混凝土压电陶瓷敏感模块特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在前期研究工作中提出的压电机敏土木工程结构系统的基础上,针对实际的土木工程中混凝土结构的健康监测,设计了一种旨在进行混凝土应力及温度监测的压电机敏混凝土模块。并对这种压电机敏模块的多种物理特性进行了系统的理论及实验研究。研究结果为实现利用该压电机敏结构进行土木工程结构的健康监测应用奠定了基础。主要的研究内容是围绕着压电机敏混凝土模块中所涉及的三个对象,即混凝土结构、PZT压电陶瓷以及二者相互耦合形成的混凝土-压电敏感单元结构进行的。研究的主要目的是通过对各研究对象的独立及相互耦合特性的研究,通过理论分析和实验验证,来证明所提出的压电机敏模块用于土木工程结构应力及温度监测的可行性,并解释监测中所涉及的监测原理和技术要点。所取得的研究成果包括以下几点:
     (1)系统地归纳和总结了混凝土材料的常规物理特性,分析了在相应环境中本课题所涉及的压电敏感元件及其同混凝土材料间由于相互耦合而存在的物理特性,并提出了一种能够同时实现混凝土结构中应力及温度监测的PZT压电陶瓷埋入式混凝土机敏模块。
     (2)通过引入复电弹常数的方法,建立了埋入混凝土中压电敏感单元的等效电路模型。根据唯象理论及晶畴理论,分析了压电敏感元件在埋入状态下的各种能量损失特性。提出了一种通过测量压电等效电路参数来计算能够反映能量损失的耗散因子的方法。该方法不用测量复电弹常数中的实部和虚部,便可直接计算出三种耗散因子的值,避免了测量复电弹常数时要求测量多种振动模式下的多个参数值进行迭代计算的过程。该方法是基于的是压电材料单一振动模式下的等效电路模型,推导的耗散因子计算式相对于压电元件的振动模式是相互独立的,即不同振动模式下的耗散因子只同该模式下的等效电路参数有关。
     (3)设计了一种适用于埋入混凝土的PZT压电陶瓷敏感单元结构。该结构通过在圆片形PZT压电陶瓷上覆盖适当厚度和硬度的橡胶层材料,缓解了PZT陶瓷由于埋入混凝土中受到的一些不利影响,包括a)解决了压电陶瓷裸露电极间在含水混凝土中的电绝缘问题,b)缓解了混凝土凝固过程中由于体积收缩在压电陶瓷上产生的应力积累及应力集中,c)减小了由于混凝土粗糙骨料在压电陶瓷上产生的应力集中,d)保护了PZT陶瓷,并防止了电极上的银电镀层受到混凝土材料的破坏。
     (4)研究了混凝土凝固过程中,埋入的PZT压电陶瓷元件受到混凝土干缩作用时的应力响应特性。研究表明,混凝土干缩过程中产生的应力将直接施加在压
Based on the proposed piezoelectric sensitive structure system for the civil engineering, a piezoelectric-embedded concrete element is designed to measure the stress and temperature of the concrete structure. Three objects are concerned in the research: the concrete, the piezoelectric ceramic, and the coupling structures of them. The theoretical analysis and experimental researches are conducted to prove the feasibility of the proposed method, and explain the technical points and the measuring principle. The contributions of this paper are listed as follows:
     (1) According to the basic knowledge and principle in the concrete engineering, the features and behaviors related to both the concrete material and the embedded piezoelectric ceramic are disscused. Then, a concrete smart element with an embedded piezoelectric ceramic is designed.
     (2) The equivalent circuit for the embedded piezoelectric ceramic is established. The complex material coefficients are introduced in the equivalent circuit to describe the energy losses occuring in the embedded piezoelectric materials. The loss mechanism is explained by the theories of the domain wall (motion) and the crystal defect. A novel method is proposed to obtain the dissipation factors of piezoelectric materials. Instead of the traditional iterative method in which measuring parameters of the different viberation modes are demanded, we suggest that the dissipation factors are evaluated by the equivalent circuit parameters of the specific viberation mode.
     (3) A structure is designed for the piezoelectric ceramic to be embedded in the concrete. A layer of rubber is covered on either side of the piezoelectric ceramic plate. The material and the thickness of the rubber layer are also determined. The use of the rubber layer solves the problems of the piezoelectric ceramic being embedded, including a) the electrical insulation in the concrete containing water, b) the stress accumulation on the embedded piezoelectric ceramic produced by the shrink of the concrete volume in the concretion, c) the stress concentration caused by the aggregate in the concrete materials, d) the damage on the electrodes of the piezoelectric ceramic induced by the concrete.
     (4) The stress responses of the embedded piezoelectric ceramic in the concretion are researched. It is found that the stress caused by the volume shrinkage will be applied on the ceramic directly, and will cause the changes of the physical characteristics of the
引文
[1] 杨智春, 于哲峰, “结构健康监测中的损伤检测技术研究进展”, 力学进展, 2004, 34(2): 215-223
    [2] Sohn, H., et al, “Consideration of environment and operational variability for damage diagnosis”, Smart Structures and Materials, San Diego, 2002, 4696-12
    [3] Housner, G. W., et al, “Structural control: past, present, and future”, ASCE, Journal of Engineering Mechanics, 1997, 123(9): 897-971
    [4] 杨大智,《智能材料与系统》, 天津: 天津大学出版社, 2000
    [5] Stephanie, A., et al, “Computational study on plate damage identification”, NDE for Health Monitoring and Diagnostics, San Diego, 2002, 4702-17
    [6] 王金国, “土木工程结构健康监测、诊断以及安全评定技术”, 油气田地面工程, 2004, 23(12): 35-36
    [7] 周智, 欧进萍, “土木工程智能健康监测与诊断系统”, 传感器技术, 2001, 20(8): 11-14
    [8] Charles, R. F., Sohn, H. Condition/damage monitoring methodologies. Invited Talk, The Consortium of Organizations for Strong Motion Observation Systems Worksh, Emeryville, CA, 2001, LA-UR-01-6573.
