酸甲酯含量.化学研究与应用. 18(5): 591~592
    刘兴泉,贾朝霞. 2000.负载型碱催化剂的制备及其在酯交换和醇、胺羰化反应中的应用.催化学报. 21(6): 583~585
    刘学军,贺华阳,王玉军,朱慎林. 2006.氧化钙固体碱催化剂用于大豆油和甲醇酯交换制备生物柴油的研究.石油炼制与化工. 37(12): 39~42
    刘银辉. 1999.粉煤灰预处理及其应用.北京工业大学学报. (3): 70~75
    鲁晓勇,鲍德艳,苏明华. 2008.负载型固体催化剂在生物柴油制备中的研究现状及应用前景.粮油加工. (5): 66~69
    吕亮,吾国强,汪金良,杨金女,段雪,李峰. 2001.新型固体碱催化剂在油脂酯交换反应中的应用.皮革化工. 18(3): 37~40
    梅德清,苏仕清,张文利,王忠,孙平. 2004.生物柴油制备工艺及其影响因素浅析.拖拉机与农用运输车. (6): 54~58
    孟鑫,辛忠. 2005. KF/CaO催化剂催化大豆油酯交换反应制备生物柴油.石油化工. 34(3): 282~286
    彭红,谢文磊,黄小明. 2004.油脂酯交换催化剂研究进展.粮食与油脂. (12): 3~6
    钱觉时. 2001.粉煤灰的矿物组成(中).粉煤灰综合利用. (2):37~39
    秦玉源,杨直. 2001.化学激活粉煤灰活性的研究.山西化工. 21(1): 16~17
    盛梅,郭登峰,张大华. 2002.大豆油制备生物柴油的研究.中国油脂. 27(1): 70~72.
    苏畅,赵崇峰,岳莉,时维振. 2004.生物柴油技术的进展.当代化工. 33(2): 79~81
    苏有勇,刘士清,张无敌,刘伟伟. 2006.小桐油制备生物柴油的研究.新能源及工艺. (1): 22~26
    孙纯,刘金迪. 2006.国内外生物柴油的开发应用现状.中外能源. 11(3): 97~102
    孙广东,李瑞娇,吴谋成. 2007. Ca/Al复合固体碱催化剂用于生物柴油的制备.油脂工程. (11): 82~86.
    孙世尧,贺华阳,王连鸳,杨基础. 2005.超临界甲醇中制备生物柴油.精细化工. 22(12): 919~922
    孙永明,袁振宏,孙振钧. 2006.中国生物质能源与生物质利用现状与展望.可再生能源. (2): 78~82
    谭林方,王瑞,杨松,贾朝辉,陶书伟,刘达,高亮. 2008.固体碱催化制备麻疯树籽油生物柴油及其工艺优化研究.贵州大学学报(自然科学版). 25(4): 411~415
    谭天伟,王芳,邓利. 2003.生物能源的研究现状及展望.现代化工. 23(9): 8~12
    田部浩三,御园生诚,小野嘉夫等. 1992.新固体酸和碱及其催化作用.郑禄彬,王公慰,张盈珍,等译.北京:化学工业出版社
    汪勇,欧仕益,温勇. 2006.酶法催化合成生物柴油的研究进展.中国油脂. 31(6): 65~68
    王兵,覃超国,崔昌亿. 2005.固体超强碱Na-NaOH/γ-Al2O3碱性测定方法的研究.应用化工. 34(12): 766~768
    王广欣,颜妹丽,周重文,梁斌. 2005.用于生物柴油的钙镁催化剂的制备及其活性评价.中国油脂. 30(10): 66~69.
    王华,宋存义. 2000.粉煤灰改性吸附材料及其吸附机理.粉煤灰综合利用. 14(4): 37~41
    王辉宪,李大塘,欧阳振中. 2002.热分解法制备负载型固体碱催化剂K2O/γ-Al2O3.化学世界. 43(12): 623~625
    王亚红,曲小姝,祝波,刘立业,崔昌亿. 2004.新型固体超强碱催化剂的制备及其结构表征.化学世界. (11): 563~565
    魏红明,赵华. 2006.生物柴油制备方式及应用现状.当代化工. 35(4): 246~249.
