非线性随机系统故障检测问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际系统中,被控对象或过程所具有的非线性现象是普遍存在且无法彻底消除的。非线性的存在增加了系统的复杂性,同时给系统的分析与综合问题的研究带来了本质的困难。另一方面,绝大多数真实系统都会受到随机噪声的影响而成为复杂的随机系统。基于确定性系统的故障检测方法具有很大的局限性,很难再适用于随机系统。因此,开展非线性随机系统的故障检测方法研究具有重要的理论意义和应用价值。在本文中,针对非线性马尔科夫跳跃系统、时滞非线性随机系统、模糊系统等复杂非线性随机系统,借助概率论、随机分析、鲁棒控制等数学工具为随机非线性系统建立起一套较为完整的故障检测策略,主要研究内容如下:
     一、非线性马尔可夫跳跃系统故障检测研究
     针对具有不完全知识的转移概率,随机变化非线性,研究离散时间马尔可夫跳跃系统的故障检测问题。对于马尔可夫模式跳跃,转移概率矩阵允许有部分未知项,同时对转移概率已知或完全未知两种特殊情形也进行了研究。对于嘈杂的环境导致的通信故障的概率,有限振幅的测量等现象,引入了随机变化非线性。构造两个能量范数指标来反映扰动与故障敏感度之间的关系,设计了最优故障检测滤波器,通过发展新的局部优化故障检测滤波器算法,实现了故障检测动态系统随机稳定的要求,且同时满足残差信号对扰动信号的鲁棒性指标与残差信号对故障信号的灵敏度指标的比率最小化要求。
     二、随机时滞非线性系统故障检测问题研究
     研究了随机丢包情形下非线性随机时滞系统的故障检测问题,所考虑的时滞包括多重时变时滞。用相互独立的伯努利随机过程建立了统一刻画时延及随机丢包的数学模型。在系统含有随机发生非线性、随机发生时滞及丢包影响下,通过状态增广技巧,将原故障检测问题转化为相应的鲁棒滤波问题,通过随机分析技术建立该故障检测滤波器存在的充分条件。此外,通过求解一个凸优化问题,获得故障检测问题最佳的性能指标。
     三、基于模糊模型的非线性随机系统鲁棒故障检测
     研究在通讯受限所引起的连续丢包情形下一类具有较强工程背景的不确定离散模糊系统的故障检测问题。首先通过构建含有前一时刻测量信息的丢包模型,以一个统一的框架刻画随机发生的数据丢失过程,用T-S模糊模型逼近非线性离散系统,然后根据模糊参数依赖Lyapunov函数方法,给出了故障检测滤波器存在的充分条件。在推导过程中引入的附加矩阵,解除了Lyapunov矩阵与系统矩阵之间的耦合,大大简化了故障检测滤波器的设计过程。这一部分研究为网络化非线性系统的故障检测问题研究提供了理论借鉴。
     四、基于状态观测器的非线性随机系统容错控制
     提出一种非线性随机系统的容错控制方法。针对从传感器到控制器和从控制器到执行器存在随机数据包丢失故障的非线性随机系统,基于观测器获得的故障估计信息,设计容错控制器,应用线性矩阵不等式方法,使得系统随机稳定并确保其H∞性能。
     最后对本文研究工作进行了总结,并给出后续需进一步讨论和研究的问题。
In real systems, the controlled object or process with non-linear phenomenon existseverywhere and can not be completely eliminated. The nonlinearities not only increased thecomplexity of the system, but also made to research on the problem of analysis andsynthesis more difficulties in nature. Furthermore, the vast majority of the real system willbecome the complex stochastic system affected by the random noise. Fault detectionmethod based on the certainly system has serious limitations, it is difficult to apply tostochastic systems. Therefore, it has important theoretical significance and application valueto develop the methods for fault detection for nonlinear stochastic systems. In this paper, fornonlinear systems such as nonlinear Markovian jump systems, nonlinear stochastic systems,fuzzy systems and other complex nonlinear stochastic systems, via the probability theory,stochastic analysis, robust control and other mathematical tools, we will establish arelatively complete fault detection strategy for stochastic nonlinear systems, the mainresearch works are as follows.