    [9] 黄尚廉等, “智能结构系统-减灾防灾的研究前沿”, 土木工程学报, 2000, 33(4): 1-5.
    [10] 孙鸿敏, 李宏男, “土木工程结构健康监测研究进展”, 防灾减灾工程学报, 2003, 23(3): 92-98
    [11] Iwaki, H., et al, “Structural health monitoring system using FBG-based sensors for a damage tolerant building”, Smart Structures and Materials, San Diego, 2002, 4696-09
    [12] Studer, M., et al, “Embedded optical fiber bragg grating sensors for the measurement of crack bridging forces in composites”, Smart Structures and Materials, San Diego, 2002, 4694-13
    [13] Kiremidjian, A. S., Straser, E. G., Meng, T., et al. Structural damage monitoring for civil structures. Proceedings of the International Workshop of Structural Health Monitoring. Technomic Publishing Company, 1997, 371-382
    [14] 谢强, 薛松涛. 土木工程结构健康监测的研究状况与进展. 中国科学基金. 2001, 5: 285-288
    [15] Housner, G. W., Bergman, L. A., Caughey, T. K. et al. Structural control: Past, Present, and Future. ASCE, Journal of Engineering Mechanics, 1997, 123(9): 897-971.
    [16] Pervizpour, M., Curtis, J., Qin, X., et al, “Data processing and quality assurance in health monitoring of constructed system”, SPIE’s 6th International Symposium on NDE for Health Monitoring and Diagnostics, March, 2001, 428
    [17] Aftab, A., Mufti, “Structural health monitoring of innovative Canadian civil engineering structures”, Structural Health Monitoring, 2002, 1(1): 89-103.
    [18] Iwaki, H., Yamakawa, H., Shiba, K., et al, “Structural health monitoring system using FBG-Based sensors for a damage tolerant building”, Smart Structures and Materials, San Diego, 2002. 4694-20. CD Version
    [19] Habel, W. R., Hofmann, D., Kohlhoff, H., et al, “Complex measurement system for long-term monitoring of prestressed railways bridges in the New Lehrter Bahnhof in Berlin” Smart Structures and Materials, San Diego, 2002. 4694-31, CD Version.
    [20] Ni, Y. Q., Li H., Wang, J. Y., et al, “Implementation issues of novelty detection technique for cable-supported Bridges instrumented with a long-term monitoring system”, NDE for Health Monitoring and Diagnostics, San Diego, 2002, 4702-33, CD Version.
    [21] 张启伟, 袁万城, 范立础. “大型桥梁结构安全监测的研究现状与发展”, 同济大学学报, 1997, 25(增刊): 76-81
    [22] 杨杰, 吴中如, “大坝安全监控的国内外研究现状与发展”, 西安理工大学学报, 2002, 18 (1): 26-30
    [23] 顾冲时, 吴中如, “大坝安全监测专家系统的结构及知识工程”, 水利技术监督, 1998, 6(1): 36-40
    [24] Shkarayev, S., Krashanitsa, R., Tessler, A, “An inverse interpolation method utilizing in-flight strain measurements for determining loads and structural reponse of aerospace vehicles”, Proceedings of the 3rd inter. Workshop on Structural Health Monitoring, Stanford: CRC Press, 2001: 336-343
    [25] 杨大智. 智能材料与智能系统. 天津: 天津大学出版社, 2000
    [26] 肖纪美, “智能材料的来龙去脉”, 世界科技研究与发展, 1996, 6: 120-125
    [27] 黄尚廉, “智能材料系统与结构工程构造安全监控的一条崭新思路”, 当代科技, 1997, 5: 7-9
    [28] 姚宗信, “基于智能材料与结构的自适应机翼技术在无人战斗机(UCAV)上的应用前景展望”, 飞机设计, 2001, 4: 19-22
    [29] 韩宝国, 关新春, 欧进萍, “纳米水泥石导电性与压敏性的试验研究”, 硅酸盐通报, 2004, 6: 87-93
    [30] 李永, 张志民, 马淑雅, “梯度功能材料层梁受机械/热载作用的结构特性分析”, 强度与环境, 2002, 29(1): 20-26
    [31] 封君等, “光纤法-珀传感器监测混凝土固化期收缩应变的实验研究”, 2000, 29(10): 908-912
    [32] 陈伟民等, “实际光源光谱分布对相位型光纤法-珀应变传感器的影响及其实验研究”, 2003, 30(1): 88-92
    [33] Boyd, J. G., Lagoudas, D. C., “Thermomechanical response of shape memory composites”, Journal of Intelligent Material Systems and Structures, 1994, 5(3): 333-346
    [34] Olander, A., “An electrochemical investigation of solid cadmium-gold alloys” J. Am. Chem. Soc., 1932, 56: 3819-3833
    [35] Sullivan, B. J., “Analysis of properties of fiber composites with shape memory alloy constituents”, Journal of Intelligent Material Systems and Structures, 1994, 5(6): 825-832
