基于多通道置信度传播算法的航空核线影像稠密立体匹配研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会的快速发展,人们迫切需要各种真实空间三维信息用于生活服务、科研模拟、辅助决策支持等多种实际应用,而各种空间信息数据载体中,最容易获取的测绘基础数据是各种航空光学影像数据。如何有效的利用这些航空影像数据,实现影像数据到真实空间三维信息的转化,进而为各种科学研究提供基础数据支持,成了迫切需要解决的难题。传统的摄影测量研究领域所采用的各种特征点检测方式,提取的同名点对数目相对较少,对影像像素的利用率过低。与此同时,计算机视觉领域近些年发展的稠密立体匹配技术可以在核线改正图像间进行稠密立体匹配,实现整幅图像的逐像素匹配,从而提取出大量同名像素点,这大幅度提高了影像像素的利用率。因此,有必要在航空核线影像的基础上进行逐像素稠密立体匹配技术研究,进而识别出大量的同名像素点对,为航空影像的空间信息自动提取研究提供一种新的解决方法。
     在航空核线影像间进行逐像素稠密立体匹配研究,与传统的计算机视觉中的稠密立体匹配有所不同。这种不同,不仅仅是因为算法本身存在的适应性问题,更是因为航空影像面临着更多的干扰:影像分辨率高、同名像素点存在严重色差、大面积的低纹理与重复纹理、移动物体等。在国内外研究中,逐像素稠密立体匹配算法主要应用于各种计算机视觉领域的低分辨率图像处理中,应用到航空影像等高分辨率影像处理的成熟案例极少。本文从这一难题出发,充分考虑计算机视觉中各种稠密立体算法的匹配正确率、算法拓展性、计算加速可行性等多方面特性,最终以置信度传播算法为基础进行拓展,并进行了基础理论研究与实验验证。本文的具体研究工作主要包括了以下三个方面:
     1)拓展置信度传播算法用于航空核线影像的逐像素稠密立体匹配处理。在传统置信度传播算法的基础上,针对航空核线影像的同名像素点密集匹配问题,本文提出了一种多通道置信度传播算法。算法对航空核线影像中同名点存在严重色差这一主要干扰源进行针对性处理,充分利用了影像的各颜色分量,提高了背景区域像素点的匹配正确率,从而自动隔离出了移动物体等多种局部干扰源;同时,算法设计时减少了控制参数数目,简化了影像逐像素稠密立体匹配处理中的参数设置问题。
     2)研究各种立体匹配控制技术的集成方法,进一步提升逐像素稠密立体的匹配正确率。在多通道置信度传播算法的基础上,1,研究集成彩色分割结果图控制地物边界;2,提出一种基于窗口模式的匹配代价生成技术进一步降低同名点色差的影响;3,使用视差图后处理技术提高同名点匹配的可靠度,提出一种基于彩色分割图的视差图增强技术,并最后进行亚像素估计。
     3)研究并行计算加速技术以减少稠密立体匹配的处理时间。本文研究了任务并行处理与数据并行处理两种计算模式,结果表明两种并行处理模式都能大幅度缩短匹配算法的处理时间,取得了一定的加速比。相对于任务并行模式,数据并行模式可以提供更高的加速比,其数据可以分布式存储与处理,更合适用于现今广泛投入使用的各种并行处理设备中,从而充分利用并行机中多节点的计算能力。
With the rapid development of society, there are urgent needs for real spatial3-dimentional information to sustain practical applications, such as life services? science research, and decision support. Of all types of spatial information carriers, optical images are easiest-requiring only basic surveying and mapping data. Aerial images are plentiful and widely used given the rapid development of aerial technologies. Problems which need to be urgent solved, however, include the effective use aerial images and techniques to convert image data into real spatial information that provides basic data support for science research.
     Traditional Photogrammetry research typically focuses on feature point detection technologies to search corresponding pixels. However, these detected corresponding pixels are always few in number, and therefore, utilization of images is low. Separately at the same time, many dense stereo matching technologies using dense matching between rectified pictures were developed in the Computer Version (CV) field. These technologies can identify large quantities of corresponding pixels from rectified pictures, allowing greater use of images. Thus, there is an unexplored potential to apply dense stereo matching technologies to indentify a large number of corresponding pixels in aerial epipolar images, this method provides a new solution for spatial information automatic acquiring from aerial images.