     (1) Research on fault detection for nonlinear Markovian Jump Systems
     The fault detection for discrete-time Markovian jump systems with incompleteknowledge of transition probabilities and stochastic nonlinearities was studied in this paper.For the Markovian jumping model, the transition probability matrix is allowed to havepartially unknown entries, while with completely known or completely unknown transitionprobabilities are also studied as two special cases. For the phenomenon such as theprobability of communication failure caused by noisy environment, and the measurement offinite amplitude, the stochastic nonlinear were introduced. By constructing two energy normindicators to reflect the relationship between the disturbance and fault sensitivity, anddesigning the optimal fault detection filter, developing the new algorithm of localoptimization fault detection filter, the requirements of stochastic stability of the faultdetection dynamic system, and at the same time, the ration between the robustness indicatorof the residual signal for disturbance and the sensitivity indicators of the residual signal forthe fault signal minimize requirements were implemented.
     (2) Research on fault detection for stochastic time-delay nonlinear system
     Research on fault detection for stochastic time-delay nonlinear system with stochasticpacked dropouts, the considering time-delaying include multiple time-varying delaying. Themathematical model of unified characterization for stochastic packet dropouts andtime-delaying was established via the independent Bernoulli random processes. The systemwith stochastic nonlinear, stochastic occurring time-delaying and packet dropouts, via stateaugmented skills, then make the original fault detection transformed into correspondingrobust filtering, via stochastic analysis techniques, then establish the sufficient condition of the fault detection filter. In addition, by solving a convex optimization problem, gain thebest performance indicator for fault detection.
     (3) Research on fuzzy-model-based robust fault detection with successive packetdropouts
     The fault detection for a class of uncertain discrete fuzzy system with strongengineering background and successive packet dropouts under limited communication wasstudied. First, by building the packet dropouts model of containing the previous timemeasurement information, a unified framework was used to characterize the stochasticoccurring packet dropouts processes, by using T-S fuzzy model to approximate nonlineardiscrete-time system, then the sufficient conditions of existence of the fault detection filterwere given according to the fuzzy parameter dependent Lyapunov function approach.Auxiliary matrix introduced in the derivation processes, lifting the coupling between theLyapunov matrix and the systems matrixes, which greatly simplifies the design process offault detection filter. This part of the study provides a theoretical reference for network faultdetection of nonlinear systems.
     (4) Research on state observer-based fault-tolerant control of nonlinear systems
     Proposed a fault-tolerant control method for nonlinear stochastic systems. Forstochastic packet dropout fault from the sensor to the controller and from the controller tothe actuator in nonlinear stochastic systems, based on the estimated fault obtained fromobservations, design fault-tolerant controller, via the linear matrix inequality, make thesystem stochastic stable and ensure its H∞performance.
     Finally, the research work has been summarized and the further follow-up discussionand research were given.
引文
[1] Hespanha J P, Naghshtabrizi P, Xu Y., A survey of recent results in networked controlsystems, Proc. IEEE,2007,95:138-162.
    [2] Zhang H G, Li M, Yang Y, et al., Fuzzy model-based robust networked control for aclass of nonlinear systems. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,2009,39(2):437-447.
    [3]钟麦英,汤兵勇, Ding SX.基于状态观测器的鲁棒故障诊断滤波器设计:LMI方法[J].自动化学报,2002,25(6):1001-1005.
    [4]吕彦平,吴晓东,李朝霞等.层次分析法在螺杆泵井故障诊断中的应用[J].石油钻采工艺,2008,30(6):80-83.
    [5]黄鹤.几种网络控制系统的故障检测与容错控制研究[D].南京:南京理工大学博士论文,2009.
    [6]董宏丽.基于随机发生不完全信息的非线性系统滤波问题研究[D].哈尔滨:哈尔滨工业大学博士论文,2012.
    [7]彭晨,岳东.网络控制系统的分析与综合[M].北京:科学出版社,2007.
    [8] Zhang W A, Yu L, New approach to stabilization of networked control systems withtime-varying delays, IET Control Theory&Application,2008,2(12):1094-1104.
