Toll样受体信号通路在一氧化氮预处理对小鼠肺缺血再灌注损伤保护过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分短时长吸入一氧化氮预处理对小鼠肺缺血再灌注损伤的保护作用
     目的:探讨吸入不同时长的低浓度一氧化氮(NO)预处理对小鼠肺缺血再灌注损伤的影响和机制。背景:NO可以参与体内信号转导,炎症反应等多个环节,具有舒张血管和局部抗炎的功能。实验证明,吸入低浓度NO预处理对肺缺血再灌注损伤具有保护作用,但尚无关于NO预处理减轻肺缺血再灌注损伤最佳吸入时长的研究报道,本研究应用小鼠肺缺血再灌注损伤模型,探讨NO预处理吸入的最佳时长。方法和结果:6-8周雄性C57BL小鼠,分为空白组(S组),缺血再灌注损伤组(I/R组),NO预处理1min组(NO1-min组),NO预处理10min组(NO10-min组),NO预处理60min组(NO60-min组),分别于再灌注损伤后6h采集标本,检测肺动脉血氧分压(Pa02),肺组织干/湿重比(W/D),髓过氧化酶(MPO)活性,肺损伤组织学评价等指标;取NO预处理的最佳吸入时长,比较各组肺组织中Toll样受体2和4(TLR2/4)的基因及蛋白水平的表达,同时检测各组血清中TNF-a的表达变化。与I/R组比较,NO1-min组肺缺血再灌注损伤无改善(P>0.05);NO10-min组与NO60-min组对肺缺血再灌注损伤保护作用相似(P>0.05);NO10-min组TLR2/4基因及蛋白水平表达较I/R组降低(P<0.05);结论:短时长(10min)吸入低浓度NO预处理可以改善小鼠肺缺血再灌注损伤,但其保护程度不与NO预处理时长成正比;NO预处理可以抑制肺缺血再灌注损伤引起的TLR2/4表达的激活,减轻炎症反应。
     第二部分应用基因芯片技术检测Toll样受体信号通路在一氧化氮对小鼠肺缺血再灌注损伤保护过程中的变化
     目的:应用Real-Time PCR基因芯片技术检测Toll样蛋白受体信号通路在一氧化氮(NO)对小鼠肺缺血再灌注损伤保护作用过程中的变化,以明确NO肺保护的新作用机制。背景:吸入低浓度NO预处理对肺缺血再灌注损伤具有保护作用,在本文第一部分研究中发现吸入NO预处理的肺保护过程中,Toll样蛋白受体2/4的表达激活被明显抑制;功能性Real-Tune PCR基因芯片技术,其灵敏度,重复性,特异性均较第一代基因谱芯片技术有较大的提高和改进,因此我们应用该项技术,了解Toll样蛋白受体信号通路在NO预处理的肺保护过程中的变化。方法和结果:6-8周雄性C57BL小鼠,分为空白组(S组),缺血再灌注损伤组(I/R组),NO预处理10min组(NO10-min组),分别于再灌注损伤后6h采集标本(每组3只),应用Real-TimePCR基因芯片技术检测Toll样蛋白受体介导的信号转导相关的91个基因表达谱变化。结果显示,与I/R组相比,NO10-min组Toll样蛋白受体介导的信号转导相关的83个基因表达下调,其中Toll样蛋白受体1/2/4/8/9,衔接蛋白MyD88,效应分子IRAK1,下游通路及靶基因IKBKB、IRF3、NFKB2、NFRKB、 MAP3K1(MEKKK)、IFNB1、 NFKB1等31个基因表达下调具有统计学意义(P<0.05)。结论:在低浓度吸入NO预处理小鼠肺缺血再灌注损伤过程中,Toll样蛋白受体信号通路的激活被明显抑制,提示NO可以通过抑制Toll样蛋白受体信号通路的激活起到减轻肺损伤的作用。
     第三部分Toll样受体信号通路参与一氧化氮预处理对小鼠肺缺血再灌注损伤的保护作用
     目的:应用基因敲除小鼠(MyD88-/-),建立小鼠肺缺血再灌注模型,探讨Toll样蛋白受体信号通路是否参与一氧化氮(NO)对小鼠肺缺血再灌注损伤的保护作用及调节机制。背景:吸入低浓度NO预处理对肺缺血再灌注损伤具有保护作用,本实验组研究发现吸入NO预处理的肺缺血再灌注损伤保护过程中,Toll样蛋白受体信号通路的基因水平表达激活被明显抑制,其中作为该信号通路核心枢纽的MyD88分子,表达抑制明显。方法和结果:6-8周雄性C57BL小鼠MyD88+/+),分为空白组(S组),缺血再灌注损伤组(I/R组),NO预处理10mmin组(NO10-min组);6-8周雄性MyD88-/-基因敲除小鼠(以C57BL为遗传背景),分为空白组(S组),缺血再灌注损伤组(I/R组),NO预处理10min组(NO10-min组),分别于再灌注损伤后6h采集标本(每组5只),RT-PCR检测Toll样受体2/4,TRAF6,IRF3的基因水平表达变化,及ELISA检测TNF-a,IL-6的蛋白水平表达变化。结果显示,MyD88+/+及MyD88-/-组内,NO预处理均可以抑制Toll样受体2/4,TRAF6,IRF3基因的激活表达(P<0.05),并且炎症因子TNF-α,IL-6的蛋白表达显著减少(P<0.05)。结论:Toll样蛋白受体信号通路通过MyD88依赖及非依赖途径参与NO对小鼠肺缺血再灌注损伤的保护作用。
PartⅠ Short Term of Nitric Oxide Inhalation Protect Against the Mouse Lung Ischemia-Reperfusion Injury
     Objective:To investigate the effect of inhaled nitric oxide (NO) preconditioning with light concentration and different terms on lung ischemia-reperfusion injury in mice.
