数据驱动的多元统计故障诊断及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息科学技术的快速发展,国防和国民经济各个领域的大型机械系统、工程系统和自动化系统复杂性与自动化程度不断提高,人们迫切需要提高整个系统的可靠性、可维修性和安全性。由于系统在运行过程中是一个相互影响的统一整体,其不同设备之间存在着密切的联系且同一设备不同部分之间也含有紧密的耦合,使得发生的故障难以准确的判断和定位,若不能将其及时诊断并排除就会导致设备甚至整个系统不能有效正常运行,严重的故障会造成灾难性事故。由于计算机技术及各种智能仪表在工业过程中的广泛应用和不断发展,反映系统运行状况的海量过程数据被采集并存储下来。如何利用这些积累的海量离、在线运行数据,在难以建立起系统机理模型进行故障诊断的情况下,通过分析数据特征及其内在规律实现对工业过程及其相关设备的故障诊断,最终到达提高产品质量、保证生产安全、减少经济损失的目的,成为近年来工程和学术界的研究热点之一。
     为此,本文从大型自动化系统的运行状态特点和动态非平稳过程的诊断需求分析出发,利用相应的数学理论并结合工程实际,系统深入地开展了数据驱动的多元统计故障诊断研究,为进一步完善基于数据驱动的故障诊断理论体系作出一定程度的贡献,以期实现数据驱动的故障诊断在实际中的良好应用。通过采用现有数据驱动的故障诊断体系中的各种方法以及本文所提出的一些新方法,以6135D柴油机在漏气故障下的海量数据作为诊断的数据样本,分别对该数据样本进行了数据实验。数据实验的结果表明,本文所开展的各项研究工作及在此基础上所取得的一些创新性成果,在具有较为广泛的应用前景的同时,还具有较为重要的科学研究意义。本文所进行的主要研究工作如下:
     ①通过将含有恒偏差、缓变、突变和和高频正弦等几种类型故障的染噪信号在各个尺度下进行小波分解并提取出相应的细节特征,详细地分析了动态非平稳过程数据的多尺度特征,得到了故障特征在数据空间中的分布规律。针对小波滤波中所出现的边缘效应造成滤波后信号所产生的毛刺和尖峰,结合Toeplitz矩阵和Gram-Schmidt正交化算法设计了边缘校正滤波器,从而减轻边缘效应对信号滤波造成的不良影响。
     ②分析了小波变换检测信号奇异性的相关原理。为克服传统基于小波变换的信号奇异性检测方法不能克服噪声的影响,而预先对信号降噪的同时又容易造成部分故障信息的丢失,提出了一种基于多尺度积的故障奇异性检测与奇异点定位方法。该方法充分利用了小波变换多尺度积在有效增强信号的细节特征的同时又能有效抑制噪声影响的特性。
     ③针对传统PCA因模型固定、尺度单一不能准确反映动态非平稳过程数据的时变和多尺度等统计特性的缺陷,通过在线多尺度滤波(OLMS),结合递归主元分析(APCA)和多尺度主元分析(MSPCA),并在已设计的边缘校正滤波器基础上,提出了基于在线多尺度滤波的多元统计故障诊断方法,实现了多元统计方法对过程数据的实时监控。
     ④针对动态非平稳过程数据的时变性和多尺度性导致故障诊断准确率下降及故障准确定位难以实现的不足,提出滑动窗口多尺度主元分析( Moving Window Multi-scale Principal Component Analysis,MW-MSPCA),通过小波阈值消噪解决统计模型偏离与数据相关性降低之间的矛盾,并在各个尺度上利用滑动窗口主元分析实现模型更新,然后借助三维贡献图描述反映过程行为变化的各独立过程变量对统计过程的贡献程度,进而对故障准确定位。
     ⑤选取6135D型柴油机作为研究对象,分析其故障机理和缸盖处振动信号特点,以该柴油机在漏气故障下的测量数据作为样本,分别采用传统主元分析(PCA)、传统多尺度主元分析(MSPCA)、直接对小波系数进行阈值去噪的改进多尺度主元分析(AMSPCA)、在线多尺度滤波的多尺度主元分析(OLMS-R-MSPCA)、基于滑动窗口的多尺度主元分析(MW-MSPCA)5种算法分别进行了数据实验,并在提出定量分析算法准确率的基础上,按照定量规则对实验结果进行定量分析,最终的分析结果证明了本文所提方法的有效性和可行性。
With the functions gradually improved and the structures increasingly complicated, the large-scale automation systems are the types of important technical equipment being used extensively in national defense and national economy realms, which safety and reliability become crucial.It is quite difficult to establish an accurate physical model being used to fault diagnosis for such systems in which there are strong nonlinear on their condition behaviors and serious state coupling among the different parts and being subject to the non-gauss noise and various indetermination factors.
     Since the non-contact measurement technology and the soft measurement technology and a variety of intelligent instruments in the wide spread of industrial processes are excellently evolving, the massive process data which reflecting the operational status of systems is collected and stored. However, there is a "data rich, information plaque lack of "embarrassing situation in industrial process. In the case of the fault diagnosis model with mechanism is difficult to established for systems, how to use the accumulated mass data from the online or outline operation process, digging deeply out the data characteristics and the inherent laws in the running on the systems process for the related equipment fault diagnosis, and finally to achieve the purpose of improving product quality and ensuring production safety and reducing economic losses, which has become an issue needed to urgent address in aerospace, chemical, manufacturing, transportation and logistics areas, but also is one of the hot focus in recent years of engineering and academic areas.