    [9] Fang F J, Ye H, Zhong M Y, Fault diagnosis of networked control systems, AnnualReviews in Control,2007,31(1):55-68.
    [10]王永强,叶昊,王桂增.网络化控制系统故障检测技术的最新进展[J].控制理论与应用,2009,26(4):400-409.
    [11]方勇纯.非线性系统理论[M].北京:清华大学出版社,2009.
    [12]朱芳来,李宵峰,岑峰.具有自适应调节律的非线性系统执行器故障检测和隔离方法[J].控制与决策,2010,25(3):332-338.
    [13] Pertew A M, Marquez H J and Zhao Q., LMI-based sensor fault diagnosis for nonlinearLipschitz systems, Automatica,2007,43(8):1464-1469.
    [14] Zehui Mao, Bin Jiang, Peng Shi, Observer based fault-tolerant control for a class ofnonlinear networked control systems, Journal of the Franklin Institute,2010,347(6):940-956.
    [15] Huijun Gao, Zhongyang Fei and Lam, J. et al., Fault Detection for Markovian JumpSystems With Sensor Saturations and Randomly Varying Nonlinearities, IEEETransactions on Circuits and Systems I: Regular Papers,2012,59(10):2354-2362.
    [16] Ming Liu, Peng Shi and Lixian Zhang. et al., Fault-Tolerant Control for NonlinearMarkovian Jump Systems via Proportional and Derivative Sliding Mode ObserverTechnique, IEEE Transactions on Circuits and Systems I: Regular Papers,2011,58(11):2755-2764.
    [17] Hongli Dong, Zidong Wang and Huijun Gao, Fault Detection for Markovian JumpSystems With Sensor Saturations and Randomly Varying Nonlinearities, IEEETransactions on Circuits and Systems I,2012,59(10):2354-2362.
    [18] Yan Xu, Zhao Yang Dong, Jun Hua Zhao, et al., A Reliable Intelligent System forReal-Time Dynamic Security Assessment of Power Systems, IEEE Transactions onPower Systems,2012,27(3):1253-1263.
    [19]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [20] Thumati B T, S. Jagannathan, A model-based fault detection and prediction scheme fornonlinear multivariable discrete-time systems with asymptotic stability guarantees [J].IEEE trans. On neural networks,2010,21(3):404-423.
    [21]张孝远,周建中,黄志伟等.基于粗糙集和多类支持向量机的水电机组振动故障诊断[J].中国电机工程学报,2010,30(20):88-93.
    [22] Wang P., Gachtsevanos V., Fault Prognostics using Dynamic Wavelet Neural Networks[J]. AIEDAM-Artificial Intelligence for Engineering Design Analysis andManufacturing,2005,15(3):349-365.
    [23]冯纯伯,费树岷.非线性系统分析与设计.第2版[M].北京:电子工业出版社,1998.
    [24]李士勇.模糊控制神经控制和智能控制论[M].哈尔滨工业大学出版社,2006.
    [25]赵俊龙.往复式压缩机振动信号特征分析及故障诊断方法研究[D].大连理工大学博士学位论文.2010.
    [26]胡昌华,王兆强,周志杰等.一种RVM模糊模型辨识方法及在故障预报中的应用[J].自动化学报,2011,37(4):503-512.
    [27] C. Nan, F. Khan, and M. T. Iqbal, Real-time fault diagnosis using knowledge-basedexpert system [J]. Process Safety and Evnironment Protection,2008,86(1):55-71.
    [28]周东华,李刚,李元.数据驱动的工业过程故障诊断技术[M].北京:科学出版社,2011.
    [29] S. Kazzaz, G. K Singh, Experimental investigations on induction machine conditionmonitoring and fault diagnosis using digital signal processing techniques [J]. ElectricPower Systems Research,2003,65(3):197-221.
    [30] Zhang S, Ganes R., Multi-variable Trend Analysis using Neural Networks for IntelligentDiagnostics of Rotating Machinery [J]. Trans. of the ASME, Journal of Engineering forGas Turbines and Power,2003,19(2):378-384.