     Background:NO can participate in the signal transduction, inflammation and other links. It has the function of diastolic blood vessels and topical anti-inflammatory. Inhaled with low concentration NO preconditioning has protective effect on lung ischemia/reperfusion injury. This study used lung ischemia/reperfusion model in mice and investigated the best length of inhaled NO pretreatment.
     Methods and Results:Specific pathogen-free C57BL mice (male,6-8weeks old) were divided into five groups:Sham (S) group, Ischemia/Reperfusion (IR) group, NO1-min preconditioning group (NO1-min), NO10-min preconditioning group (NO10-min), NO60-min preconditioning group (NO60-min). The changes of PaO2, wet-dry weight ratio (W/D), myeloperoxidase (MPO) in the injury lung were measured after60minutes of left lung ischemia. The changes of TLR2/4activations and plasma TNF-α were measured in this procedure. Compared with IR group, PaO2increased and W/D, MPO decreased evidently in NO10-min group (P<0.05). The changes in NO60-min group were similar with NO10-min group (P>0.05). There was no difference between NO1-min and IR group (P>0.05). In NO10-min group, the expressions of TLR2/4mRNA and TLR2/4proteins were diminished and TNF-a concentrations were decreased.
     Conclusion:Short term (10min) of inhalation NO protected lung IR injury in mice. But the protective effect of NO was not increased with the longer term of inhalation NO. Inhaled NO could inhibit the activations of TLR2/4in the lung after IR injury.
     Part Ⅱ Application of Real-Time PCR Gene Chip Technology to Detect the Role of Toll-like Protein Receptor Signaling Pathways in the Protective Effect of Nitric Oxide on Lung Ischemia-Reperfusion Injury in Mice
     Objective:Application of Real-Time PCR gene chip technology to detect toll-like protein receptor signaling pathways in nitric oxide (NO) on pulmonary ischemia-reperfusion injury in mice protection in the process of change, in order to understand the mechanism of NO lung protection.
     Background:Low concentration NO preconditioning has protective effect on pulmonary ischemia-reperfusion injury. In the first part of our studies found that lung protection during the process of the pretreatment of inhaled NO, Toll2/4expression activation was significantly inhibited; Functional Real-Time PCR, gene chip technology to Superarray companies in USA, the second generation of the gene chip, function classification has a high sensitivity, linear range wide good repeatability high resolution, high specificity. We used the technology to understand the toll-like receptor protein signaling pathways in the process of pretreatment with NO of lung protection.