     Therefore, this article is completed by analyzing dynamic non-stationary characteristics from large automated system running and aiming at needs of the diagnostic process. To achieve the purpose of enhancing accuracy and reliability in the based data-driven fault diagnosis technical, this article use of existing measurement techniques and measurement tools for obtaining the mass process data. A deeply researching on data-driven multivariate statistical fault diagnosis carried out data-driven multivariate statistical fault diagnosis by using the appropriate combination of corresponding mathematical theory and engineering practice. The work is good for the further development of the present imperfect data-driven fault diagnosis the theoretical system and achieving data-driven fault diagnosis in the practice of good applications to provide a degree of technical support and the corresponding theoretical guidance. By using the various methods existing in the present data-driven fault diagnosis system and the proposed new ways in this article, the massive data of 6135D diesel engine under the leak fault is sampled and 6 data-driven fault diagnosis methods are respectively exploited in the data samples. Data experimental results show that the various studies carried out and some of the innovative achievements made in this article are significant in both theory and application. This major research work carried out by the following:
     ①Using the wavelet decomposition in various scales to extract detailed features of a noise signal containing the constant bias, graded, mutation and high frequency sinusoidal failure, detailed analyzing the multi-scale features of the dynamic non-stationary data and the fault characteristics distribution law of the data is obtained. Wavelet filtering for the edge effect appears in the result produced by the filtered signal glitches and spikes, with Toeplitz matrices and the Gram-Schmidt orthogonalization algorithm designed the edge of the orthogonal filter, thereby reducing the edge effect on the adverse impact of signal filtering.
     ②The relevant priciples of signal singularity detection are analyzed in this paper. In order to solve the problem that the wavelet-singular point detection is more sensitive to the noise and signal denoising will lose some improtant fault information, a new method of sigular point is proposed based the multiscale products of wavlet which can sharpen the important features of signal while weakening noise. Therefore, multiscale products can distinguish edge structures from noise more effectively.
     ③Aiming at multi-scaling and time-varying of the dynamic non-stationary process data the analysis on multi-scale characteristics of the signal is studied and the edge correcting filter is designed. Using online multi-scale filtering (OLMS) ideology, combined with the recursive principal component analysis (APCA) and multi-scale principal component analysis (MSPCA), multi-scale line filtering based on multivariate statistical fault diagnosis is proposed.
     ④Proposes an online moving window multi-scale principal component analysis(MW-MSPCA) datadrivenbased fault diagnosis method for tracking the non-stationary dynamics of the process which contains time-varyingand multi-scale data. In this data-driven diagnosis technique, wave threshold denoising is used to solve the conflict betweenthe statistical model deviation and data correlation decreasing;the statistical models is updated by using moving windowprincipal component analysis in various scales;the contributions of individual process variables to the process behaviorchanges is illustrated in a 3-dimensional contribution chart, which determines the root cause failure ;and a quantitative evaluation mechanism is also given to evaluating the accuracy in such algorithms.
     ⑤Select 6135D diesel engine as an object of study, to analyze the failure mechanism and the signal features at cylinder head vibration, making the measurement data under the engine failure in the leak as an experimental data sample, implementing applied research by employing respectively 6 kinds of algorithms, such as the traditional principal component analysis(PCA),based on-line multi-scale filtering multi-scale Principal Component analysis(OLMS-R-MSPCA), and the experimental results show that the proposed method is effective and feasible.
引文
[1]周东华,胡艳艳.动态系统的故障诊断技术[J].自动化学报, 2009, 35(6):748-758.
    [2] Gao Qiang,Han Miao, Hu Shu-Liang,Dong Hai-Jie.Design of fault diagnosis system of FPSO production process based on MSPCA[C]// 5th International Conference on Information Assurance and Security, IAS. China: IEEE press, 2009:729-733.
    [3] Patan Krzysztof.Modelling issue in fault diagnosis[J].Lecture Notes in Control and Information Sciences, 2008,v377: 7-27.
    [4] H W Cho. An orthogonally filtered tree classifier based on nonlinear kernel-based optimal representation of data[J]. Expert Systems With Applications. 2008, 34(2): 1028-1037.
    [5] H W Cho. Nonlinear feature extraction and classification of multivariate process data in kernel feature space[J]. Expert Systems With Applications. 2007, 32(2): 534-542.
    [6] G C Runger, T R Willemain. Model-based and model-free control of auto correlated process[J]. Journal of Quality Technology. 1995, 14(2): 283-288.
    [7] C M Mastrangelo,D C Montgomery. SPC with corrected oaawbservations for the chemical and process industry [J].Quality and Reliability Engineering International. 1995, 11(2): 78-89.
    [8] V Venkatasubramanian,R Rengaswamy,K Yin,S N Kavuri. A review of process fault detection and diagnosis part I: Quantitative model-based methods[J]. Computers and Chemical Engineering .2003,27(3): 293-311.
    [9] Statistics Bureau and the Director-General for Policy Planning (Statistical Standards).International Conferences and Technical Cooperation to Developing Countries[Z]. http://www.stat.go.jp/english/index.htm 2010
    [10] Fagarasan Ioana,Costinas Sorina, Iliescu Sergiu St.Monitoring and diagnosis methods for high voltage power transformers[J]. UPB Scientific Bulletin, Series C: Electrical Engineering, 2008, 70(3): 37-46.
    [11] F Western Electric.statistical quality control handbook[M].Western Electric Corporation,India apolis IN,1956
    [12]曾儒伟,许诚,曾亮.故障诊断方法发展动向[J].航空计算技术,2003, 23(3):19-22.
    [13]叶银忠,潘日芳,蒋慰孙.动态系统的故障检测与诊断方法[J].信息与控制,1985, 15(6):27-34.
    [14]周东华,孙优贤.控制系统的检测与诊断技术[M].北京,清华大学出版社,1994.
    [15]张育林,李东旭.动态系统故障诊断理论与应用[M].长沙,国防科技大学出版社,1997.
    [16]闻新等.控制系统的故障诊断和容错控制[M].北京,机械工业出版社, 1998.
    [17]周东华,叶银忠.现代故障诊断与容错控制[M].北京,清华大学出版社, 2000.
    [18] Wang Hong,Chai Tian-You,Ding Jin-Liang,Brown Martin. Data Driven Fault Diagnosis and Fault Tolerant Control:Some Advances and Possible New Directions [J]. Acta Automatic Sinica, 2009, 35(6):739-747.
    [19] Xu Jian-Xin,Hou Zhong-Sheng. Notes on Data-driven System Approaches [J]. Acta Automatic Sinica, 2009, 35(6):668-675.