    [31]阵莉,钟麦英.不确定奇异时滞系统的鲁棒故障诊断滤波器设计[J].自动化学报,2008,34(8):943-949.
    [32]李胜,邓华.基于扩展卡尔曼滤波的液压马达故障诊断[J].现代制造工程,2010,4:145-149.
    [33] Zhang Y M, Ji Q, Active and dynamic information fusion for multisensor systems withdynamic Bayesian networks[J]. IEEE trans. On Systems, Man and Cybernetics,2006,36(2):467-472.
    [34]吕宁.基于数据驱动的故障诊断模型及算法研究[D].哈尔滨理工大学博士学位论文.2009.
    [35]李长宁.机械故障信号统计建模及其故障诊断方法的研究[D].哈尔滨工业大学博士论文,2010.
    [36]段海滨,王道波,黄向华等.基于粗集理论的高精度伺服仿真转台故障诊断研究[J].中国机械工程学报,2004,15(21):1895-1898.
    [37] Hiliuta A, Landry J R, Gagnon F. Fuzzy corrections in a GPS/INS hybrid navigationsystem [J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40(2):591-600.
    [38]王宏,柴天佑,丁进良等.数据驱动的故障诊断与容错控制进展与可能的新方向(英文)[J].自动化学报,2009,35(6):739-747.
    [39]张颖伟,周宏,秦泗钊.基于多块核主元分析的复杂过程的分散故障诊断(英文)[J].自动化学报,2010,36(4):593-597.
    [40]周福娜,文成林,汤天浩等.基于指定元分析的多故障诊断方法[J].自动化学报,2009,35(7):971-982.
    [41]刘江,蔡伯根,王剑等.基于主成分分析的车辆组合导航系统故障检测与隔离算法[J].交通运输系统工程与信息,2009,9(5):46-52.
    [42] Shantakumar B. Patil, Intelligent and Effective Heart Attack Prediction System UsingData Mining and Artificial Neural Network [J]. European Journal of Scientific Research,2009,31(4):642-656.
    [43]郑蕊蕊;赵继印;王志男等.基于改进灰色聚类分析的电力变压器故障诊断[J].吉林大学学报(工学版),2008,38(5):1237-1241.
    [44]李学军,蒋玲莉,杨大炼等.基于双谱分布区域的齿轮聚类分析与故障诊断[J].振动工程学报,2011,24(3):304-308.
    [45]李辉;白亮;罗兴锜.基于小波分析的水力机组故障诊断奇异数据还原研究[J].西安理工大学学报,2010,26(3):254-258.
    [46]臧玉萍;张德江;王维正.基于小波变换技术的发动机异响故障诊断[J].机械工程学报,2009,45(6):239-245.
    [47]李目,何怡刚,谭文.基于差分进化小波神经网络的多维非线性系统辨识[J].电子测量与仪器学报,2010,24(7):599-604.
    [48]张威,肖云魁,司爱威.基于小波包-模糊C均值聚类算法诊断曲轴轴承故障[J].军事交通学院学报,2009,11(2):44-47.
    [49]张柯,姜斌.基于故障诊断观测器的输出反馈容错控制设计[J].自动化学报,2010,36(2):274-281.
    [50] Hongli Dong, Zidong Wang and Huijun Gao, Fault detection for Markovian jumpsystems with sensor saturations and randomly varying nonlinearities [J], IEEETransactions on Circuits and Systems I: Regular Papers,2012,59(10):2354-2362.
    [51] Wang F Y, Liu D, Yang S X, et al. Special issue on networking, sensing, and control fornetworked control systems: architectures, algorithms, and applications [J]. IEEETransactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2007,37(2).
    [52] Hongli Dong, Zidong Wang and Huijun Gao, Observer-based H-infinity control forsystems with repeated scalar nonlinearities and multiple packet losses[J], InternationalJournal of Robust and Nonlinear Control,2010,20(12):1363-1378.
    [53] P. Chen, L. Chang and T. Wang, A Low-cost VLSI architecture for fault-tolerant fusioncenter in wireless sensor networks, IEEE Trans. Circuits and Systems-Part I: RegularPapers,2010, Vol.57, No.4, pp.803–813.