     Dense stereo matching technologies are often applied in low-resolution picture processing in CV, and are rarely applied in high-resolution aerial image matching processes. Dense stereo matching between aerial epipolar images is somewhat different from dense stereo matching in CV field. The differences, are not only caused by the adaptation of algorithms, but also caused by aerial images themselves. There is more interference in aerial images, given that:the resolutions are much higher, the corresponding pixels have serious color deviation, larger texture-less areas or texture-repetitive areas, moved objects, and so on.
     Taking the matching accuracy, expansibility, and computational acceleration feasibility of the dense matching algorithm into consideration, this paper presents a belief propagation algorithm for basic theoretical research and experimental verification. The research work in this paper has the three following parts.
     First, a multi-channel belief propagation theory is developed for dense stereo matching between aerial epipolar images. Evolved from the traditional Belief Propagation (BP) algorithm, a multi-channel belief propagation algorithm makes full use of all the three color components, R, G and B, and simplifies the process. The impact of the obvious color differences between corresponding pixels is the greatest interference in aerial image matching processing. In order to reduce this impact, a multi-channel belief propagation algorithm reduces the sensitivity of central pixels and increases the contribution of neighboring pixels.
     Second, many control technologies are integrated into the proposed multi-channel belief propagation algorithm for accuracy improvement. Based on the basic multi-channel belief propagation algorithm, a color segment result is used for controlling object boundaries, a window-based matching cost generation technology is applied to suppress interference caused by serious color deviation, and a disparity space images post-processing technology is applied for disparity classification and sub-pixel estimation.
     Three, parallel computational technologies are tested. The execution time of BP based algorithms is always very long and the resolution of aerial images is very high, this means that a multi-channel belief propagation algorithm needs computation acceleration technology to reduce execution time. Task parallelism and data parallelism are tested and compared. Both technologies can reduce execution time drastically. Data parallelism provided a larger speedup. Because of image data's distributed storage and distributed processing, data parallelism is more suitable for current large parallel hardware, especially for multi-node-containing computers.
引文
[1]李德仁,周月琴,金为铣。摄影测量与遥感概论。北京:测绘出版社,2001。
    [2]李鸣翔,贾云得。基于自适应聚合的立体视觉合作算法.软件学报.[J]2008.19(7):1674-1682。
    [3]冈萨雷斯.数字图像处理(第二版).北京:电子工业出版社,2007:460-461。
    [4]雷成,胡占义,吴福朝,TSUI H T。一种新的基于Kruppa方程的摄像机自标定方法。计算机科学[J].2003.26(5):587-597。
    [5]马颂德,张正友。计算机视觉:计算理论与算法。北京:科学出版社,1998。
    [6]么大伟,陈卿.微处理器的发展现状及趋势.中国科技信息,2009(21).
    [7]沈勤华.可扩展的自动并行化编译系统Agassiz.复旦大学硕士学位论文,2008。
    [8]文贡坚,周秀芝。基于视差点的大遮挡检测和立体匹配方法.软件学[J].2005.16(15):708-717。
    [9]徐刚。从二维影像到三维模型。日本:近代科学社,2000。
    [10]徐奕,周军。立体视觉匹配技术.计算机工程与应用.[J]2003.15:1-6。
    [11]闫昭,刘磊.基于数据依赖关系的程序自动并行化方法。吉林大学学报(理学版),2010(1).
    [12]章毓晋.图像理解与计算机视觉.北京:清华大学出版社,2000
    [13]张祖勋,张剑清。数字摄影测量学。武汉:武汉测绘科技大学出版社,1997。
    [14]张祖勋,张剑清。数字摄影测量在我国的发展与应用。2003。
    [15]周修芝,文贡坚,王润生。自适应窗口快速立体匹配,计算机学报[J]2006.29(3):473-479。
    [16]Anandan P. A computational framework and an algorithm for the measurement of visual motion [J]. Int'J Comput Vision,1989,2(3):283-310.