    [36] Cherkaoui, M., Sun, Q. P., Song, G. Q., “Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement”, International Journal of Solids and Structures, 2000, 37(11): 1577-1594
    [37] Wang, J. , Sze, K. Y., Shen, Y., “Studying the thermomechanical behavior of SM composites with aligned SMA short fibers by micromechanical approaches”, Smart Materials and Structures, 2001, 10(5): 990-999
    [38] 王健, 沈亚鹏, “SMA 短纤维复合材料的热胀系数和相变应变系数”, 固体力学学报, 2000, 21(4): 298-305
    [39] Liang, C., Rogers, C. A., “The multi-dimensional constitutive relations for shape memory alloys”, Journal of Engineering Mathematics, 1992, 26(5): 429-443
    [40] 李向亭, 马红孺, “电流变液中电场强度的半解析计算”, 物理学报, 2000, 49(6): 1070-1075
    [41] Winslow, W. M., “Methods and means for translation electrical impulses into mechanical force”, U S Patent, No. 2417850, 1947
    [42] Winslow, W. M., “Induced fibration of suspensions”, J. Appl. Phys., 1949, 20(12): 1137-1140
    [43] 张福学, 王丽坤. 现代压电学(上册). 北京. 科学出版社. 2001. 3-6
    [44] 田中哲郎·罔崎, 清·-ノ瀬昇共编, 压電セラミツク材料, 日本学献社, 1973. 中译本: 陈俊彦, 王余君译, 压电陶瓷材料. 科学出版社.北京.1982
    [45] 张福学, 孙慷. 压电学(下册). 国防工业出版社. 北京. 1984
    [46] Randerat, J. V., Setterington, R. E. Piezoelectric Ceramics. Mullard Limited. 1974
    [47] 张福学. 压电铁电应用. 国防工业出版社. 北京. 1987
    [48] Bailey, T. L., Hubbard, J. E., “Distributed piezoelectric polymer active vibration control of cantilever beam”, Journal of Guidance, Control and Dynamics, 1985, 8: 605-611
    [49] 马治国等, “智能结构中压电元件的最佳厚度”, 东北大学学报(自然科学版), 1998, 19(6): 584-587
    [50] Crawley, E. F., Luis, J., “Use piezoelectric actuators as elements of intelligent structures”, AIAA Journal, 1987, 25(10): 1373-1385], [Dimitriadis, E. K., Fuller, C R , Rogers C R. “Piezoelectric actuators for distributed vibration excitation of thin plates”, Transaction of ASME. Journal of Vibration and Acoustics, 1991,113:100-107
    [51] 成传贤, “复合材料机翼翼梁与蒙皮间应力分析”, 北京航空航天大学学报, 1996, 22(3): 312-315
    [52] Lee, C. K., O'Sullivan, T. C., “Piezoelectric strain rate gages”, J. Acoustic Society of America, 1991, 90(2): 945-953
    [53] Lee, C. K., “Theory of laminated piezoelectric plates for the design of distributed sensors/actuators, Part 1: Governing equations and reciprocal relationships”, J. Acoustic Society. America, 1990, 87(3): 1144-1158
    [54] Cairns, D. S., “A multi- purpose sensor for compo site structures based on a piezo-electric film”, Proc. ADPA/AIAA/ASME/SPIE Conference on Active Material and Adaptive Structures, Alexandria, USA, 1991: 1371-1378
    [55] 石立华, 陶宝祺, “埋入压电元件的自诊断智能结构的理论分析与实验研究”, 实验力学, 1998, 13(3): 370-376
    [56] Nogueira, C. L. and Willam, K. J., “Ultrasonic testing of damage in concrete under uniaxial compression”, ACI Materials Journal, 2001, 98(3): 265-278
    [57] Chen, Z. and Ansari, F., “Embedded fiber optic sensors for detection of acoustic emissions in structures”, Acta Optica Sinica, 2000, 20(8): 1060-1064.
    [58] 孙明清, 李卓球, “压电陶瓷-混凝土机敏结构研究”, 混凝土, 2004, 2: 5-9
    [59] 孙明清, Staszewski, W. J., Swamy, R. N., 李卓球, “压电陶瓷片/混凝土复合机敏结构中的表面波法”, 建筑材料学报, 2004, 7(2): 145-149
    [60] 孙明清, Staszewskiw, J., Swamy, R. N., “压电陶瓷片用于检测混凝土的波速和动弹模”, 武汉理工大学学报, 2004, 26(6): 1-4
    [61] Wen, Y., Li, P. and Huang, S. “Study on the readout of piezoelectric distributed sensing network embedded in concrete”, SPIE, 1998, 330: 642-671
    [62] 周文委, 文玉梅, 李平, 姜德义, “埋入混凝土中压电元的电-声换能特性研究”, 压电与声光, 2004, 26(2): 116-118
    [63] Chen, Y., Wen, Y., Li, P., “Loss mechanisms in piezoelectric transducers and its response to stress”, Proceeding of 2004 international conference on information acquisition, June, 2004: 213-219.
    [64] Chen, Y., Wen, Y., Li, P., “Characterizations of dissipation factors in piezoelectrics under stress and temperature”, International Journal of Information Acquisition, 2004, 1(4): 1-9.