    [20]柴天佑.生产制造全流程优化控制对控制与优化理论方法的挑战[J].自动化学报, 2009, 35(6) :641-649.
    [21]史铁林,陈勇辉,李巍华等.提高大型复杂机电系统故障诊断质量的几种新方法[J].机械工程学报, 2003, 39(9):1-10.
    [22] Shim Won-Sul, Kim Gi-Taek,Jung Ha-Jin,Kim Deuk-Soo. A real-time fault diagnosis system for ups based on FFT frequency analysis[C]// 25th Annual IEEE Applied Power Electronics Conference and Exposition. United states: IEEE press, 2010: 1678-1683.
    [23] Bao Wen,Zhou Rui,Yang Jianguo,Yu Daren,Li Ning.Anti-aliasing lifting scheme for mechanical vibration fault feature extraction[J]. Mechanical Systems and Signal Processing, 2009, 23(5): 1458-1473.
    [24] Wu Jian-Da,Liu Chiu-Hong.Investigation of engine fault diagnosis using discrete wavelet transform and neural network[J].Expert Systems with Applications, 2008,35(3): 1200-1213.
    [25] Li Guohua,Wang Yusen, Tian Bin,Li Hua.Research of fault diagnosis for the gyroscope based on wavelet analysis[J].Journal of Information and Computational Science, 2008, 5(3): 1225-1229.
    [26] Zhu Z K,Yan Ruqiang,Luo Liheng, Feng Z H, Kong F R. Detection of signal transients based on wavelet and statistics for machine fault diagnosis[J].Mechanical Systems and Signal Processing, 2009,23(4):1076-1097.
    [27] Chen Chih-Hao, Shyu Rong-Juin,Ma Chih-Kao.A new fault diagnosis method of rotating machinery[J].Shock and Vibration, 2008,15(6):585-598.
    [28] de Moura E P, Vieira A P, Irm?o M A S, Silva A A. Applications of detrended-fluctuation analysis to gearbox fault diagnosis[J].Mechanical Systems and Signal Processing, 2009,23(3): 682-689.
    [29] Yang Shaopu, Shen Yongjun.Recent advances in dynamics and control of hysteretic nonlinear systems [J].Chaos, Solitons and Fractals, 2009,40(4):1808-1822.
    [30] Caceres S, Henley E J. Process failure analysis by block diagrams and fault trees[J].Industrial and Engineering Chemistry, 1976, 15(2): 128-134
    [31] Duan Rongxing,Wan Guochun,Dong Decun.Intelligent fault diagnosis method based on dynamic fault tree analysis[J]. Journal of Computational Information Systems, 2010, 6(3):949-957.
    [32] Sakthivel N R, Sugumaran V, Babudeves enapati S.Vibration based fault diagnosis of monoblock centrifugal pump using decision tree [J].Expert Systems with Applications, 2010,37(6): 4040-4049.
    [33] Saravanan N, Ramachandran K I.Fault diagnosis of spur bevel gear box using discrete wavelet features and Decision Tree classification [J].Expert Systems with Applications, 2009, 36(5):9564-9573.
    [34] Tran Van Tung,Yang Bo-Suk,Oh Myung-Suck,Tan Andy Chit Chiow.Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference[J].Expert Systems with Applications, 2009, 36(2):1840-1849.
    [35] LüNing,Wang Xiong.Fault diagnosis based on signed digraph combined with dynamic kernel PLS and SVR[J].Industrial and Engineering Chemistry Research, 2008,47(23):9447-9456.
    [36] Ahn Sung Joon,Lee Chang Jun,Jung Yunju, Han Chonghun,Yoon En Sup,Lee Gibaek.Fault diagnosis of the multi-stage flash desalination process based on signed digraph and dynamic partial least square[J].Desalination, 2008,228(1-3): 68-83.
    [37] Chen Jung Yang,Chang Chuei-Tin.Development of fault diagnosis strategies based on qualitative predictions of symptom evolution behaviors[J].Journal of Process Control, 2009, 19(5): 842-858.
    [38] Ning Ning, Zhang Jun,Gao Xiangyang1; Xue, Jing1Formal verification for quality analysis of SDG fault diagnosis model via symbolic model checking [C]// International Conference on Measuring Technology and Mechatronics Automation.China: IEEE press, 2010:305-308.
    [39] Zhang Wei-Hua,Wu Chong-Guang,Xa Ying-Chun,Na Yong-Liang.Classification of hazard scenario and SDG qualitative identification method[C]// 7th International Conference on System Simulation and Scientific Computing, China: IEEE press ,2008:1223-1227.
    [40] Yu C C, Lee C. Fault diagnosis based on qualitative/quantitative process knowledge. [J].American Institute Chemical Engineers Journal, 1991, 37(4): 617-628.
    [41] Yang F, Xiao D Y. Model and fault inference with the frame-work of probabilistic SDG[C]// The 9th International Conference on Control, Automation, Robotics and Vision. USA: IEEE press, 2006:1- 6.
    [42] Autio K, Reiter R. Structural abstraction in model-based diagnosis[C]// The Thirteenth European Conference on Artificial Intelligence,1998: 269-273.
    [43] Genesereth M R.The use of design descriptions in automated diagnosis [J].Artificial Intelligence, 1984, 24(2): 411-436.
    [44] Sajjad Siddiqi, jinbo Huang.Hierarchical diagnosis of multiple faults [M]. 2007:581-586.
    [45] Giunchiglia F, Walsh T. Abstract theorem proving [J].Joint Conf on Artificial Intelligence, 1989, 11(3): 372-377.
    [46] Plaisted D A. Theorem proving with abstractions[J].Artificial Intelligence,1981,16(2): 47-618.
    [47] Sacerdoti Earl D. Planning in a hierarchy of abstraction spaces [J].Artificial Intelligence, 1974,5(3):115-135.
    [48] Tenenberg J D.Abstraction in Planning.Ph.D [J].Computer Science Department, 1988: 1-30.