    吴巍,闵恩泽. 2004.绿色可持续发展石油化工生产技术的新发展.化工进展. 23(3): 231~237
    肖建华,王存文,吴元欣,王为国,李旺春,孙赵丽. 2005.生物柴油的超临界制备工艺研究.中国油脂. 30(12): 57-60
    徐桂转,张百良. 2005.生物柴油的研究与进展.华中农业大学学报. 24(6): 644~650
    颜姝丽,鲁厚芳,姜利寒,梁斌. 2007.固体碱催化剂用于油脂甲醇酯交换反应制备生物柴油.化工学报. 58(10): 2506~2512
    杨廷芝. 2005.非均相油脂酯交换法制备生物柴油工艺研究.四川理工学院学报. 18(3): 32~34
    杨振强,谢文磊,李海涛. 2006.酸催化油脂酯交换反应研究进展.粮食与油脂. (3): 13~15
    岳鹍,王兴国,金青哲,刘元法. 2006.固体酸性催化剂催化生物柴油合成反应性能的比较.中国油脂. 3l(7): 63~65
    张呈平,杨建明,吕剑. 2005.生物柴油的合成和使用研究进展.工业催化. 13(5): 9~13
    张家仁,白荣献,李光兴. 2006. KF/Al2O3催化菜籽油与甲醇合成生物柴油的研究.现代化工. 26(11): 46~48
    钟新宝,姚志钢,向纯满. 2006.微乳生物柴油的制备及其性能研究.可再生能源. (3): 51~54
    周会成. 2003.活化粉煤灰试验研究.河南建材. (4): 5~7
    周良虹,黄亚晶. 2005.国外生物柴油产业与应用状况.可再生能源. (4): 62~67
    朱华平,吴宗斌,陈元雄,张萍,段世杰,刘晓华,毛宗强. 2006.固体超强碱氧化钙催化制备生物柴油及其精制工艺.催化学报. 27(5): 391~396
    朱建良,张冠杰. 2004.国内外生物柴油研究生产现状及发展趋势.化工时刊. 18(1): 23~27 GB/T 1537-2003,棉籽油国家标准[S] GB/T 5530-2005,动植物油脂酸值和酸度测定[S] GB/T 5534-1995,动植物油脂皂化值的测定[S] GB/T 7377-1998,动植物油脂脂肪酸甲酯的气相色谱分析[S]
    Ahmad Z A, Noraini R, Keat T L. 2009. Optimization of mesoporous K/SBA-15 catalyzed transesterification of palm oil using response surface methodology. Fuel Processing Technology. 90: 958~964
    Akbar E, Binitha N, Yaakob Z, Kamarudin S K, Salimon J. 2009. Preparation of Na doped SiO2 solid catalysts by the sol-gel method for the production of biodiesel from jatropha oil. Green Chemistry. 11(11): 1862~1866
    Albuquerque M C G, Jimenez U I, Santamaria G J. 2008. CaO supported on mesoporous silicas asbasic catalysts for transesterification reactions. Applied Catalysis A: General. 334(1/2): 35~43
    Alhan D. 2002. Biodiesel from vegetable oils via transesterification in supereritieal methanol. Energy Conversion and Management. 43(17): 2349~2356
    Alsalme A, Kozhevnikova E F, Kozhevnikov I V. 2008. Heteropoly acids as catalysts for liquid-phase esterification and transesterification. Applied Catalysis A: General. (349): 170~176
    Amish P V, Subrahmanyam N, Payal A P. 2009. Production of biodiesel through transesterification of Jatropha oil using KNO3/Al_2O_3 solid catalyst. Fuel. 88: 625~628
    Arzamendi G, Campo I, Arguinarena E, Sanchez M, Montes M, Gandia L M. 2008. Synthesis of biodiesel from sunflower oil with silica-supported NaOH catalysts. Journal of Chemical Technology and Biotechnology. 83(6): 862~870
    Ayhan D. 2003. Biodiessl fuel from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterification and other methods: a survey. Energy Conversion and Management. 44(13): 2093~2109
    Ayhan D. 2006. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management. 47(15/16): 2271~2282
    Ayhan D. 2007. Biodiesel from sunflower oil in supercritical methanol with calcium oxide. Energy Coversion and Management. 48(3): 937~941
    Bai H X, Shen X Z, Liu X H, Liu S Y. 2009. Synthesis of porous CaO microsphere and its application in catalyzing transesterification reaction for biodiesel. Transactions of Nonferrous Metals Society of China. 19(3): 674~677
    Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K. 2009. Al_2O_3-supported alkali and alkali earth metal oxides for transesterification of palm kernel oil and coconut oil. Chemical Engineering Journal. 145: 468~474
    Boey P L, Maniam G P, Hamid S A. 2009. Utilization of Waste Crab Shell (Scylla serrata) as a Catalyst in Palm Olein Transesterification. Journal of Oleo Science. 58(10): 499~502
    Bournay L, Casanave D, Delfort B, Hillion G, Chodorge J A. 2005. New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants. Catalysis Today. 106(1/4): 190~192
    Breccia A, Espositi B, Fratadocchi G B, Fini A. 1999. Reaction between methanol and commercial seed oils under microwave irradiation. Journal of Microwave Power and Electromagnetic Energy. 34(1): 3~8
    C Samart, P Sreetongkittikul, C Sookman. 2009. Heterogeneous catalysis of transesterification of soybean oil using KI/mesoporous silica. Fuel Processing Technology. 90: 922~925
    Caetano C S,Fonseca I M,Ramos A M. 2008. Esterification of free fatty acids with methanol using heteropoly acids immobilized on silica. Catalysis Communications. 9: 1996~1999
    Camila M G, Sergio T, Leticia L M, Ulf S. 2008. Transesterification of soybean oil catalyzed by sulfated zirconia. Bioresoure Technology. 99(14): 6608~6613