    [17]Adhianto, Laksono, Chapman Barbara. Performance modeling of communication and computation in hybrid MPI and OpenMP applications. Simulation Modeling Practice and Theory,2007,15(4):481-491.
    [18]Arnold R. D., STANFORD UNIV CA DEPT OF COMPUTER SCIENCE,1983.
    [19]Baker H. and Binford T., "Depth from Edge and Intensity Based Stereo," Proc. Int'l Joint Conf. Artificial Intelligence,1981.
    [20]Barnard. S. T., Stochastic stereo matching over scale [J]. Int'J Comput Vision,1989,3(1): 17-32.
    [21]Belhumeur P.N., "A Bayesian-Approach to Binocular Stereopsis," Int'l J. Computer Vision, vol.19, no.3, pp.237-260,1996.
    [22]Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B (Methodological).1974,36(2):192-236.
    [23]Birchfield S., Tomasi C., Depth discontinuities by pixel-to-pixel stereo; Proceedings of the Computer Vision,1998 Sixth International Conference, Jan 1998,1998 [C].
    [24]Birchfield S. d and Tomas C., "A Pixel Dissimilarity Measure That Is Insensitive to Image Sampling," IEEE Trans. Pattern Analysis and, Machine Intelligence, vol.20, pp.401-406, 1998.
    [25]Black M. J., Anandan P., A framework for the robust estimation of optical flow,1993 [C].
    [26]Black M.J. and Rangarajan A., "On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision," Int'l J. Computer Vision, vol.19, no.1, pp.57-91,1996.
    [27]Blake A. and A. Zisserman, Visual Reconstruction. MIT Press 1987.
    [28]Bleyer M. and Gelaut M., "A Layered Stereo Algorithm Using Image Segmentation and Global Visibility Constraints," Proc. IEEE Int'l Conf. Image Processing, pp.2997-3000, 2004.
    [29]Bleyer M. and Gelautz M., Graph-based surface reconstruction from stereo pairs using image segmentation. In:Proceedings of the SPIE. The International Society for Optical Engineering, [C] 2005, Vol.5665:288-299.
    [30]Bleyer M., Gelautz M., Rother C., and C. Rhemann. A stereo approach that handles the matting problem via image warping. In CVPR, pages 501-508,2009.
    [31]Bobick A. F., Intille S. S., Large occlusion stereo [J]. Int'J Comput Vision,1999,33(3): 181-200.
    [32]Bolles R.C., H.H. Baker, and M.J. Hannah, "The Jisct Stereo Evaluation," Proc. DARPA Image Understanding Workshop,1993.
    [33]Boykov Y., Veksler O., and Zabih R., A Variable Window Approach to Early Vision. IEEE Trans. Pattern Analysis and Machine Intelligence, vol.20, no.12, pp.1283-1294, Dec. 1998.
    [34]Boykov Y., Veksler O., and R. Zabih. Fast Approximate Energy Minimization via Graph Cuts. Proc. Int'l Conf. Computer Vision,1999.
    [35]Boykov Y., Veksler O., and Zabih R., "Fast Approximate Energy Minimization via Graph Cuts," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.23, pp.1222-1239, 2001.
    [36]Ce L., "SIFT Flow:Dense Correspondence across Scenes and Its Applications," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.33, n.5, p 978-994,2011.
    [37]Chen L., Cetin M., and Willsky A.S., "Distributed Data Association for Multi-Target Tracking in Sensor Networks," Proc. Int'l Conf. Information Fusion,2005.
    [38]Cheng Y. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis and matching intelligence,1995,17(8):790-799.
    [39]Cigl C. a, Aydin Alatan A. Depth Assisted Object Segmentation in Multi-View Video. Proceedings of the 3DTV Conference:The True Vision-Capture, Transmission and Display of 3D Video,2008, F,2008 [C].
    [40]Comanici D. u and Meer P., "Robust Analysis of Feature Spaces:Color Image Segmentation," Proc. Computer Vision and Pattern Recognition,1997.