    [49] Gao Dong,Wu Chongguang,Zhang Beike,Ma Xin.Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry[J].Chinese Journal of Chemical Engineering, 2010,18(2):265-276.
    [50] Liu H,Coghill G M,Xu H Y. Qualitative Simulation&Modeling Qualitative modelling of kinematic robots for fault diagnosis International [J].Journal of Production Research, 2005, 43(11): 2277-2290.
    [51] Narasimhan Sridharakumar,Rengaswamy Raghunathan.Quantification of performance of sensor networks for fault diagnosis[J]. AIChE Journal,2007, 53(4):902-917.
    [52] Ng H T. Model-based multiple fault diagnosis of time-varying continuous physical devices[C]// The 6th Conference on Artificial Intelligence Applications. USA: IEEE press, 1990:16-22
    [53]王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报, 2007, 28(1): 12-14.
    [54] Zhuang Z, Frank P M. Qualitative observer and its application to fault detection and isolation systems. Proceedings of the Institution of Mechanical Engineers, Part I [J].Journal of Systems and Control Engineering, 1997, 211(4): 253-262.
    [55] Vinson J M, Ungar L H. Dynamic process monitoring and fault diagnosis with qualitative models [J]. IEEE Transactionson Systems, Man, and Cybernetics, 1995, 25(1): 181-189.
    [56]邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程, 2006, 32(6): 189-192.
    [57] Nan Cen,Khan Faisal,Iqbal M Tariq.Real-time fault diagnosis using knowledge-based expert system [J].Process Safety and Environmental Protection, 2008,86(1):55-71.
    [58] QianYu,Xu Liang, Li Xiuxi, Lin Li, Kraslawski Andrzej.LUBRES: An expert system development and implementation for real-time fault diagnosis of a lubricating oil refining process[J]. Expert Systems with Applications, 2008, 35(3): 1252-1266.
    [59] Wu Jian-Da,Liu Chiu-Hong.An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network[J].Expert Systems with Applications, 2009, 36(3): 4278-4286.
    [60] Wu Jian-Da, Chiang Peng-Hsin,Chang Yo-Wei, ShiaoYao-jung.An expert system for faultdiagnosis in internal combustion engines using probability neural network[J]. Expert Systems with Applications, 2008, 34(4):2704-2713.
    [61] Tang Jian-Zhong,Wang Qing-Feng.Online fault diagnosis and prevention expert system for dredgers[J]. Expert Systems with Applications, 2008, 34(1): 511-521.
    [62] Sutton R, Parkins M J. Early detection of steam leaks in nuclear plant. [C]// International Conference on Control. UK: IEEE press, 1991:75-80.
    [63] Wu J D, Wang Y H, Bai M R. Development of an expert system for fault diagnosis in scooter engine platform using fuzzy-logic inference [J]. Expert Systems with Applications, 2007, 33(4): 1063-1075.
    [64] Yang J B, Liu J, Wang J, Sii H S, Wang H W. Belief rule-base inference methodology using the evidential reasoning approach-RIMER. IEEE Transactions on Systems, Man,and Cybernetics, Part A[J]. Systems and Humans, 2006, 36(2):266-285.
    [65] Yang J B, Wang Y M, Xu D L, Chin K S. The evidential reasoning approach for MADA under both probabilistic and fuzzy uncertainties [J].European Journal of Operational Research, 2006, 171(1): 309-343.
    [66] Yang J B, Liu J, Xu D L, Wang J, Wang H W. Optimization models for training belief-rule-based systems. IEEE Trans-actions on Systems, Man, and Cybernetics, Part A [J]. Systems and Humans, 2007, 37(4): 569-585.
    [67] Frank P M. Fault diagnosis in dynamics systems using analytical and knowledge-based redundancy: a survey and some new results [J]. Automatica, 1990, 26(3): 459-474.
    [68] Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis part I: quantitative model-based methods [J].Computers and Chemical Engineering, 2003, 27(3): 293-311.
    [69] Izadian Afshin, Khayyer Pardis, Famouri Parviz.Fault diagnosis of time-varying parameter systems with application in MEMS LCRs[J].IEEE Transactions on Industrial Electronics, 2009, 56(4): 973-978.
    [70] Tsai Nan-Chyuan,King Yueh-Hsun, Lee Rong-Mao.Fault diagnosis for magnetic bearing systems[J].Mechanical Systems and Signal Processing, 2009, 23(4): 1339-1351.
    [71] Orchard Marcos E, Vachtsevanos George J. A particle-filtering approach for online fault diagnosis and failure prognosis [J].Transactions of the Institute of Measurement and Control, 2009, 31(3-4):221-246.
    [72] Alcorta-Garcia E, Han Z, Frank P M. FDI based on parameter and output estimation: an integrated approach.[C]//The 5th European Control Conference. Germany: IEEE press,1999: 1125-1137.
    [73] Wang A P, Wang H. Fault diagnosis for nonlinear systems via neural networks and parameter estimation.[C]// International Conference on Control and Automation. New York, USA: IEEE press, 2005: 559-563.
    [74] Refan Mohammad Hossein, Bahmanpour Sareh, Bashooki Mahdi.A particle filtering-based framework for on-line fault diagnosis in hybrid systemsInternational[J]. Journal of Innovative Computing, Information and Control, 2010, 6(8): 3669-3680.
    [75] Orchard Marcos E, Vachtsevanos George J.A particle-filtering approach for online fault diagnosis and failure prognosis[J].Transactions of the Institute of Measurement and Control, 2009,31(3-4):221-246.
    [76] Watzenig D,Sommer M S, Steiner G. Engine state monitoring and fault diagnosis of large marine diesel engines[J].Elektrotechnik und Informationstechnik, 2009, 126(5): 173-179.
    [77] Marseguerra Marzio,Zio Enrico.Monte Carlo simulation for model-based fault diagnosis in dynamic systems[J].Reliability Engineering and System Safety, 2009, 94(2): 180-186.
    [78] Chen Weitian, Saif Mehrdad.Fuzzy nonlinear unknown input observer design with fault diagnosis applications [J].JVC/Journal of Vibration and Control, 2010, 16(3):377-401.