    [65] Chen, Y., Wen, Y., Li, P., “Characterization of concrete stress by measuring dissipation factors of embedded piezoelectric ceramic disc”, Proceedings of SPIE: Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, Santiago, U.S, March, 2005, 5765: 30-41.
    [66] 文玉梅, 李平, 刘双临, 李文军, “压电机敏混凝土原理”, 压电与声光, 2002, 24(3): 196-198.
    [67] 陈雨, 文玉梅, 李平, “压电陶瓷应力作用下的损失特性”, 仪器仪表学报(增刊), 2004, 25(4): 151-154.
    [68] 陈雨, 文玉梅, 李平, “压电材料中的耗散因子及其随应力的变化”, 中国科协第二届优秀博士生学术年会论文集, 北京: 中国科学技术出版社, 2004: 615-621.
    [69] 陈雨, 文玉梅, 李平, “应力条件下压电陶瓷损失机理分析”, 应用力学学报, 2005, 22(2): 221-226.
    [70] 陈雨, 文玉梅, 李平, “混凝土中压电陶瓷在变载荷作用下的特性研究”, 压电与声光2005, 27(6): 100-103.
    [71] 陈雨, 文玉梅, 李平, “利用埋入式压电陶瓷进行混凝土结构应力监测的实验研究”, 第九届全国敏感元件与传感器学术会议, 西安, 北京: 国防工业出版社, 2005: 623-627.
    [72] 陈雨, 文玉梅, 李平, 郭浩, “压电换能器耗散因子的等效电路参数表示”, 传感技术学报, 2005, 已录用 (文章编号: 2005495)
    [73] Chen, Y., Wen, Y., Li, P., “Characterization of PZT Ceramic Transducer Embedded in Concrete”, Sensors & Actuators: A. Physical, 2006, Accepted (Paper No. SNA_5151)
    [74] Bathe, K. J., Wilson, E. L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Inc., 1976
    [75] Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., 1982
    [76] Desai, C. S., Abel, J. F., Introduction to the Finite Element Method, Van Nostrand Reinhold Co., 1972
    [77] Zienkiewicz, O. C., The Finite Element Method (Third Edition), McGraw-Hill, Inc., 1977
    [78] Owen, D. R. J., Hinton, E., Finite Elements in Plasticity, Theory and Practice, Pineridge Press Limited, 1980
    [79] Washizu, K., Variational Methods in Elasticity and Plasticity (Third Edition), Pergamon Press, 1982
    [80] Huebner, K. H., Thornton, E. A., Finite Element Method for Engineers, John Wiley & Sons, Inc., 1974
    [81] Cook, R. D., Concepts and Applications of Dinite Element Analysis, John Wiley & Sons, Inc., 1974
    [82] Rao, S. S., The Finite Element Method in Engineering, Pergamon Press, 1982
    [83] 丁皓江, 何福保等编, 《弹性和塑性力学中的有限单元法》, 北京: 机械工业出版社, 1989
    [84] 朱伯芳, 《有限单元法原理和应用》, 北京: 水利电力出版社, 1979
    [85] 王勖成, 邵敏, 《有限单元法基本原理和数值方法(第二版)》, 北京: 清华大学出版社, 1997
    [86] Mendez, A., Morse, T. F. “Overview of optical fiber sensors embedded in concrete” Fiber Optic Smart Structures and Skins V (Boston, MA, 1992), SPIE vol 1798 (Bellingham, WA: SPIE), 1992: 205-216
    [87] Ou, J., et al, “Health monitoring of Binzhou Yellow River Highway Bridge using fiber Bragg gratings” Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems (Santiago, CA, 2005), vol 5765-60, 2005: 174-180
    [88] Melle, S.M., Alavie, A.T., “A Bragg grating-tuned fiber laser strain sensor system”, IEEE Photonics Technology Letters, 1993, 5(2): 263-266
    [89] Kurashima, “Discontinuous Brillouin strain monitoring of small concrete bridges: comparison between near-to-surface and “smart” FRP fiberinstallation techniques”, Nondestructive Evaluation for Health Monitoring and Diagnostics Proc. SPIE, Vol. 5765, 2005: 612-623
    [90] 刘浩吾, “混凝土重力坝裂缝观测的光纤传感网络”, 水利学报, 1999, 10: 61-64
    [91] Wen, Y., Li, P. and Huang, S., “Study on the readout of piezoelectric distributed sensing network embedded in concrete”, SPIE, 1998, 330: 642-671
    [92] 王传志, 腾智明,《钢筋混凝土结构理论》, 北京: 中国建筑工业出版社, 1985
    [93] 过镇海, 《钢筋混凝土原理》, 北京: 清华大学出版社, 1999
    [94] 过镇海,《混凝土的强度和变形(试验基础和本构关系)》, 北京: 清华大学出版社, 1997
    [95] 腾智明,《钢筋混凝土基本构件(第二版)》, 北京: 清华大学出版社, 1987
    [96] 沈聚敏,《钢筋混凝土有限元与板壳极限分析》, 北京: 清华大学出版社, 1993
    [97] Newman, K., Newman J. B.,《素混凝土破坏理论与设计准则》, 见 水利水电科学研究院译, 《混凝土的强度和破坏译文集》, 北京: 水利出版社, 1982, 194-246
    [98] Hsu, T. T. C., et al, “Microcracking of high and normal strength concretes under short-and-long-term loadings”, ACI Materials Journal, 1963, 86(2): 117-127