    [54] L. Guo and H. Wang, Fault detection and diagnosis for general stochastic systems usingB-spline expansions and nonlinear filters, IEEE Trans. Circuits and Systems-Part I:Regular Papers,2005, Vol.52, No.8, pp.1644–1652.
    [55] A. Q. Khan and S. X. Ding, Threshold computation for fault detection in a class ofdiscrete-time nonlinear systems, Int. J. Adaptive Control and Signal Processing,2011,Vol.25, No.5, pp.407–429.
    [56] G. Leger and A. Rueda, Low-cost digital detection of parametric faults in cascadedSigma Delta modulators, IEEE Trans. Circuits and Systems-Part I: Regular Papers,2009, Vol.56, No.7, pp.1326–1338.
    [57] Z. Mao, B. Jiang and P. Shi, Fault-tolerant control for a class of nonlinear sampled-datasystems via a Euler approximate observer, Automatica,2010, Vol.46, No.11, pp.1852–1859.
    [58] L. Zhang, N. Cui, M. Liu, et al., Asynchronous filtering of discrete-time switched linearsystems with average dwell time, IEEE Trans. Circuits and Systems-Part I: RegularPapers,2011, Vol.58, No.5, pp.1109–1118.
    [59] M. Zhong, S. X. Ding and E. L. Ding, Optimal fault detection for linear discretetime-varying systems, Automatica,2010, Vol.46, No.8, pp.1395–1400.
    [60] M. Zhong, H. Ye, P. Shi and G. Wang, Fault detection for Markovian jump systems, inProc. Inst. Electr. Eng. Part D: Control Theory Appl.,2005, Vol.152, No.4, pp.397–402.
    [61] Z. Zuo, D. W. C. Ho and Y. Wang, Fault tolerant control for singular systems withactuator saturation and nonlinear perturbation, Automatica,2010, Vol.46, No.3, pp.569–576.
    [62] S. X. Ding, T. Jeinsch, P. M. Frank, et al., A unified approach to the optimization offault detection systems, Int. J. Adaptive Control and Signal Processing,2000, Vol.14,No.7, pp.725–745.
    [63] Z. Mao, B. Jiang and P. Shi, fault detection filter design for networked controlsystems modelled by discrete markovian jump systems, IET Control Theory Appl.,2007,Vol.1, No.5, pp.1336–1343.
    [64] H. Wang, J. Wang and J. Lam, Robust fault detection observer design: iterative LMIapproaches, Tran. ASME: J. Dynamic Systems, Measurements&Control,2007, Vol.129, No.1, pp.77–82.
    [65] Y. Zhao, J. Lam and H. Gao, Fault detection for fuzzy systems with intermittentmeasurement, IEEE Trans. Fuzzy Systems,2009, Vol.17, No.2, pp.398–410.
    [66] M. Zhong, H. Ye, P. Shi, et al., Fault detection for Markovian jump systems, in Proc.Inst. Electr. Eng. Part D: Control Theory Appl.,2005, Vol.152, No.4, pp.397–402.
    [67] E. Frisk and L. Nielsen, Robust residual generation for diagnosis including a referencemodel for residual behavior, in Proc.1999,14th IFAC World Congress, Beijing, China,pp.55–60.
    [68] M. Zhong, S. X. Ding, J. Lam, et al., An LMI approach to design robust fault detectionfilter for uncertain LTI systems, Automatica,2003, Vol.39, No.3, pp.543–550.
    [69] Z. Fei, H. Gao and P. Shi, New results on stabilization of Markovian jump systems withtime delay, Automatica,2009, Vol.45, No.10, pp.2300–2306.
    [70] J. Xiong, J. Lam, H. Gao, et al., On robust stabilization of Markovian jump systems withuncertain switching probabilities, Automatica,2005, Vol.41, No.5, pp.897–903.
    [71] H. Dong, Z. Wang, D. W. C. Ho el al., Robust filtering for Markovian jump systemswith randomly occurred nonlinearities and sensor saturation: the finite-horizon case,IEEE Trans. Signal Processing, in press.