    [79] Prakash J,Deshpande Anjia P,Patwardhan Sachin C.State estimation and fault tolerant nonlinear predictive control of an autonomous hybrid system using unscented kalman filter [J].Lecture Notes in Control and Information Sciences, 2009, 384: 285-293.
    [80] Chabir Karim,Sauter Dominique,Abdelkrim Mohamed Naceur, Gayed Mohamed Koni Ben. Robust fault diagnosis of networked control systems via Kalman filtering [J].International Journal of Automation and Control, 2010, 4(3):343-356.
    [81] Sepasi Mohammad,Sassani Farrokh.Online fault diagnosis of hydraulic systems using unscented kaiman filter[J]. International Journal of Control, Automation and Systems, 2010, 8(1): 149-156.
    [82] Wang Guofeng, Luo Zhigao,Qin Xuda,Leng Yonggang,Wang Taiyong.Fault identification and classification of rolling element bearing based on time-varying autoregressive spectrum[J]. Mechanical Systems and Signal Processing, 2008, 22(4):934-947.
    [83] Zhang Xiaodong, Polycarpou Marios M., Parisini Thomas.Fault diagnosis of a class of nonlinear uncertain systems with Lipschitz nonlinearities using adaptive estimation[J]. Automatica, 2010, 46(2): 290-299.
    [84] Ferrari Riccardo M G, Parisini Thomas, Polycarpou Marios M. Distributed fault diagnosis with overlapping decompositions: An adaptive approximation approach [J].IEEE Transactions on Automatic Control, 2009, 54(4): 794-799.
    [85] Caccavale F,Pierri F, Villani L. Adaptive observer for fault diagnosis in nonlinear discrete-timesystems[J].Journal of Dynamic Systems, Measurement and Control, 2008,130(2): 334-347.
    [86] Zhang Xiaodong, Polycarpou Marios M, Parisini Thomas.Adaptive fault diagnosis and fault-tolerant control of MIMO nonlinear uncertain systems [J].International Journal of Control, 2010, 83(5): 1054-1080.
    [87] Theillio D,Mahfouf M,Ponsart J C, Sauter D,Gama M A.Design of a fault diagnosis system based on a bank of filter-observers with application to a hot rolling mill[J].Transactions of the Institute of Measurement and Control, 2010, 32(3):265-285.
    [88] Nejjari Fatiha,Puig Vicenc[J].Extended Luenberger observer-based fault detection for an activated sludge[C]//The 17th World Congress, International Federation of Automatic Control.Korea: IEEE press,2008.
    [89] Doraiswami Rajamani, Diduch Chris P, Tang Jiong.A new diagnostic model for identifying parametric faults[J].IEEE Transactions on Control Systems Technology, 2010,18(3): 533-544.
    [90] Chafouk Houcine, Hoblos Ghaleb, Langlois Nicolas, Le Gonidec Serge,Ragot Jos.Soft computing algorithm to data validation in aerospace systems using parity space approach[J]. Journal of Aerospace Engineering, 2007, 20(3):165-171.
    [91] Telili A, Abdelkrim M N, Benrejeb M.On the fault diagnosis of uncertain singularly perturbed systemsProceedings of the Institution of Mechanical Engineers. Part I [J].Journal of Systems and Control Engineering, 2006, 220(6): 509-516.
    [92] Frisk Erik, ?slund Jan. Lowering orders of derivatives in non-linear residual generation using realization theory [J].Automatica, 2005, 41(10): 1799-1807.
    [93] Patton R J.Review of parity space approaches to fault diagnosis for aerospace systems [J].Journal of Guidance, Control, and Dynamics, 1994, 17(2): 278-285.
    [94]周东华,孙优贤.控制系统的故障检测与诊断技术[M].北京,清华大学出版社,1994.
    [95] Ye H,Wang G Z,Ding S X.A new parity space approach for fault detection based on stationary wavelet transform [J].IEEE Transactions on Automatic Control, 2004, 49(2): 281-287.
    [96] Izadi I, Shah S L.Chen T W. Parity space fault detection based on irregularly sampled data. [C]// American Control Conference. Piscataway, USA: IEEE press, 2008:2798-2803.
    [97] Wu Jian-Da,Wang Yu-Hsuan,Chiang Peng-Hsin, Bai Mingsian R.A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network[J]. Expert Systems with Applications, 2009, 36(1): 49-56.
    [98] Chen Mou, Jiang Chang-Sheng,Wu Qing-Xian.Sensor fault diagnosis for a class of time delay uncertain nonlinear systems using neural network[J]. International Journal of Automation and Computing, 2008, 5(4):401-405.
    [99] Wu Jian-Da,Liu Chiu-Hong.Investigation of engine fault diagnosis using discrete wavelettransform and neural network [J].Expert Systems with Applications, 2008,35(3): 1200-1213.
    [100] Wu Jian-Da,Chiang Peng-Hsin.Application of Wigner-Ville distribution and probability neural network for scooter engine fault diagnosis [J]. Expert Systems with Applications, 2009, 36(2):2187-2199.
    [101] Yuan Lifen,He Yigang,Huang Jiaoying,Sun Yichuang.A new neural-network-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(3): 586-595.
    [102] Yu Gang, Li Changning, Sun Jun.Machine fault diagnosis based on Gaussian mixture model and its applicationInternational[J]. Journal of Advanced Manufacturing Technology, 2010, 48(1-4): 205-212.
    [103] Mantzaris Dimitrios,Anastassopoulos George,Adamopoulos Adam, Gardikis Stefanos.A nonsymbolic implementation of abdominal pain estimation in childhood[J].Information Sciences, 2008,178(20): 3860-3866.
    [104] Zhang Youpeng,Su Hongsheng.Turbo-generator vibration fault diagnosis based on PSO-BP neural networks[J].WSEAS Transactions on Systems and Control, 2010, 5(1):37-47.
    [105] Srinivasan S,Kanagasabapathy P,Selvaganesan N.Fault identification and analysis using artificial intelligence techniques for three-tank systemInternational [J].Journal of Automation and Control, 2009,4(1):84-101.