    [99] L'Hermite, R., 于宏译, 《混凝土工艺问题》, 北京: 中国建筑工业出版社, 1964
    [100] Neville, A. M., 李国泮译, 《混凝土的性能》, 北京: 中国建筑工业出版社, 1983
    [101] Kotsovos, M. D., et al, Generalized Stress-Strain Relations for Concrete, J. Engin. Mech. Divi., 1978, 104(4): 845-856
    [102] Sargin, M., Stress-Strain Relationships for Concrete and the Analysis of Structural Concrete Sections, Canada: Waterloo Ont., 1971
    [103] Slate, F. O., “X-Rays for study of internal structure and microcracking of concrete”, ACI Journal Proceedings, 1963, 60: 575-588
    [104] Slate, F. O., “Volume changes on setting and curing of cement paste and concrete from zero to seven days”, ACI Journal Proceedings, 1967, 64(1): 34-39
    [105] Guo, Z. H., Zhang, X. Q., “Investigation of complete stress-deformation curves for concrete in tension”, AXI Materials Journal, 1987, 84(4): 278-285
    [106] Gopalaratnam, V. S., “Softening response of plain concrete in direct tension”, ACI, 1985, 82(3): 310-323
    [107] Evans, R. H., Marathe, M. S., “Microcracking and stress-strain curves for concrete in tension materials and structures”, Research and Testing, 1968, 1(1): 61-64
    [108] Iosipescu, N., Negoita, A., “A new method for determining the pure shearing strength of concrete”, J Conc., Soc., 1969, 3(1): 63-67
    [109] Sinha, B. P., et al, “Stress-strain relations for concrete under cyclic loading”, ACI Journal Proceedings, 1964, 61: 195-212
    [110] Sturman, G. M., et al, “Effect of flexural strain gradients on microcracking and stress-strain behavior of concrete”, ACI Journal Proceedings, 1965, 62: 805-822
    [111] 过镇海, 时旭东,《钢筋混凝土原理和分析》, 北京清华大学出版社, 2003
    [112] 惠荣炎等,《混凝土的徐变》, 北京: 中国铁道出版社, 1988
    [113] Pickett, G., “Effect of aggregate on shrinkage of concrete and a hypothesis concerning shrinkage”, ACI Journal Proceedings, 52(1): 581-590
    [114] Meyers, B. L., et al, “Elasticity, shrinkage, creep, and thermal movement of concrete”, In: Kong, F. K., et al, Handbook of Structural Concrete, London: Pitman, 1983
    [115] Neville, A. M., et al, Creep of Plain and Structural Concrete, London and New York: Construction Press, 1983
    [116] Fowler, D. W., “Polymers in concrete”, In: Kong, F. K., et al, Handbook of Structural Concrete, London: Pitman, 1983
    [117] Nawy, E. G., “High-strength concrete”, In: Kong, F. K., et al, Handbook of Structural Concrete, London: Pitman, 1983
    [118] Shah, S. P., “Fiber reinforced concrete properties”, ACI Journal Proceedings, 1971, 68(2): 126-135
    [119] 徐积善,《混凝土强度理论及其应用》, 北京: 水利出版社, 1981
    [120] 过镇海等, “多轴应力下混凝土的强度和破坏准则研究”, 土木工程学报, 1991, 24(3): 1-4
    [121] Newman, J. B., “Apparatus for testing concrete under multi-axial states of stress”, Magazine of Concrete Research, 1974, 26(81): 221-238
    [122] 俞茂鋐,《强度理论新体系》, 西安: 西安交通大学出版社, 1992
    [123] 过镇海, 李卫, “混凝土在不同应力-温度途径下的变形性能和本构关系”, 土木工程学报, 1993, 26(5): 58-69
    [124] 南建林等, “混凝土的温度-应力耦合本构关系”, 清华大学学报, 1997, 37(6): 87-90
    [125] 时旭东等, “高温下钢筋混凝土连续梁的破坏机构和内力重分布研究”, 建筑结构, 1996, 7: 34-37
    [126] 过镇海等, “混凝土非线弹性正交异性本构模型”, 清华大学学报, 1997, 37(6): 78-81
    [127] 田中哲郎·罔崎, 清·-ノ瀬昇共编, 压電セラミツク材料, 日本学献社, 1973. 中译本: 陈俊彦, 王余君译, 压电陶瓷材料. 科学出版社.北京.1982
    [128] 张福学, 孙慷. 压电学(下册). 国防工业出版社. 北京. 1984
    [129] Randerat, J. V., Setterington, R. E. Piezoelectric Ceramics. Mullard Limited. 1974
    [130] Randerat, J. V., Setterington, R. E. Piezoelectric Ceramics. Mullard Limited. 1974
    [131] 张福学. 压电铁电应用. 国防工业出版社. 北京. 1987
    [132] Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon Press, 1977, 中译本: 钟维烈译, 王华馥校, 《铁电体及有关材料的原理和应用》, 北京: 科学出版社, 1989
    [133] Mitsui, T., Tatsuzaki, I., and Nakamura, E., An Introduction to the Physics of Ferroelectrics, New York: Gordon and Breach, 1976, 中译本: 倪冠军等译, 殷之文校, 铁电物理学导论, 科学出版社, 1983