     Methods and Results:6-8weeks male C57BL mice, divided into Sham group (S group), Ischemia-Reperfusion group (I/R group),10min NO pretreatment group (NO10-min group). Using Real-Time PCR gene chip technology to detect toll-like receptor mediated signal transduction protein gene expression patterns change, according to the results of91compared with I/R group, the NO10-min group toll-like receptor mediated signal transduction protein gene expression by80, including toll-like receptor proteins1/2/4/8/9, cohesion MyD88protein, the effect of molecular IRAK1, downstream pathway and target genes IKBKB, IRF3, NFKB2(P<0.05).
     Conclusion:At low concentrations of inhaled NO pretreatment in the process of lung ischemia-reperfusion injury in mice, the activations of toll-like receptor signaling pathways were significantly inhibited, NO can inhibit toll-like receptor signaling pathways to reduce lung injury.
     Part Ⅲ Toll-like receptors signaling pathways involved in pretreatment of nitric oxide in mice lung ischemia-reperfusion injury of protection
     Objective:Application of knockout mice (MyD88-/-), lung ischemia-reperfusion in mice model was established, exploring toll-like protein receptor signaling pathways are involved in nitric oxide (NO) on pulmonary ischemia-reperfusion injury in mice.
     Background:Low concentration NO preconditioning has protective effect on pulmonary ischemia-reperfusion injury, this experimental study found that inhaled NO pretreatment of lung ischemia-reperfusion injury protection process, toll-like protein receptor signaling pathways of gene expression level activation was significantly inhibited, which as the core hub of MyD88signaling pathway molecules, expression inhibited significantly.
     Methods and Results:6-8weeks (MyD88+/+) of male C57BL mice, divided into blank group (group S), ischemia reperfusion group (I/R group),10min NO pretreatment group (NO10-min);6-8weeks male MyD88-/-knockout mice (C57BL as genetic background), divided into blank group (group S), ischemia reperfusion group (I/R group),10min NO pretreatment group (NO10-min), respectively, at6h after reperfusion, RT-PCR detection by2/4toll-like receptors, TRAF6, IRF3level of gene expression changes, and ELISA to detect TNF alpha, IL-6level of protein expression changes. Results show that the MyD88+/+and MyD88-/-within the group, NO pretreatment can inhibit toll-like receptors by2/4, TRAF6, IRF3the activation of gene expression (P<0.05), and inflammatory factor TNF alpha, IL-6protein expression significantly were reduced (P<0.05).
     Conclusion:Toll-like receptor signaling pathways through the MyD88-dependent pathway and MyD88-undependent pathway to participate in the NO in mice lung ischemia-reperfusion injury of protection.
引文
[1]Waldow T, Alexiou K, Witt W, et al. Attenuation of reperfusion-induced systemic inflammation by preconditioning with nitric oxide in an in situ porcine model of normothermic lung ischemia. Chest 2004;125:2253-2259
    [2]Feil R, Lohmanm SM, de Jonge H, et al. Cyclic GMP-dependent protein kinases and the cardiovascular system:insights from genetically modified mice. Circ Res 2003;93:907-916
    [3]Watson CM, Reight L, Nottingham JM. Inhaled nitric oxide. Curr Surg 2005;62:396-399
    [4]Wu HS, Zhang L, Chen Y, et al. Effect of nitric oxide on toll-like receptor 2 and 4 gene expression in rats with acute lung injury complicated by acute hemorrhage necrotizing pancreatitis. Hepatobiliary Pancreat Dis Int 2005;4:609-613