    [106] Demetgul M,Tansel I N,Taskin S.Fault diagnosis of pneumatic systems with artificial neural network algorithms[J].Expert Systems with Applications, 2009,36(7):10512-10519.
    [107] Xu Zengbing, Xuan Jianping,Shi Tielin,Wu Bo, Hu Youmin.A novel fault diagnosis method using pca and artsimilarity classifier based on yu's norm[J].Key Engineering Materials, 2009, 413: 569-574.
    [108] Xian Guang-Ming,Zeng Bi-Qing.An effective and novel fault diagnosis technique based on EMD and SVM [J].Neural Network World, 2010, 20(4): 427-439.
    [109] Patan Krzysztof.Stability and stabilization of locally recurrent networks [J].Lecture Notes in Control and Information Sciences, 2008, 377:77-112.
    [110] CHANG Yan-wei, WANG Yao-cai,LIU Tao,WANG Zhi-jie.Fault diagnosis of a mine hoist using PCA and SVM techniques[J].Journal of China University of Mining and Technology, 2008, 18(3):327-331.
    [111] Cui Houxi,Zhang Laibin,Kang Rongyu,Lan Xinyang.Research on fault diagnosis for reciprocating compressor valve using information entropy and SVM method[J].Journal of Loss Prevention in the Process Industries, 2009, 22(6): 864-867.
    [112] Cheng Junsheng,Yu Dejie,Tang Jiashi,Yang Yu.Application of SVM and SVD technique basedon EMD to the fault diagnosis of the rotating machinery[J].Shock and Vibration, 2009, 16(1): 89-98.
    [113] Zhao Shi-Lei,Zhang Yin-Chun.Fault diagnosis of satellite based on SVM observer[C]// International Conference on Measuring Technology and Mechatronics Automation. China: IEEE press, 2009:654-657.
    [114] Vapnik V N, Lerner A. Pattern recognition using generalizedportrait method[J].Automation and Remote Control, 1963, 24: 774-780.
    [115] Vapnik V N, Chervokenkis A Y. On the uniform convergenceof relative frequencies of events to their probabilities[J].Theoryof Probability and Its Applications, 1971, 16(2): 264-280
    [116] Boser B E, Guyon I M, Vapnik V N. A training algorithm foroptimal magin classiˉer.[C]// The 5th AnnualWorkshop on Computational Learning Theory. USA: IEEE press, 1992. 144-152.
    [117] Cortes C, Vapnik V N. The Soft Margin Classier, TechnicalReport U. S. Pattem 5640492, AT and T Bell Labs, USA, 1993
    [118] Vapnik V N. The Nature of Statistical Learning Theory[M].New York: Springer-Verlag, 1995
    [119] Vapnik V N, Golowich S, Smola A. Support vector methodfor function approximation, regression estimation, and sig-nal processing.[C]//Proceedings of the Advances in Neu-ral Information Processing System. Cambridge, USA: MITPress, 1997. 281-287
    [120] Ding S,Zhang P,Ding E2,Yin S,Naik A,Deng P,Gui W.On the Application of PCA Technique to Fault Diagnosis[J]. Tsinghua Science and Technology, 2010,15(2):138-144.
    [121] Xu Zengbing,Xuan Jianping, Shi Tielin,Wu Bo,Hu Youmin.A novel fault diagnosis method using pca and art-similarity classifier based on yu's norm[J].Key Engineering Materials, 2009 v 413-414:569-574.
    [122] Han Hua,Cao Zhikun,Gu Bo,Ren Neng.PCA-SVM-Based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems[J]. HVAC and R Research, 2010, 16(3):295-313.
    [123] Gunther Jon C,Conner Jeremy S,Seborg Dale E.Process monitoring and quality variable prediction utilizing PLS in industrial fed-batch cell culture Journal of Process Control, v 19, n 5, p 914-921, May 2009
    [124] Kresta J V, Macgregor J F, Marlin T E. Multivariate sta-tistical monitoring of process operating performance [J]. Canadian Journal of Chemical Engineering, 1991, 69(1): 35-47.
    [125] Macgregor J F, Jaeckle C, Kiparissides C, Koutoudi M.Process monitoring and diagnosis by multiblock PLS methods [J]. American Institute Chemical Engineers Journal, 1994, 40(5): 826-838.
    [126] Funa Zhou,Tianhao Tang,Chenglin Wen.DCA based multi-level small fault diagnosis[C]//11thIEEE International Conference on Communication Technology Proceedings. China: IEEE press, 2008: 486-489.
    [127] Zhao Qiangsheng,Camelio Jaime A. Quality monitoring and fault detection on stamped parts using DCA and LDA image recognition techniquesthe[C]// ASME International Manufacturing Science and Engineering Conference. USA: IEEE press, 2009: 495-502.
    [128] Faiz Jawad,Ebrahimi Bashir Mahdi,Toliyat H A, Abu-Elhaija W S. Mixed-fault diagnosis in induction motors considering varying load and broken bars location[J]. Energy Conversion and Management, 2010, 51(7):1432-1441.
    [129] Faiz Jawad,Ebrahimi Bashir Mahdi.Determination of number of broken rotor bars and static eccentricity degree in induction motor under mixed fault[J]. Electromagnetics, 2008, 28(6):433-449.
    [130] Riera-Guasp M, Antonino-Daviu J,Rusek J, Roger-Folch J.Diagnosis of rotor asymmetries in induction motors based on the transient extraction of fault components using filtering techniques[J]. Electric Power Systems Research, 2009, 79(8):1181-1191.
    [131] Antonino-Daviu J A, Riera-Guasp M, Pineda-Sánchez M, Pons-Llinares J, Puche-Panadero R, Pérez-Cruz J. Feature extraction for the prognosis of electromechanical faults in electrical machines through the DWT [J].International Journal of Computational Intelligence Systems, 2009, 2(2):158-167.
    [132] Chen Chih-Hao, Shyu Rong-Juin,Ma Chih-Kao.A new fault diagnosis method of rotating machinery[J]. Shock and Vibration, 2008, 15(6): 585-598.