    [134] Zheludev, I. S., Solid State Physics, 26, ed. By Ehrenreich, H., Seitz, F. and Thrnball, D., New York: Academic Press, 1971, pp. 429
    [135] Cady, W. G., Piezoelectricity, New York: McGraw-Hill Book Co., 1946
    [136] Cochran, W., “Crystal Stability and the Theory of Ferroelectricity”, Phys. Rev. Lett., 1959, 3(9): 412-414
    [137] Rabe, K. M. and Joannopoulos, J. D., “Ab initio determination of a structural phase transition temperature”, 1987, Phys. Rev. Lett., 59(5), 570-573
    [138] Devonshire, A. F., “Some recent work on ferroelectrics”, Rep. Prog. Phys. 1964, 27: 1-22
    [139] Landau, L. D., et al, Statistical Physics, 3rd ed. Part 1, Oxford: Pergamon Press, 1980
    [140] Wadhawan, V. K., “Towards A Rigorous Definition of Ferroic Phase Transition”, Phase Transitions, 1998, 64: 165
    [141] Tiwari, V. S. et al, “Kinetics of formation of the pyrochlore and perovskite phases in sol-gel derived lead zirconate titanate powder”, J. Mater. Res., 1998, 13: 2170
    [142] Brahadeeswaran, S. et al, “Crystal growth and characterization of semiorganic NLO crystal sodium p-nitro phenol dehydrate”, J. Mater. Chem.,1998, 8: 613
    [143] Megaw, H. D., “Temperature changes in the crystal structure of barium titanium oxide”, Proc. Roy. Soc., 1947, 189A: 261-283
    [144] Shirane, G., Hoshino, S. and Suzuki, K., “X-Ray study of the phase transition in lead titanate”, Phys. Rev., 1950, 80(6): 1105–1106
    [145] Jona, F., Shirane, G., Ferroelectric Crystals, Oxford: Pergamon Press, 1962
    [146] Kittel, C., “Theory of antiferroelectric crystals”, Phys. Rev., 1951, 82(5), 729-732
    [147] Chaplot, S. L., et al, “Phonon dispersion in various phases of KNbO3”, J. Phys. C: Solid State Phys., 1983, 16: 3045-3054
    [148] N Lehner et al, “Lattice dynamics, lattice instabilities and phase transitions in fluoride perovskites”, J. Phys. C: Solid State Phys., 1982, 15: 6545-6564
    [149] Harada, J. et al, “Diffuse neutron scattering study of a disordered complex perovskite Pb(Zn1/3Nb2/3)O3 crystal”, Acta Cryst., 1970, A26, 608
    [150] Burfoot, J. C., An Introduction to the Physical Principles, London: Van Nostrand, 1967
    [151] Mueller, H., “Properties of Rochelle salt”, Phys. Rev., 1940, 57(9), 829-839
    [152] Mueller, H., “Properties of Rochelle Salt. III”, Phys. Rev., 1940, 58(6), 565-573
    [153] Batra, I. P., et al, “New type of first-order phase transition in ferroelectric thin films”, Phys. Rev. Lett., 1973, 30(9): 384-387
    [154] Haas, C., “Phase transitions in ferroelectric and antiferroelectric crystals”, Phys. Rev., 1965, 140: A863-A868
    [155] Cowley, R. A., “Critical scattering from piezoelectric ferroelectrics”, Phys. Rev. Lett., 1976, 36(13): 744-747
    [156] Griffiths, R. B., “Dependence of critical indices on a parameter”, Phys. Rev. Lett., 1970, 24(26): 1479-1482
    [157] Grindlay, J., An Introduction to the Phenomenological Theory of Ferroelectricity, Oxford: Pergamon Press, 1990
    [158] Landau, L. D., Lifshits, E. M., Statistical Physics, 3rd Ed., Oxford: Pergamon Press, 1980
    [159] 谢希德等,《群论及其在物理学中的应用》, 北京: 科学出版社, 1986
    [160] Wadhawan, V. K., “ferroelasticity and related properties of crystals”, Phase Transitions, 1982, 3: 3-103
    [161] Wadhawan, V. K., “Assignment of prototype symmetry for the Y-Ba-Cu-O superconductor and some predictions based on this assignment”, Phys. Rev. B, 1988, 38(4): 2509-2512
    [162] 冯端等,《金属物理学(第二卷)》, 北京: 科学出版社, 1990
    [163] 王竹溪,《热力学》, 北京: 高等教育出版社, 1955
    [164] Bruce, A. D., Cowley, R. A., Structural Phase Transitions, London: Taylor and Francis, 1981.