    [41]Comaniciu D. and Meer P., Mean shift:A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. [J]May 2002, Vol.24 (5) 603-619.
    [42]Cox I. J., Roy S., Hingorani S. L... Dynamic histogram warping of image pairs for constant image brightness, F,1995 [C]. Published by the IEEE Computer Society.
    [43]Cox I J, Hingorani S L, Rao S B, A maximum likelihood stereo algorithm [J].Comput Vis Image Und,1996,63(3):542-67.
    [44]Egnal G. and Wildes R., "Detecting Binocular Half-Occlusions:Empirical Comparisons of Five Approaches," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, pp. 1127-1133,2002.
    [45]Elidan G., McGraw I., and Koller D., "Residual Belief Propagation:Informed Scheduling for Asynchronous Message Passing," Proc.22nd Conf. Uncertainty in Artificial Intelligence,2006.
    [46]Farber R., CUDA Application Design and Development. Morgann Kaufmann,2011.
    [47]Fischler M.A. and Bolles R.C., "Random Sample Consensus:A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography," Comm. ACM, vol.24, pp.381-395,1981.
    [48]Freeman W. T., Pasztor E., and Carmichael O. T. Learning low-level vision. IJCV, 40(1):25-47,2000.
    [49]Forsyth D. A. and Ponce J., Computer Vision:A Modern Approach. Prentice Hall,2002
    [50]Fusiello A., Roberto V., and Trucco E., Efficient Stereo with Multiple Windowing. Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp.858-863,1997.
    [51]Fukunaga K, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Transactions Information Theory,1975, 21:32-40.
    [52]Geiger D., Girosi F., Parallel and deterministic algorithms from MRFs:Surface reconstruction [J]. IEEE Trans Pattern Anal,1991,401-412.
    [53]Geiger D., Ladendor B. f, and Yuille A., "Occlusions and Binocular Stereo," Int'l J. Computer Vision, vol.14, no.3, pp.211-226,1995.
    [54]Geman S. and Geman D., "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.6, no. 6, pp.721-741,1984.
    [55]Gilks W., Richardson S., and Spiegelhalter D., Markov Chain MonteCarlo in Practice. Chapman and Hall,1996.
    [56]Gonzalez, M., Ayguadfi E., Martorell X., Labarta J., Defining and Supporting Pipelined Executions in OpenMP, in OpenMP Shared Memory Parallel Programming.2001.p. 155-169.
    [57]Greig D, Porteous B, Seheult A H. Exact maximum a posteriori estimation for binary images[J]. Journal of the Royal Statistical Society Series B(Methodological),1989,51 (2):271-279.
    [58]Grey P., Bumblebee xb3 camera. Http://www.ptgrey.com/products/bbxb3/index.asp.
    [59]Grimson W. E. L., M. I. O. Laboratory. Computational experiments with a feature based stereo algorithm [M].1984.
    [60]Gu Q., Zhou J., A novel similarity measure under Riemannian metric for stereo matching. 2008 [C]. IEEE.
    [61]Hammersley,J.M.andCliford,P,MarkovfieldonfinitegraPhsandlattiees.UnPublished,1971
    [62]Hannah M. J., STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE,1974.
    [63]Heipk C., Performance and state-of-the-art of digital stereo processing. Photogrammetric Week93,1993, pp.173-183.
    [64]Hartley R, Zisserman A.计算机视觉中的多视图几何学[M].韦穗,杨尚俊等译。合肥:安徽大学出版社:2002
    [65]Hirschmueller H., "Improvements in Real-Time Correlation-Based Stereo Vision," Proc. IEEE Workshop Stereo and Multi-Baseline Vision,2001.
    [66]Hirschmueller H., "Accurate and Efficient Stereo Processing by Semi-Global Matching and Mutual Information," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol.2, pp.807-814,2005.
    [67]Hirschmueller H., "Stereo Vision in Structured Environments by Consistent Semi-Global Matching," Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, vol.2, pp. 2386-2393,2006.
    [68]Hong L. and Chen G., Segment-based stereo matching using graph cuts. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE Computer Society, [C]2004,74-81.