    [72] H. Liu, F. Sun, K. He, et al., Design of reduced-order filter for markovian jumpingsystems with time delay, IEEE Trans. Circuits and Systems-II,2006, Vol.51, No.11,pp.1837–1841.
    [73] L. Ma, F. Da and K. Zhang, Exponential filter design for discrete time-delaystochastic systems with Markovian jump parameters and missing measurements, IEEETrans. Circuits and Systems-Part I: Regular Papers,2011, Vol.58, No.5, pp.994–1007.
    [74] P. Shi, E. K. Boukas and R. K. Agarwal, Kalman filtering for continuous-time uncertainsystems with Markovian jumping parameters, IEEE Trans. Automatic Control,1999,Vol.44, No.8, pp.1592–1597.
    [75] M. H. Terra, J. Y. Ishihara and G. Jesus, Information filtering and array algorithms fordiscrete-time Markovian jump linear systems, IEEE Trans. Automatic Control,2009,Vol.54, No.1, pp.158–162.
    [76] J. Xiong and J. Lam, Fixed-order robust filter design for Markovian jump systemswith uncertain switching probabilities, IEEE Trans. Signal Processing,2006, Vol.54,No.4, pp.1421–1430.
    [77] X. Zhang and Y. Zheng, Nonlinear filtering for interconnected Markovian jumpsystems, J. Systems Engineering and Electronics,2006, Vol.17, No.1, pp.138–146.
    [78] M. Zhong, H. Ye, P. Shi, et al., Fault detection for Markovian jump systems, in Proc.Inst. Electr. Eng. Part D: Control Theory Appl.,2005, Vol.152, No.4, pp.397–402.
    [79] J. Xiong, J. Lam, H. Gao et al., On robust stabilization of Markovian jump systems withuncertain switching probabilities, Automatica,2005, Vol.41, No.5, pp.897–903.
    [80] J. Xiong and J. Lam, Fixed-order robust filter design for Markovian jump systemswith uncertain switching probabilities, IEEE Trans. Signal Processing,2006, Vol.54,No.4, pp.1421–1430.
    [81] L. Zhang and E. Boukas, Mode-dependent filtering for discrete-time Markovianjump linear systems with partly unknown transition probabilities, Automatica,2009, Vol.45, No.6, pp.1462-1467.
    [82] L. Zhang, E. K. Boukas, L. Baron and H. R. Karimi, Fault detection for discrete-timeMarkov jump linear systems with partially known transition probabilities, Int. J. Control,2010, Vol.83, No.8, pp.1564–1572.
    [83] J. Liang, Z. Wang and Y. Liu, Distributed state estimation for discrete-time sensornetworks with randomly varying nonlinearities and missing measurements, IEEE Trans.Neural Networks,2011, Vol.22, No.3, pp.486–496.
    [84] Z. Wang, Y. Wang and Y. Liu, Fuzzy-model-based robust fault detection with stochasticmixed time-delays and successive packet dropouts, IEEE Transactions on Systems, Man,and Cybernetics-Part B,2012, Vol.42, No.2, pp.365–376.
    [85] M. Zhong, S. X. Ding, J. Lam, et al., An LMI approach to design robust fault detectionfilter for uncertain LTI systems, Automatica,2003, Vol.39, No.3, pp.543-550.
    [86] Y. Wang, S. X. Ding, et al., A new fault detection scheme for networked controlsystems subject to uncertain time-varying delay, IEEE Trans. on Signal Processing,2008, Vol.56, No.10, pp.5258-2568.
    [87] L. Wu and D. W. C. Ho, Fuzzy filter design for It o stochastic systems with applicationto sensor fault detection, IEEE Trans. Fuzzy Systems,2009, Vol.17, No.1, pp.233-242.
    [88] B. Jiang, M. Staroswiecki and V. Cocquempot, fault detection filter design for lineardiscrete-time systems with multiple time delays, Int. J. Syst. Sci.,2003, Vol.34, No.5,pp.365-373.
    [89] X. He, Z. Wang and D. Zhou, Robust fault detection for networked systems withcommunication delay and data missing, Automatica,2009, Vol.45, No.11, pp.2634-2639.