    [165] V. Schmidt, H., “Tricritical point in KH2 PO4”, Phys. Rev. Lett., 1976, 37(13): 839-842
    [166] Haun, M. J., et al, “Thermodynamic Theory of the lead zirconate titanate solid solutions system. Part I: phenomenology”, Ferroelectrics,1989, 99: 45
    [167] Izyumov, Y. A., Syromyatnikov, V. N., Phase Transitions and Crystal Symmetry, Dordrecht: Kluwer Publishers, 1990
    [168] Anderson, P. W., Basic Notions of Condensed Matter Physics, London: Benjamin/Cummings, 1984
    [169] Mason, W. P., Physical Acoustics, 1-Part A, New York and London: Academic Press, 1964
    [170] Zheludev, I. S., Solid State Physics, ed. By Ehrenreich, H., et al, New York: Academic Press, 1971
    [171] Katz, H. W., Solid State Magnetic and Dielectric Devices, New York: Wiley, 1959
    [172] 张沛霖, 张仲渊编,《压电测量》, 北京: 国防工业出版社, 1964
    [173] Ekstein, H., “High Frequency Vibrations of Thin Crystal Plates”, Phys. Rev., 1945, 68(1-2): 11-23
    [174] Grindlay, J., An Introduction to the Phenomemological Theory of Ferroelectricity, Oxford: Pergamon Press, 1970
    [175] 谢强, 薛松涛, “土木工程结构健康监测的研究状况与进展”, 中国科学基金, 2001, 5: 285-288
    [176] Kiremidjian, A. S, et al, “Structural damage monitoring for civil structures”, Proc. of Int. Workshop of Stru. Heal. Moni., Technomic Publishing Co., 1997, 371-382
    [177] Housner, G. W., et al, “Structural control: past, present, and future”, J. of Engin. Mech., ASCE, 1997, 123(9): 897-971
    [178] Doebling, S. W., et al, “Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics”, A literature review, 1996, Los Alamos National Laboratory Report, No. LA-13070-VA5
    [179] 张德文, 魏阜旋, 《模型修正与破损诊断》, 北京: 科学出版社, 1999
    [180] Masri, S. F., et al, “A neural network approach to the detection of changes in structural parameters”, J. of EM, ASCE, 1996, 122(5): 350-359
    [181] Mal, A., “Elastic waves from localized sources in composite laminates”, Int. J. Soli. Stru., 2002, 39: 5481-5494
    [182] Haugse, E., et al, “Crack growth detection and monitoring using broadband acoustic emission technique”, Proc. SPIE Conf., 1999, 3586: 32-40
    [183] Lih, S.-S., Mal, A. K., “Elastodynamic response of a unidirectional composite laminate to concentrated surface loads: Part II” J. Appl. Mech., 1992, 59: 887-892
    [184] Shih, J. H., Mal, A. K., “Acoustic emission from impact damage in cross-ply composite”, Stru. Heal. Moni. 2000, 1: 209-217
    [185] 王金国, “土木工程结构健康监测、诊断以及安全评定技术”, 油气田地面工程, 2004, 23(12): 35-36
    [186] 周智, 欧进萍, “土木工程智能健康监测与诊断系统”, 传感器技术, 2001, 20(11): 38-42
    [187] Sohn, H., et al, “Consideration of environment and operational variability for damage diagnosis”, Smart Struactures and Materials, 2002, 4696-12
    [188] Kammer, D. C., “Sensor placement for on-orbit modal identification and correlation of large space structures”, J. Guid. Cont. Dyna., 1991, 14(9): 251-259
    [189] “Ultrasonic wave propagation in a nickel single crystal”, Proc. Phys. Soc., 1959, 73: 337-344
    [190] Yamamoto, Y., “Equivalent electrical circuits of the quartz crystal transducer for analysis of ultrasonic systems”, IRE Tran. on Ultrans. Engin., 1962, 9(1): 1-5
    [191] Holland, R., “Measurement of piezoelectric phase angles in a ferroelectric ceramic”, IEEE Tran. on Sonics and Ultras., 1970, 17(2): 123-124
    [192] Mason, W. P., Physical Acoustic, vol. 1-Part A, New York and London: Academic Press, 1964
    [193] Katz, H. W., Solid State Magnetic and Dielectric Devices, New York: Wiley, 1959
    [194] Gerson, R. 1960, “Variation in ferroelectric characteristics of lead zirconate titanate ceramics due to minor chemical Modifications,” J. Appl. Phys. 31 188-194
    [195] R. Gerson, P. Chou and W. J. James, J. Appl. Phys., “Ferroelectric Properties of PbZrO3-BiFeO3 Solid Solutions”, vo1.38, pp.55, 1967
    [196] Land, C. E., Smith, G. W. and Westgate C. R., “The dependence of the small-signal parameters of ferroelectric ceramic resonators upon state of polarization”, IEEE Trans. Sonics and Ultras., 1964, 11(8): 118-119
    [197] Martin, G. E., “Dielectric, piezoelectric, and elastic losses in longitudinally polarized segmented ceramic tubes”, U.S. Navy J. Underwater Acoustics, 1965, 15: 329-332
    [198] Holland, R., “Representation of dielectric, elastic, and piezoelectric losses by complex coefficients”, IEEE Trans. Sonics and Ultras., 1967, 14: 18-20
    [199] Holland, R. and EerNisse, E. P., Design and analysis of piezoelectric resonant devices, The M.I.T. press, Cambridge, Massachsetts and London, England, 1969
    [200] Haerdtl, “Electrical and mechanical losses in ferroelectric ceramics”, Ceram. Int., 1982, 8(4): 121-127.