    [5]Takeshi Into, Megumi Inomata, Misako Nakashima, et al. Regulation of MyD88-Dependent Signaling Events by S Nitrosylation Retards Toll-Like Receptor Signal Transduction and Initiation of Acute-Phase Immune Responses. Mol Cell Biol. 2008;28:1338-1347
    [1]De Perror M, Liu MY, Waddell TK, et al. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167:490-511
    [2]邱海波,杨毅,周韶霞,等.吸入不同浓度一氧化氮对急性肺损伤小鼠肺组织炎症反应的影响.江苏医药杂志.2004;30:894-897
    [3]付向宁,张霓,徐沁孜,等.一氧化氮/核苷化合物对肺成形术后支气管防御系统功能的影响.中华实验外科杂志.2007;24:1384-1385
    [4]Hui Hu, Xi Lu, Feng Wang, et al. Activated carbon based selective purification of medical grade NO starting from arc discharge method. Carbon 2011;49:2197-2205
    [5]廖东山,廖崇先,李增琪,等.大鼠无心跳供体肺移植模型的建立.中华实验外科杂志.2006;21:747-749
    [6]何文新,姜格宁,丁嘉安,等.一氧化氮减轻大鼠移植肺缺血再灌注损伤的作用及机制.中华器官移植杂志.2006;27:599-602
    [7]Thomas Waldow, Wolfgang Witt, Anne Buzin, et al. Prevention of Ischemia/Reperfusion-Induced Accumulation of Matrix Metalloproteinases in Rat Lung by Preconditioning With Nitric Oxide. Journal of Surgical Research 2009; 152: 198-208
    [8]陈晔,袁雅冬.一氧化氮与肺缺血再灌注损伤的研究进展.国际呼吸杂志.2007;21:1623-1626
    [9]Waldow T, Alexiou K, Witt W, et al. Attenuation of reperfusion-induced systemic inflammation by preconditioning with nitric oxide in an in situ porcine model of normothermic lung ischemia. Chest 2004;125:2253-2259
    [10]齐顺贞,孙卫海,朱玉凤,等.一氧化氮对吸入性损伤中性粒细胞在肺内扣押的影响.中华实验外科杂志.2004;21:1567-1567
    [11]Wu HS, Zhang L, Chen Y, et al. Effect of nitric oxide on toll-like receptor 2 and 4 gene expression in rats with acute lung injury complicated by acute hemorrhage necrotizing pancreatitis. Hepatobiliary Pancreat Dis Int 2005;4:609-613
    [12]孙瑛,杭燕南,周仁龙.一氧化氮吸入时段对大鼠肺缺血再灌注损伤的影响.临床麻醉学杂志.2007;23:664-666
    [13]Yasuko Nagasaka, Bernadette O. Fernandez, Maria F. Garcia-Saura, et al. Brief Periods of Nitric Oxide Inhalation Protect Against Myocardial Ischemia-Reperfusion Injury. Anesthesiology 2008; 109:675-682
    [1]De Perror M, Liu MY, Waddell TK, et al. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167:490-511
    [2]郑志坤,李劲松,胡辉,等.短时长吸入一氧化氮预处理对大鼠肺缺血再灌注损伤的保护作用.中华实验外科.2012;29:1500-1502
    [3]王莉娜,陆燕蓉,程惊秋.基因芯片技术在移植器官缺血再灌注损伤研究中的作用.生物医学工程学杂志.2006;23:1134-1137
    [4]Shang D. Researching progress of gene chips technology. Biomedical Engineering Foreign Medical Sciences 2005;28:61
    [5]付向宁,张霓,徐沁孜,等.一氧化氮/核苷化合物对肺成形术后支气管防御系统 功能的影响.中华实验外科杂志.2007;24:1384-1385
    [6]Wooster, R., Cancer classification with DNA microarrays:is less more? Trends in Genetics 2000;16:327-329
    [7]Hui Hu, Xi Lu, Feng Wang, et al. Activated carbon based selective purification of medical grade NO starting from arc discharge method. Carbon 2011;49:2197-2205
    [8]Draghici, S. Onto-Tools, the toolkit of the modern biologist:Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucl. Acids. Res.2003;31: 3775-3781
    [9]何文新,姜格宁,丁嘉安,等.一氧化氮减轻大鼠移植肺缺血再灌注损伤的作用及机制.中华器官移植杂志.2006;27:599-602
    [10]Huang, Y., W. Sadee. Drug sensitivity and resistance genes in cancer chemotherapy:a chemogenomics approach. Drug Discov Today 2003;8:356-363
    [11]Wu HS, Zhang L, Chen Y, et al. Effect of nitric oxide on toll-like receptor 2 and 4 gene expression in rats with acute lung injury complicated by acute hemorrhage necrotizing pancreatitis. Hepatobiliary Pancreat Dis Int 2005;4:609-613
    [12]T.Kawai, S.Akira, "Innate immune recognition of viral infection," Nature Immunology 2006;7:131-137
    [13]Belieav A S, Thompson D K, Fields M, et al. Microarray transcription. Profiling of a Shewanella oneidensis etrA mutant. J Bacteriol 2002;184:4612-4616
    [14]Chen JJ, Wu R, Yang PC, et al. Profiling expression patterns and isolating differentially expressed genes by cDNA microarray system with colorimetydetection. Genomics 1998;51:313-324