    [69]Horn B.K.P. and Brooks M.J., "The Variational Approach to Shape from Shading," Computer Vision, Graphics, and Image Processing, vol.33, no.2, pp.174-208,1986.
    [70]Hosni A., Bleyer M., M. Gelautz, C. Rhemann. Local stereo matching using geodesic support weights. International conference on image processing [J] 2009.
    [71]Huang X. F., Cooperative optimization for energy minimization:a case study of stereo matching. [R] http://front.math.ucdavis.edu/author/X.Huang, cs.CV/0701057, (Jan 2007).
    [72]Ihler A.T., J.W. Fisher, and A.S. Willsky, "Loopy Belief Propagation:Convergence and Effects of Message Errors," J. Machine Learning Research, vol.6, pp.905-936,2005.
    [73]Intille S S, Bobick A F, Incorporating intensity edges in the recovery of occlusion regions; proceedings of the Pattern Recognition,1994 Vol 1-Conference A:Computer Vision&Image Processing, Proceedings of thel2th IAPR International Conference on 9-13 Oct 1994,1994[C].
    [74]Ishikawa H. and Geiger D., "Occlusions, Discontinuities, and Epipolar Lines in Stereo," Proc. European Conf. Computer Vision,1998.
    [75]Jordan M.I., Learning in Graphical Models. MIT Press,1998.
    [76]Julesz B., Towards the automation of binocular depth perception (automap-1). In IFIPS Congress, Munich, Germany,1962
    [77]Kang S. B., Szeliski R., Chai J. Handling occlusions in dense multi-view stereo [J].2001,
    [78]Kang S.B., Szeliski R., and Jinxjang C., "Handling Occlusions in Dense Multi-View Stereo," Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol.1, pp.103-110, 2001.
    [79]Kanade T. and Okutomi M., A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiments. IEEE Trans. Pattern Analysis and Machine Intelligence, vol.16, no.9, pp.920-932, Sept.1994.
    [80]Kanade T., Kano H., Kimura S., et al. Development of a video-rate stereo machine, F, 1995 [C]. Published by the IEEE Computer Society.
    [81]Klaus A., Sormann M. and Karner K., egment-based stereo matching using belief propagation and a self-adapting dissimilarity measure.18th International Conference on Pattern Recognition [C].2006 (3):15-18.
    [82]Kolmogorov V. and Zabih R., "Computing Visual Correspondence with Occlusions via Graph Cuts," Proc. Int'l Conf. Computer Vision,2001.
    [83]Kolmogorov V, Zabih R. What energy functions can be minimized via graphcuts? [J].Computer Vision. ECCV 2002,2002,185-208.
    [84]Kunle, Olukotun, Lance Hammond. The future of microprocessors. Queue,2005,3(7): 26-29.
    [85]Lhuillier M., Quan L., Match propagation for image-based modeling and rendering [J]. IEEE Trans. Pattern Anal,2002,24(8):1140-6.
    [86]Liang C., Cheng C., Lai Y., Chen L., and H. Chen. Hardware-efficient belief propagation. In CVPR, pages 80-87,2009.
    [87]Luo A. and Burkhard H. t, "An Intensity-Based Cooperative Bidirectional Stereo Matching with Simultaneous Detection of Discontinuities and Occlusions," Int'l J. Computer Vision, vol.15, no.3, pp.171-188,1995.
    [88]Marr D. and Poggio T.A., "Cooperative Computation of Stereo Disparity," Science, vol. 194, no.4262, pp.283-287,1976.
    [89]Marr. D. and Poggio T., A Computational Theory of Human Stereo Vision. Proceedings of Royal Soc, London,1979, Vol. B204, pp.301-328
    [90]Marroquin J., Mitter S., Poggio T., Probabilistic solution of ill-posed problems in computational vision [J]. Journal of the American Statistical Association,1987,82(397): 76-89.
    [91]Matthies L., Kanade T., Szeliski R., Kalman filter-based algorithms for estimating depth from image sequences [J]. Int'J Comput Vision,1989,3(3):209-38.