    [133] Yang Shaopu,Shen Yongjun.Recent advances in dynamics and control of hysteretic nonlinear systems[J]. Chaos, Solitons and Fractals, 2009, 40(4):1808-1822.
    [134] Kong Zhenyu,Ceglarek Dariusz,Huang Wenzhen.Multiple fault diagnosis method in multistation assembly processes using orthogonal diagonalization analysis[J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2009, 130(1): 0110141-01101410.
    [135] Liu Jialin,Chen Ding-Sou.Fault detection and identification using modified bayesian classification on PCA subspace[J]. Industrial and Engineering Chemistry Research, 2009, 48(6):3059-3077.
    [136] LüNing,Wang Xiong.Fault diagnosis based on signed digraph combined with dynamic kernel PLS and SVR[J].Industrial and Engineering Chemistry Research, 2008,47(23): 9447-9456.
    [137] QinYi,Qin Shuren,Mao Yongfang.Research on iterated Hilbert transform and its application in mechanical fault diagnosis[J].Mechanical Systems and Signal Processing,2008, 22(8): 1967- 1980.
    [138] Ferrer Alberto,Aguado Daniel,Vidal-Puig Santiago,Prats JoséManuel, Zarzo Manuel.PLS: A versatile tool for industrial process improvement and optimization[J]. Applied Stochastic Models in Business and Industry, 2008, 24(6):551-567.
    [139] Adebiyi Olufemi A,Corripio Armando B. Dynamic neural networks partial least squares (DNNPLS) identification of multivariable processes[J].Computers and Chemical Engineering, 2003, 27(2):143-155.
    [140] Yagisawa Ikuya,Kano Azuma, Nakagawa Yutaka.Disk array system and interface converter[M]. US, Hitachi Ltd,2006
    [141] Wise M B, Buchanan M V, Guerin M R. Rapid environmental organic analysis by direct sampling Glow Discharge Mass Spectrometry and Ion Trap Mass Spectrometry: Summary of pilot studies. Final report.1990.
    [142] Lopez J E, Tenney R R, Deckert J C. Fault detection and identication using real-time wavelet feature extraction.[C]//The IEEE-SP International Symposiumon Time-Frequency and Time-Scale Analysis. USA: IEEE press, 1994:217-220.
    [143] Sun Q, Tang Y. Singularity analysis using continuouswavelet transform for bearing fault diagnosis[J].MechanicalSystems and Signal Processing, 2002, 16(6): 1025-1041.
    [144]谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006, 28(9): 1748-1751.
    [145] Pawlak Z.Rough sets[J].International Journal of Parallel Pro-gramming,1982, 11(5): 341-356.
    [146] Pawlak Z.Rough classication[J]. International Journal of Human-Computer Studies,1999, 8(51): 369-383.
    [147] Pawlak Z, Grzymla-Busse J W, Slowinski R, Ziarko W.Rough sets[J].Communications of the ACM, 1995, 38(11):88-95.
    [148] Geng Zhiqiang,Zhu Qunxiong.Rough set-based fuzzy rule acquisition and its application for fault diagnosis in petrochemical process[J].Industrial and Engineering Chemistry Research, 2009, 48(2): 827-836.
    [149] Zhao X M,Hu Q H, Lei Y G, Zuo M J.Vibration-based fault diagnosis of slurry pump impellers using neighbourhood rough set models[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010,224(4): 995-1006.
    [150] Xie Nan,Chen Lin2,Li Aiping.Fault diagnosis of multistage manufacturing systems based on rough set approach[J].International Journal of Advanced Manufacturing Technology, 2010, 48(9-12):1239-1247.
    [151] Chen W. Application of multi-scale principal component analysis and SVM to the motor fault diagnosis[C]// International Forum on Information Technology and Applications(IFITA 2009). China: IEEE press, 2009: 131–134.
    [152]郑望.多变量统计过程监测[D].北京化工大学硕士毕业论文, 2008.
    [153] Morlet D,Peyrin F,Desseigne P,Touboul P, Rubel P.Time-scale analysis of high-resolution signal-averaged surface ECG using wavelet transformation[J].Computers in Cardiology, 1992: 393-396.
    [154]潘立登,李大宇,马俊英.软测量技术原理与应用[M].北京,中国电力出版社, 2009.
    [155] H W Cho. An orthogonally filtered tree classifier based on nonlinear kernel-based optimal representation of data [J]. Expert Systems with Applications. 2008, 34(2): 1028-1037.
    [156] He Wei,Jiang Zhi-Nong1,Feng Kun.Bearing fault detection based on optimal wavelet filter and sparse code shrinkage[J].Measurement: Journal of the International Measurement Confederation, 2009, 42(7):1092-1102.
    [157] Yazdanpanah Goharrizi Amin,Sepehri Nariman.A wavelet-based approach to internal seal damage diagnosis in hydraulic actuators[J].IEEE Transactions on Industrial Electronics, 2010, 57(5): 1755-1763.
    [158] Pang Peilin,Ding Guangbin.Time-scale analysis of high-resolution signal-averaged surface ECG using wavelet transformation[J].Computers in Cardiology, 1992:393-396.
    [159]李军,俞建定.基于小波变换的故障诊断信号非平稳性分析[J].系统工程及电子技术,2006, 28( 7) : 1109- 1112.
    [160]杨晓峰,张欣,王金浦,等.基于小波变换的多普勒胎儿心率检测研究[J].西安交通大学学报. 2007, 41( 8) : 917- 921.
    [161]袁佳胜,冯志华.基于相关分析与小波变换的齿轮箱故障诊断[J].农业机械学报.2007, 38( 8) : 120- 123.
    [162]程发斌,汤宝平.基于最优Morlet小波和SVD的滤波消噪方法及故障诊断的应用[J].振动与冲击, 2008, 27( 2): 91- 94.
    [163] MALLAT S, HWANG W L. Singularity detection and processing with wavelets[J].IEEE Trans Inform Theroy, 1992,32:617-643.