    [15]Miguel A R, Alfonso M T, Rogelio M R, et al. Fingerprinting of prokaryotic 16S rRNA genes using oligodeoxyribonucleotide microarrays and virtual hubridization. Nuc Acids Res 2003;31:779-789
    [16]Noguchi S, Tsukahara T, Fujita M, et al. cDNA microarray analysis of indicidual Duchenne muscular dystrophy patients. Hun Mol Cenet 2003;12:595-600
    [17]Clarke P A, Poele R. Gene expression microarray analysis in cancer biology, pharmacology, and drug development:progress and potential. Bioehem Pharmacol 2001;62:1311-1336
    [18]Shoe maker D D, linsley P S. Recent developments in DNA microarrays. Curt Opin Microbiol 2002;5:334-337
    [19]Guo JC, Gao HM, Chen J, et al. Modulation of the gene ex pression in the protective effects of electroacupuncture against cerebral ischemia:a cdna microarray study. A cupunct Electrother Res 2004;29:173-175
    [20]Xu Y, Gen M, Lu L, et al. Ppar-gamma activation fails to provide myocard ial protection in ischemia and reperfusion in pigs. Am J Physiol Hea rt C irc Physiol 2005; 288:1314-1317
    [21]Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335-376
    [22]Benz S, Lobler M, Obermaier R, et al. New possible taget genes in pancrea tic ischemia/reperfusion-injury identified by microarray analysis. Transplan tation Proceedings 2002;34:2369-2371
    [23]Dunne A, O'Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily:signal transduction during inflammation and host defense. Sci STKE 2003;25:3-5
    [24]Into T, Inomata M, Nakashima M, et al. Regulation of MyD88-dependent signaling events by S nitrosylation retards toll-like receptor signal transduction and initiation of acute-phase immune responses. Mol Cell Biol 2008;28:1338-1347
    [25]Matzinger P. The danger model:a renewed sense of self. Science 2002;296:301-305
    [26]Cornelie S, Hoebeke J, Schacht AM, Direct evidence that Toll-like receptor 9(TLR9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif recognition. J Biol Chem 2004;279:15124-15129
    [27]Horng T, Barton GM, Flavell RA, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002;420:329
    [28]Burns K, Martinon F, Esslinger C, et al. MyD88, an adapter protein involved in interleukin-1 singaling. J Biol Chem 1998;273:12203
    [29]Zou Wei, Amcheslavsky A, Bar-Shavit Z. CpG oligodeoxynucleotides modulates the osteoclastogenic activity of osteoblasts via Toll-like receptor 9. J Biol Chem 2003; 278:16732-16740
    [30]S. Sato, H. Sanjo, K. Takeda et al., "Essential function for the kinase TAK1 in innate and adaptive immune response," Nature Immunology 2005;6:1087-1095
    [31]Takeshi Into, Megumi Inomata, Misako Nakashima, et al. Regulation of MyD88-Dependent Signaling Events by S Nitrosylation Retards Toll-Like Receptor Signal Transduction and Initiation of Acute-Phase Immune Responses. Mol Cell Biol. 2008;28:1338-1347
    [1]郑志坤,李劲松,胡辉,等.短时长吸入一氧化氮预处理对大鼠肺缺血再灌注损伤的保护作用.中华实验外科.2012;29:1500-1502
    [2]Miyake, K. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 2004; 12:186-192
    [3]何文新,姜格宁,丁嘉安,等.一氧化氮减轻大鼠移植肺缺血再灌注损伤的作用及机制.中华器官移植杂志.2006;27:599-602
    [4]Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol.2003;21:319-321
    [5]De Perror M, Liu MY, Waddell TK, et al. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167:490-511
    [6]Su H, Bidere N, Zheng L, et al. Requirement for caspase-8 in NF-κB activation antigenreceptor. Science 2005;307:1465-1468
    [7]Nelson RJ, Young KA. Behavior in mice with targeted disruption of single genes. Neurosci Biobehav Rev.1998;22:453-462