    [90] M. Zhong, H. Ye, P. Shi, et al., Fault detection for Markovian jump systems, in Proc.Inst. Electr. Eng. Part D:Control Theory Appl.,2005, Vol.152, No.4, pp.397-402.
    [91] Y. Zheng, H. Fang and H.Wang, Takagi-Sugeno fuzzy-model-based fault detection fornetworked control systems with Markov delays, IEEE Trans. Syst. Man Cybern. PartB-Cybern.,2006, Vol.36, No.4, pp.924-929.
    [92] M. Liu, D. W. C. Ho and Y. Niu, Stabilization of markovian jump linear system overnetworks with random communication delay, Automatica,2009, Vol.45, No.2, pp.416-421.
    [93] F. Yang, Z. Wang, Y. Hung and M. Gani, control for networked systems withrandom communication delays, IEEE Trans. Automat. Control,2006, Vol.51, No.3, pp.511-518.
    [94] H. Dong, Z. Wang and H. Gao, Robust filtering for a class of nonlinear networkedsystems with multiple stochastic communication delays and packet dropouts, IEEETransactions on Signal Processing,2010, Vol.58, No.4, pp.1957-1966.
    [95] Z. Wang, Y. Wang and Y. Liu, Global synchronization for discrete-time stochasticcomplex networks with randomly occurred nonlinearities and mixed time-delays, IEEETrans. Neural Networks,2010, Vol.21, No.1, pp.11-25.
    [96] Z. Wang, D. W. C. Ho, Y. Liu, et al., Robust control for a class of nonlinear discretetime-delay stochastic systems with missing measurements, Automatica,2009, Vol.45,No.3, pp.684-691.
    [97]张雪峰,杨明.基于LMI的线性时变周期系统的稳定性及鲁棒控制[J].控制与决策,2010,2:291-294.
    [98]李岳炀,钟麦英.存在多步测量数据包丢失的线性离散时变系统鲁棒H∞故障检测滤波器设计[J].自动化学报,2010,12:1788-1797.
    [99]袁宇浩,张广明. T-S模糊广义系统研究综述[J].自动化学报,2010,7:901-912.
    [100]P. Zhang, S. X. Ding, G. Wang, and D. Zhou, A frequency domain approach to faultdetection in sampled-data systems [J], Automatica,2003,39(7):1303-1307.
    [101]邱爱兵,文成林,姜斌.基于混杂系统方法的一类采样数据系统鲁棒故障检测[J].自动化学报,2010,8:1182-1189.
    [102][]孔淑兰,张召生.带马尔科夫跳和乘积噪声的随机系统的最优控制[J].自动化学报,2012,7:1113-1119.
    [103]刘宗润,焦贤发.带有饱和执行器及时变时滞的马尔可夫跳变随机双线性系统的均方指数稳定[J].信息与控制,2012,6:724-730.
    [104]D. Sauter, S. B. Li and C. Aubrun, Robust fault diagnosis of networked controlsystems[J], Int. J. Adaptive Control and Signal Processing,2009,23(8):722-736.
    [105]黄鹤,谢德晓,韩笑冬等.具有随机丢包的一类网络控制系统的故障检测[J].控制理论与应用,2011,1:79-87.
    [106]D. Sauter, S. B. Li and C. Aubrun, Observer-based stabilization of T-S fuzzy systemswith input delay [J], IEEE Trans. Fuzzy Systems,2008,16(3):652-663.
    [107]常晓恒.具有D稳定性约束的T-S模糊系统滤波器设计[J].控制与决策,2011,7:1051-1056.
    [108]G. Feng, A survey on analysis and design of model-based fuzzy control systems[J],IEEE Trans. Fuzzy Systems,2006,14(5):676-697.
    [109]杜富,梁家荣,张晶华.离散广义T-S模糊系统的稳定性分析[J].控制工程,2011,4:543-548.
    [110]H. Gao, Y. Zhao, J. Lam and K. Chen, fuzzy filtering of nonlinear systems withintermittent measurements[J], IEEE Trans. Fuzzy Systems,2009,17(2):676-697.