    [201] Uchino, K., Hirose, S., “Loss mechanisms in piezoelectrics: How to measure different losses separately”, IEEE Trans. Ultras. Ferros, and Freq. Cont., 2001, 48(1): 307-321
    [202] Gerber, E. A. 1953. A review of methods fro measuring the constants of piezoelectric vibrators. Proc. IRE. Vol 41. pp1103-1112
    [203] Kim, J. S., Choi, K., Yu, I. 1993. A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect. IEEE Trans. Ultrans. Ferros and Freq. Cont. Vol 40. No 4. pp424-426
    [204] IRE standards on piezoelectric crystals: Measurements of piezoelectric ceramics. Proc. IRE. Vol 49. pp1161-1169. 1961
    [205] 卡门著, 曹起鹏译,《超声波探伤原理及其应用》, 北京: 机械工业出版社, 1982
    [206] 《混凝土结构无损检测与故障处理及修复加固技术手册》, 北京: 当代中国音像出版社, 2003
    [207] 李家伟, 陈积懋,《无损检测手册》, 北京: 机械工业出版社, 2002
    [208] 刘福顺, 汤明,《无损检测基础》, 北京: 北京航空航天大学出版社, 2002
    [209] 王仲生,《无损检测诊断现场实用技术》, 北京: 机械工业出版社, 2002
    [210] 冯若等,《超声手册》, 南京: 南京大学出版社, 1999
    [211] Heising, R. A., Quartz Crystals for Electrical Circuits, D. Van Nostrand Co., Inc., 1946
    [212] Land, C. E., Smith, G. W. and Westgate C. R., “The dependence of the small-signal parameters of ferroelectric ceramic resonators upon state of polarization”, IEEE Trans. Sonics and Ultras., 1964, 11(8): 118-119
    [213] Haerdtl, “Electrical and mechanical losses in ferroelectric ceramics”, Ceram. Int., 1982, 8(4): 121-127
    [214] Ekstein, H., “High frequency vibrations of thin crystal plates”, 1945, Phys. Rev. 68(1-2): 11-23
    [215] Holland, R., “Representation of dielectric, elastic, and piezoelectric losses by complex coefficients”, IEEE Trans. Sonics and Ultras., 1967, 14: 18-20
    [216] Krueger, H. and Berlincourt, D., “Effects of high static stress on the piezoelectric properties of transducer materials,” J. Acoust. Soc. Amer., 1961, 33: 1339-1344,
    [217] Krueger, H., “Stress sensitivity of piezoelectric ceramics: Part 1. Sensitivity to compressive stress parallel to the polar axis,” J. Acoust. Soc. Amer., 1967, 42: 636-646,
    [218] 田中哲郎等编, 陈俊彦, 王余君译,《压电陶瓷材料》, 北京: 科学出版社, 1982
    [219] Kritz, J., “A high-efficiency transducer for transmission to air”, IRE Tran. on Ultras. Engin., 1961, 8(1): 14-19
    [220] Thurston, R. N., “Effect of electrical and mechanical terminating resistances on loss and bandwidth according to the conventional equivalent circuit of a piezoelectric transducer”, IRE Trans. on Ultras. Engin., 1960, 6(1): 16-25
    [221] Nishi, R. Y., “Effect of one-dimensional pressure on the properties of several transducer ceramics,” J. Acoust. Soc. Amer., 1966, 40: 486-495,
    [222] Mueller, V. and Zhang, Q. M., “Shear response of lead zirconate titanate piezoceramics,” J. Appl. Phys., 1998, 83: 3754-3760
    [223] L'Hermite, R., 于宏译,《混凝土工艺问题》, 北京: 中国建筑工业出版社, 1964
    [224] Park, R., Paulay, T., Reinforced Concrete Structure, New York: John Wiley & Sons, 1975
    [225] Abrams, D. A., “Effect of rate of application of load on the compressive strength of concrete”, ASTM J., 1917, 17(2): 25-31
    [226] Neville, A. M., et al, Creep of Plain and Structural Concrete, London and New York: Construction Press, 1983
    [227] 黄兴国, 陈改新,《混凝土徐变的研究》, 北京: 中国水利水电科学研究院, 1996
    [228] 惠荣炎等,《混凝土的徐变》, 北京: 中国铁道出版社, 1988
    [229] Meyers, B. L., “Elasticity, shrinkage, creep, and thermal movement of concrete”, In: Kong, F. K., et al, Handbook of Structural Concrete, London: Pitman, 1983, 11-1 ~ 11-33
    [230] Zhang, Q.M., Zhao, J., “Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stress” IEEE Tran. on Ultr., Ferr. and Freq. Cont., 1999, 46(6): 1518-1526.
    [231] 李春喜, 王志和, 王文林. 生物统计学(第二版) [M]北京: 科学出版社, 2000:15-19
    [232] Chen, Q., Zhang, T., Wang Q., “Frequency-temperature compensation of piezoelectric resonators by electric dc bias field”, IEEE Tran. on Ultras., Ferro. and Freq. Cont., 2005, 52(10):1627-1631
    [233] Rittenmyer, K.M., “Temperature-dependent transduction characteristics of piezoelectric composite materials”, IEEE 7th Int. Symp. on Appl. of Ferro, 1990: 337-340
    [234] Ohigashi, H., et al, “Piezoelectric properties of ferroelectric polymers at low temperatures”, IEEE 1990 Ultras. Symp. Proc., 2: 753-756
    [235] Zhang, S., et al, “Dielectric and piezoelectric properties as a function of temperature for Pb(Yb1/2Nb1/2)O3-PbTiO3 single crystals”, ISAF Proc of the 13th IEEE Int. Symp. on Appl. of Ferro., 2002: 455-458
    [236] Zhang, Q. M., Zhao, J., “Electromechanical properties of lead zirconate titanate piezoceramics under the influence of mechanical stresses” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1999, 46(6): 1518-1526
    [237] D. K. C. MacDonald and S. K. Roy, “Vibrational anharmonicity and lattice thermal properties. II”, Phys. Rev., 1955, 97(3), 673-676
    [238] Cheon, C. I., Lee, H. G., “The piezoelectric properties and the stability of the resonant frequency in Mn-Cr Co-doped PSZT ceramics”, J. Mater. SCI. Mater. In Elec., 1999, 10(2): 81-84