    [164] MALLAT S , ZHANG S. Characterization of signals from multiscale edges[J]. IEEE Trans Patter Anal Machine Intell,1992,14:710-732.
    [165] SUNT, NEUVO Y. Detail-preserving median based filters in image processing [J].Pattern Recognition Letters,1994,15(4):341–347.
    [166] XU Y, WEAVER J B, HEALY D M, etal. Wavelet transform domain filters:A spatially selective noise filtration technique[J]. IEEE Trans Image Processing,1994,3:747-758.
    [167] BAO P, ZHANG H. Noise reduction for magnetic resonance images via adaptive multiscale procucts thresholding[J].IEEE Trans Medical Imaging,2003,22(9):1089-1099.
    [168] SADLER B M, SWAMI A. Analysis of multiscale products for step detection andestimation[J]. IEEE Transactions on infromation Theroy,1999,45(30:1043-1051.
    [169]张德丰.Matlab小波分析[M].北京:机械工业出版社,2009,283-286.
    [170] Hardin D P, Marasovich J A. Biorthogonal Multi-wavelet on[-1,1][J]. Applied and Computational Harmonic Analysis, 1999,7(1):34-53.
    [171] CHAI Y, LI H F, GUO M Y, Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain[J]. Optics Communications, 2010.
    [172]杨玉东,周书民.基于对称小波变换的多层系数乘积去噪算法[J].系统工程与电子技术,2008,30(9):1632-1635.
    [173] Mallat S, Zhang S. Characterization of signals from multiscale edges[J]. IEEE Trans on Pattern Analysis and Machine Intelligence,1992,14(7):709-732.
    [174] ]郭显久,王伟,基于尺度乘积与小波收缩相结合的去噪方法[J].控制与决策,2005,20(6):698-701.
    [175] Lu B,Zhao Y,Mao Z.Fault diagnosis method based on movingwindow PCA[C]// Chinese Control and Decision Conference.China: IEEE Press, 2009:185-188.
    [176] Facco P,Bezzo F,BaroloM.Nearest-NeighborMethod for the Auto-matic Maintenance of Multivariate Statistical Soft Sensors in Batch Processing[J].Industrial & Engineering Chemistry Research , 2010, 49(5): 2336-2347.
    [177] Cheng C Y, Hsu C C, Chen M C. Adaptive Kernel Principal Component Analysis (KPCA) for Monitoring Small Disturbances of Nonlinear Processes[J].Industrial & Engineering Chemistry Research,2010, 49(5): 2254-2262.
    [178] Lee D S, Vanrolleghem P A. Adaptive consensus principal component analysis for on-line batch process monitoring[J].Environmental Monitoring And Assessment,2004, 92(1-3): 119-135.
    [179] Lachouri A, Baiche K, Djeghader R, et al. Analyze and fault diagno-sis by multi-scale PCA[C]//3rdInternational Conference on Infor-mation and Communication Technologies. Syria: IEEEPress, 2008:1-6.
    [180] Chen W. Application of multi-scale principal component analysisand SVM to the motor fault diagnosis[C]// International Forum onInformation Technology and Applications(IFITA 2009). China: IEEEPress, 2009:131-134.
    [181] Geng Z Q, Zhu Q X. Multiscale nonlinear principal component anal-ysis (NLPCA) and its application for chemical process monitoring[J]. Industrial & Engineering Chemistry Research, 2005, 44(10):3585–3593.
    [182] Romagnoli J A, Wang D. Robust multi-scale principal componentsanalysis with applications toprocess monitoring[J]. Journal of Process Control, 2005, 15(8): 869–882.
    [183]周福娜,文成林,汤天浩,陈志国.基于指定元分析的多故障诊断方法[J].自动化学报,2009, 35(7):971–982.
    [184] Bo Cuimei, Zhang Shi,Zhang Guangming,Wang Zhiquan.Fault identification of Tennessee Eastman process based on FS-KPCA [J].Journal of Chemical Industry and Engineering,2008, 59(7):1783-1789.
    [185] Fu Kechang, Dai Liankui,Wu Tiejun, Zhu Ming.Sensor fault diagnosis of nonlinear processes based on structured kernel principal component analysis[J].Journal of Control Theory and Applications,2009, 7(3):264-270.
    [186] Li Weihua, Xu Yabing.Gearbox incipient fault diagnosis using feature sample selection and principal component analysis International[J].Journal of Modelling, Identification and Control, 2010,10(3-4):246-254.
    [187] Wang X, Kruger U,Irwin G W. Process fault diagnosis using recursivemultivariate statistical process control[C]// The 16th IFAC WorldCongress in Prague, 2005.
    [188] Zhang Yun,Li Benwei.Noise reduction method for nonlinear signal based on maximum variance unfolding and its application to fault diagnosis[J].Science China Technological Sciences, 2010,53(8):2122-2128.
    [189] Watzenig D, Sommer M S, Steiner G.Engine state monitoring and fault diagnosis of large marine diesel engines[J]. Elektrotechnik und Informationstechnik, 2009, 126(5):173-179.
    [190] Yi Hu,RuiPing Zhou,JianGuo Yang.Research on the fault diagnosis technology of diesel engine based on the instantaneous speed[J].Key Engineering Materials,2009, vol(413-414):547-552.
    [191] Li Peng,Liu Lei,Gong Haixia.The research of the intelligent fault diagnosis optimized by ACA for marine diesel engine[J]. Lecture Notes in Electrical Engineering, 2010, 56( LNEE): 174-181.
    [192] Li Peng,Liu Lei.The application and research of the intelligent fault diagnosis for marine diesel engine[C]// IEEE/ASME International Conference on Advanced Intelligent Mechatronics.China: IEEE Press, 2008:74-77.
    [193] Li Peng, Su Baoku.On the intelligent fault diagnosis method for marine diesel engine[C]// International Conference on Apperceiving Computing and Intelligence Analysis. China: IEEE Press, 2008:397-400.
    [194]刘育明,梁军,胡斌等.一种基于多尺度分析的多变量统计过程监测方法[J].化工学报,2009, 60(4):952-957.