    [111]D. W. C. Ho and J. Sun, Stability of Takagi-Sugeno fuzzy delay systems with impulse[J], IEEE Trans. Fuzzy Systems,2007,15(5):784-790.
    [112]J. Qiu, G. Feng and J. Yang, A new design of delay-dependent robust filtering fordiscrete-time T-S fuzzy systems with time-varying delay [J], IEEE Trans. FuzzySystems,2009,17(5):1044-1058.
    [113]D. J. Choi and P. Park, Guaranteed cost controller design for discrete-time switchingfuzzy systems [J], IEEE Trans. Syst. Man Cybern. Part B-Cybern,2004,34(1):110-119.
    [114]S. K. Nguang and P. Shi, Fuzzy output feedback control of nonlinear systems undersampled measurements [J], Automatica,2009,45(1):578-584.
    [115]李武全,吴昭景,王会.一类上三角随机非线性系统的输出反馈控制[J].控制与决策,2012,10:1494-1500.
    [116]叶慧,翟军勇,费树岷.具有未知输出函数的非线性系统全局输出反馈控制[J].控制理论与应用,2011,10:1384-1391.
    [117]G. Wei, G. Feng and Z. Wang, Robust control for discrete-time fuzzy systems withinfinite-distributed delays [J], IEEE Trans. Fuzzy Systems,2009,17(1):224-232.
    [118]Y. Zhao, C. Zhang and H. Gao, A new approach to guaranteed cost control of T-S fuzzydynamic systems with interval parameter uncertainties [J], IEEE Trans. Syst. ManCybern. Part B-Cybern,2009,39(6):1516-1527.
    [119]肖会芹,何勇,吴敏等.基于T-S模糊模型非线性网络控制系统改进跟踪控制[J].控制理论与应用,2012,1:71-79.
    [120]王银河,胡钧,崔乐远等.基于参数辨识和T-S模糊模型的一类非线性系统镇定控制器设计[J].控制与决策,2012,6:919-924.
    [121]H. Dong, Z. Wang and H. Gao, A new design of delay-dependent robust fuzzy controlfor systems with repeated scalar nonlinearities and random packet losses [J], IEEE Trans.Fuzzy Systems,2009,17(2):440-450.
    [122]X. Jia, D. Zhang, X. Hao and N. Zheng, Fuzzy tracking control for nonlinear networkedcontrol systems in T-S fuzzy model [J], IEEE Trans. Syst. Man Cybern. Part B-Cybern,2009,39(4):1073-1079.
    [123]N. Meskin and K. Khorasani, Fault detection and isolation of discrete-time Markovianjump linear systems with application to a network of multi-agent systems havingimperfect communication channels [J], Automatica,2009,45(9):2032-2040.
    [124]张捷,薄煜明,吕明.存在时延和数据包丢失的网络控制系统故障检测[J].控制与决策,2011,6:933-940.
    [125]W.Bi, X. Zhao and C. Qi. Observer-based robust H-infinity control for uncertaindiscrete-time systems with both state and input delays[C], Proceeding of the26thChinese control conference,2007,552-556.
    [126]L. EI Ghaoui, F. Qustry and M. A. Rami, A cone complementarity linearizationalgorithm for static output-feedback and related problems[J], IEEE Trans. Automat.Control,1997,42(8):1171-1176.
    [127]H. Wu, Delay-dependent H-infinity fuzzy observer-based control for discrete-timenonlinear systems with state delay[J], Fuzzy Sets and Systems,2008,159(1):2696-2712.
    [128]Hongli Dong, Zidong Wang and Huijun Gao, Robust H-infinity filtering of nonlinearnetworked systems with multiple stochastic communication delays[C], Proceedings ofthe7th Asian Control Conference, Hong Kong, China,2009,8.203-208.
    [129]O. C. Imer, S. Yuksel and T.Basar, Optimal control of LTI systems over unreliablecommunication links [J], Automatica,2006,42(9):1429-1439.
    [130]Z. D. Wang, W. C. Ho, and X. Liu, Variance-constrained control for uncertainstochastic systems with missing measurements [J], IEEE Trans. Systems, Man andCybernetics Part A,2005,35(5):746-753.