    [92]Min D., Sohn K., Cost aggregation and occlusion handing with WLS in stereo matching. IEEE Transactions on Image Processing,[J]2008 PP:1431-1442
    [93]Mumford D. and Shah J., "Optimal Approximations by Piecewise Smooth Functions and Variational Problems," Comm. Pure and Applied Math.,1988.
    [94]Olson, C.F, Abi-Rached H, Ming Ye, Hendrich J.P. Wide-baseline stereo vision for Mars rovers. Intelligent Robots and Systems, vol.2, PP:1302-1307,2003.
    [95]Osher S., Rudin L.I., and Fatemi E., "Nonlinear Total Variation Based Noise Removal Algorithms," Physica D, vol.27, no.60, pp.259-268,1992.
    [96]Phillips, Rhonda D., Watson Layne T., Wynne Randolph H. Hybrid image classification and parameter selection using a shared memory parallel algorithm. Computers & Geosciences,2007,33(7):875-897.
    [97]Poggio D. M., Cooperative computation of stereo disparity [J]. Science,1976.
    [98]Pollard S. B., Mayhew J. E., Frisby J. P., A stereo correspondence algorithm using a disparity gradient limits [J]. Perception,1985,
    [99]Prazdny K., Detection of binocular disparities [J]. Biol Cybern,1985,52(2):93-98.
    [100]Roy S., Cox I. J., A maximum-flow formulation of the n-camera stereo correspondence problem, F,1998 [C]. IEEE.
    [101]Scharstein D., Matching images by comparing their gradient fields, F,1994 [C]. IEEE.
    [102]Scharstein D., Szeliski R., Stereo matching with nonlinear diffusion [J]. Int'J Comput Vision,1998,28(2):155-74.
    [103]Scharstein D. and Szeliski R., A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. [J] International Journal of Computer Vision,2002, Vol.47, 7-42.
    [104]Scharstein D. and Zeliski R., Middlebury Stereo Vision Research Page, http://vision.middlebury.edu/stereo/,2013
    [105]Seitz P., Using local orientational information as image primitive for robust object recognition,1989 [C].
    [106]Shah J., A nonlinear diffusion model for discontinuous disparity and half-occlusions in stereo. Proceedings of the Computer Vision and Pattern Recognition,1993 Proceedings CVPR '93,1993 IEEE Computer Society Conference on, Jun 1993,1993 [C].
    [107]Sun J., Li Y., Kang S., and Shum H. Symmetric stereo matching for occlusion handling. In Computer Vision and Pattern Recognition, [C].2005, pp399-406.
    [108]Sun J., Zheng N.-N., Shum Heung-Yeung. Stereo matching using belief propagation. In IEEE Transactions on Pattern Analysis and Machine Intelligence, [J] Vol.25, Issue7, 2003.pp:787-800.
    [109]Szeliski R., Hinton G., Solving random-dot stereograms using the heat equation, F,1985 [C].
    [110]Tao H. and Sawhney H., "Global Matching Criterion and Color Segmentation Based Stereo," Proc. IEEE Workshop Applications of Computer Vision, pp.246-253,2000.
    [111]Tao H., Sawhney H. S., Kumar R.A. Global matching framework for stereo computation[J].2001.
    [112]Tappen M. and Freeman W., "Comparison of Graph Cuts with Belief Propagation for Stereo," Proc. IEEE Int'l Conf. Computer Vision, vol.1, pp.508-515,2003.
    [113]Thirion J. P., Image matching as a diffusion process:an analogy with Maxwell's demons [J]. Medical image analysis,1998,2(3):243-60.
    [114]Tomasi C, Kande T., Shape and motion from image streams under orthography:A factorization method. International Journal of Computer Vision, [J] 1992,9 (2):137-154.
    [115]Tomaspajdla, Computer Vision - Eeev2004 计算机视觉一 ECCVZOO4/会议录第11部 分.北京燕山出版社.2004
    [116]Tombari F., Mattoccia S., L. D. Stefano. Segmentation-based adaptive support for accurate stereo correspondence [J]. Advances in Image and Video Technology,2007, 427-38.
    [117]Veksler O., Efficient Graph-Based Energy Minimization [D]; Cornell University,1999.