    Claire S M, Adam P H. 2008. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chemical Engineering Journal. 135: 63~70
    Cordeiro C S, Arizaga G G C. 2008. A new zinc hydroxide nitrate heterogeneous catalyst for the esterification of free fatty acids and the transesterification of vegetable oils. Catalysis Communications. 9:2140~2143
    Corma A, Iborra S, Miquel S, Primo J. 1998. Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts. Journal of Catalysia. 173(1): 315~321
    D E López, J G Goodwin, D A Bruce, Edgar L. 2005. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General. 295(2): 97~105
    David G C, Lisa J G, Adam F L, Karen W. 2005. Structure-reactivity Correlations in Mg-Al Hydrotalcite Catalysts for Biodiesel Synthsis. Applied Catalysis A :General. 287: 183~190
    Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E. 2005. Synthesis of biodiesel via homogeneous Lewis acid catalyst. Journal of Molecular Catalysis A: Chemical. 239(1/2): 111~115
    Dragan N, Rupert P, Manfred W, Richard G. 2000. Preparation of rapeseed oil ester of lower aliphatic alcohols. JAOCS. 77(3): 275~279
    Ebiura T, Echizen T, Ishikawa A, Murai K, Baba T. 2005. Selective transesterification of triolein with methanol to methyloleate and glycerol using alumina loaded with alkalimetal salt as a solid base catalyst. Applied Catalysis A: General. 283: 111~116.
    Encinar J M, Gonzalez J F, Rodriguez R A. 2005. Biodiesel from used frying oil variables affecting the yields and characteristic of the biodiesel. Ind. Eng. Chem. Res. 44: 5491~5499
    Frederique R A , Melquizedeque B A, Caio C S M, Luiz F Z, Paulo A Z S. 2005. New multi-phase catalytic systems based on tin compounds active for vegetable oil transesterification reaction. Journal of Molecular Catalysis A: Chemical. 227(1/2): 263~267
    Galen J, Mohanprasad A, Eric J, Pratik J, Michael J. 2004. Transesterification of soybean oil with zeolite and metal catalysts. Applied Catalysis A: General. 257(2): 213~223
    Georges G, Florence V J. 2000. Polyratrogen strong bases as immobilized catalysts for the transesterification of vegetable oil. Surface chemistry and catalysis. 3: 563~567
    Granados M L, Povesm M D Z, Alonso D M, Mariscal R, Cabello F. G, Moreno-Tost R, Santamaría J. Fierro J.L.G. 2007. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental. 73(3/4): 317~326
    Gryclewicz S. 1999. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol. 70: 249~253
    Han H Y, Guan Y P. 2007. A novel method for the preparation of biodiesel by transesterification of rapeseed oil using K2O/Al2O3 nano solid base catalyst, Proceedings. The 12th International Rapeseed Congress V, Sustainable development in Cruciferous oilseed crops production. Wuhan, China: Science Press USA Inc. 318~321
    I Luki?, J Krstic, D Jovanovic, D Skala. 2009. Alumina/silica supported K2CO3 as a catalyst for biodiesel synthesis from sunflower oil. Bioresource Technology. 100: 4690~4696
    Ilgen O, Akin A N, Boz N. 2009a. Investigation of Biodiesel Production from Canola Oil Using Amberlyst-26 as a Catalyst. Turkish Journal of Chemistry. 33(2): 289~294
    Ilgen O, Akin A N. 2009b. Transesterification of Canola Oil to Biodiesel Using MgO Loaded with KOH as a Heterogeneous Catalyst. Energy & Fuels. 23: 1786~1789
    Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P. 2006.Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal. 116(1): 6l~66
    Jo?l B, Sébastien B, Yannick P. 2004. Selective Glycerol Transesterification over Mesoporous Basic Catalysts. Comptes Rendus Chimie. 7(6/7): 593~599
    Karel K, Radek S, Jaroslav M. 2001. Biodiesel fuel from rapeseed oil, methanol, and KOH. Analytical methods in research and production. Lipid Sci. Technol. 103: 359~362
    Kawashima A, Matsubara K, Honada K. 2008. Development of heterogeneous base catalysts for biodiesel production. Bioresource Technology. 99(9): 3439~3443
    Kawashima A, Matsubara K, Honada K. 2009. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology. 100(2): 696~700
    Kim H J , Kang B S, Kim M J, Park Y M, Kim D K, Lee J S, Lee K Y. 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today. 93-95: 315~320
    Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J. 2008. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 87(12): 2798~2806
    Kouzu M, Kasuno T, Tajika M, Yamanaka S, Hidaka J. 2008. Active phase of calcium oxide used as a solid base catalyst for transesterification of soybean oil with refluxing methanol. Applied Catalysis: A. 334(1/2): 657~665
    Krisada N, Pisitpong I, Apanee L, Samai J I. 2009. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil. Renewable Energy. 34: 1145~1150
    Li H, Xie W L. 2008. Fatty acid methyl ester synthesis over Fe3+ vanadyl phosphate catalysts. JAOCS. 85: 655~662
    Liu X J, He H Y, Wang Y J, Zhu S L, Piao X L. 2008. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel. 87(2): 216~221
    Liu X J, He H Y, Wang Y J, Zhu S L, Piao X L. 2007. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications. 8:1107~1111
    M S Kotwal, P S Niphadkar, S S Deshpande, V V Bokade, P N Joshi. 2009. Transesterification of sunflower oil catalyzed by fly ash-based solid catalysts. Fuel. (88): 1773~1778
    Ma F, Clements L, Hanna M. 1998. The Effects of Catalysts, Free Fatty Acids and Water on Transesterification of Beef Tallow. Trans. ASAE. 41(4): 261~264
    MacLeod C S, Harvey A P, Lee A F, Wilson K. 2008. Evaluation of the activity and stability of alkali doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Engine J. 135(1/2): 63~70
    Masakazu T, Atsushi T, Mai O, Junko N K, Shigenobu H, Kazunari D, Michikazu H. 2005. Biodiesel made with sugar catalyst. Green Chemistry. 438: 178
    Masoud Z, Wan M Ashri W D, Mohamed K A. 2010. Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Processing Technology. 91: 243~248
    Massimo C, Marco M. 2003. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterication and characterization. Biomass and Bionenergy. 25: 623~636
    Michikazu H, Takemi Y, Atsushi T, Tsuyoshi T, Junko N K, Shigenobu H, Kazunari D. 2004. A carbon material as a strong protonic acid. Angewandte Chemie International Edition. 43: 2955~2958
    Naomi S K Hiroki H , Homare K , Takuji T , Takuya F, Toshikuni Y. 2007. Biodiesel Production Using Anionic Ion-exchange Resin as Heterogeneous Catalyst. Bioresouce Technology. 98(2): 416~421
    Ngamcharussrivichai C, Wiwatnimita W, Wangnoi S. 2007. Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A: Chemical. 276(1/2): 24~33
    Noda P, Pérez C A, Henrique C A, Monteiro J. 2004. Hydrotacilte as precursors for Mg/Al-mixed oxides used as catalysts on the adol condensation of citral with acetone. Applied Catalysis A: General. 272(1-2): 229~240
    Parshall G W. 2005. Homogeneous catalysis: the applications and chemistry of catalysis by soluble transition metal cornplexes. New York: John Wiley&Sons: 67~84
    S Furuta, H Matsuhashi, K Arata. 2004. Biodiesel fuel production with solid super acid catalysis in fixed bed reactor under atmospheric pressure. Catalysis communications. 5: 721~723
    Sébastien B, Céline V, Yannick P, Jo?l B. 2001. Glycerol Transesterification with Methyl Stearate over Solid Basic Catalyst: I. Relationship Between Activity and Basicity. Applied Catalysis A: General. 218(1/2): 1~11
    Shashikant V G, Hifjur R. 2006. Process optimization for biodiesel production from mahua(Madhuca indica)oil using response surface methodology. Bioresource Technology. 97: 379~384
    Shweta S, Munishwar N G. 2007. Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry. 42: 409~414
    Suppes G, Dasari M A, Dosoeil E J, Mankidy P J, Goff M J. 2004. Transesterification of soybean oil with zeolite and metal calatysts. Applied Catalysis A: General. 257(2): 213~223
    Warabi Y, Kusdiana D, Saka S. 2004. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresourse Technology. 91: 283~287
    Wei T, Wang M H, Wei W. 2003. Effect of base strength and basicity on catalyitic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol. Fuel Process Technology. 83(1/3): 175-182.
    Wilson K, Hardacre C, Lee A F, Montero J M, Shellard L. 2008. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chemistry. 10(6): 654~659
    Xie W L, Huang X M. 2006. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catalysis Letters. 107(1/2): 53~59
    Xie W L, Peng H, Chen L G. 2006. Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical. 246:24~32