    [118]Veksler O., Stereo Correspondence with Compact Windows via Minimum Ratio Cycle. IEEE Trans. Pattern Analysis and Machine Intelligence, vol.24, no.12, pp.1654-1660, Dec.2002.
    [119]Veksler O., Fast Variable Window for Stereo Correspondence using Integral Images. Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol.1, pp.556-561,2003.
    [120]Yang Q., Engels C., and Akbarzadeh A. Near real-time stereo for weakly-textured scenes. In BMVC, pages 80-87,2008.
    [121]Yang Q., Tan K.-H., and Ahuja N. Real-time o (1) bilateral filtering. In CVPR, pages 557-564,2009.
    [122]Yang Q.-X., Wang L., Yang R.-G., H. Stewenius, and D. Nister. Stereo Matching with Color-Weighted Correlation, Hierarchical Belief Propagation, and Occlusion Handling, In IEEE Transactions on Pattern Analysis and Machine Intelligence[J],2009,Vol.31, No.3, 492-504.
    [123]Yang Q., Wang L., Yang R., Wang S., Liao M., and Nist'er D. Real-time global stereo matching using hierarchical belief propagation. In BMVC, pages 989-998,2006.1
    [124]Yang Q., Wang S., and N. Ahuja. Svm for edge-preserving filtering. In CVPR,2010.
    [125]Yang Q., Yang R., Davis J., and Nist'er D.. Spatial-depth super resolution for range images. In CVPR,2007.
    [126]Yoon K.-J. and Kweon I. S., Locally Adaptive Support-Weight Approach for Visual Correspondence Search.2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition [J] (2005), pp 924-931 vol.2.
    [127]Yoon K.-J. and Kweon I. S., Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence, [J] 2006, 28(4):650-656.
    [128]Yoon K. J., Kweon I. Kweon.S., Stereo matching with the distinctive similarity measure [J].2007,
    [129]Yoon K. J., Kweon I. Kweon S., Support aggregation via non-linear diffusion with disparity-dependent support-weight for stereo matching. In Asian conference on computer vision [C] (2009). pp 1000-1003.
    [130]Yu T., Lin R.-S., B. S., and Tang B. Efficient message representations for belief propagation. In ICCV, pages 1-8,2007.
    [131]Wang L., Jin H., and Yang R., Search space reduction form stereo. In ECCV, pages 576-588,2008.
    [132]Wang L., Liao M., Gong M., Yang R., and Nister D., High quality real-time stereo using adaptive cost aggregation and dynamic programming. In 3DPVT, pages 798-805,2006.
    [133]Wang Z. and Zheng Z.5 A region based stereo matching algorithm using cooperative optimization. CVPR 2008.
    [134]Weiss Y. and Freeman W. T., On the optimality of solutions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on Information Theory,47(2):736-744,2001.
    [135]Zhang G.-F.; Hual W.; X.-Y. Qin. Tien-Tsin, Wong. Hujun Bao. Stereoscopic Video Synthesis from a Monocular Video. IEEE Transactions on Visualization and Computer Graphics,[JJ2007 Vol.13, No.4, July/August 2007
    [136]Zhang G.-F., Qin X.-Y., X.-B. An; W. Chen; Hujun Boo. As-Consistent-As-Possible Compositing of Virtual Objects and Video Sequences. Computer Animation & Virtual Worlds [J], July 2006 v 17, n 3-4, p 305-14.
    [137]Zhang G.-F., Qin X.-Y., Hua W., T.-T. Wong, P.-A. Heng, H.-J. Bao. Robust Metric Reconstruction from Challenging Video Sequences. CVPR07. IEEE Conference on Computer Vision and Pattern Recognition, [C] 2007.p 1206-1213.
    [138]Zhang Z, Deriche R., Faugeras O.D. and Luong Q.T. A Robust Technique for Matching Two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry[J]. Artificial Intelligence,1994,78(1-2):87-119.
    [139]Zhu K., Butenuth M., and Angelo P., "Comparison of dense stereo using CUDA," in Proceedings of the European Conference on Computer Vision, Workshop, Computer Vision on GPUs,2010.