    [8]Wu HS, Zhang L, Chen Y, et al. Effect of nitric oxide on toll-like receptor 2 and 4 gene expression in rats with acute lung injury complicated by acute hemorrhage necrotizing pancreatitis. Hepatobiliary Pancreat Dis Int 2005;4:609-613
    [9]Klinner U, Schafer B. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol Rev.2004;2:201-223
    [10]Goldstein DR, Tesar BM, Akira S, et al. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest 2003;111:1571-1578
    [11]Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin Exp Immunol 2006;145:346-356
    [12]Jiang Z, Georgel P, Li C, et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci USA 2006; 103:10961-10966
    [13]Han KJ, Su X, Xu LG, et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 2004;279:15652-15611
    [14]Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury. Nephron Exp Nephrol 2008; 109:102-107
    [15]Anders HJ, Banas B, Schlondorff D. Signaling danger:Toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 2004;15:854-867
    [16]Wolfs TG, Buurman WA, van Schadewijk A, et al. In vivo expression of Toll-like receptor 2 and 4 by renal epithelial cells:IFN-gamma and TNF-alpha mediated up-regulation during inflammation. J Immunol 2002;168:1286-1293
    [17]Gluba A, Banach M, Hannam S, et al. The role of Toll-like receptors in renal diseases. Nat Rev Nephrol 2010;6:224-235
    [18]Rusai K, Sollinger D, Baumann M, et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatr Nephrol 2010;25:853-860
    [19]Ko GJ, Boo CS, Jo SK, et al. Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant 2008;23:842-852
    [20]Pulskens WP, Teske GJ, Butter LM, et al. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PloS One 2008;3:3596
    [21]Jo SK, Sung SA, Cho WY, et al. Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 2006;21:1231-1239
    [22]Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117:2894-2859
    [23]Rusai K, Sollinger D, Baumann M, et al. Toll-like receptors 2 and 4 in renal ischemia/reperfusion injury. Pediatr Nephrol 2010;25:853-860
    [1]Kaifu K, Kiyomoto H, Hitomi H, et al. Insulin attenuates apoptosis induced by high glucose via the PI3kinase/Akt pathway in rat peritoneal mesothelial cells. Nephrol Dial Transplant 2009;24:809-815
    [2]Hertz M, Taylor D, Trulock E, et al. The Registry of the International Society for Heart and Lung Transplantation:nineteenth official report:2002. J Heart Lung Transplant 2002;21:950-970
    [3]Matute-Bello G, Frever CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2008;295:379-399
    [4]Lansman JB. Endothelial mechanosensors. Going with the flow. Nature 1988;331:481-482
    [5]Ng CS, Wan S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today 2006;36:205-214
    [6]Zhao G, al-Mehdi AB, Fisher AB. Anoxia-reoxygenation versus ischemia in isolated rat lungs. Am J Physiol Lung Cell Mol Physiol 1997;273:L1112-L1117
    [7]Ng CS, Wan S, Arifi AA, et al. Inflammatory response to pulmonary ischemia-reperfusion injury. Surg Today 2006;36:205-214
    [8]Palazzo R, Hamvas A, Shuman T, et al. Injury in nonischemic lung after unilateral pulmonary ischemia with reperfusion. J Appl Physiol 1992;72:612-620
    [9]Lockinger A, Schutte H, Walmrath D, et al. Protection against gas exchange abnormalities by pre-aerosolized PGE1, iloprost and nitroprusside in lung ischemia-reperfusion. Transplantation 2001;71:185-193
    [10]Lan Q, Mercurius KO, Davies PR Stimulation of transcription factors NF kappa B and API in endothelial cells subjected to shear stress. Biochem Biophys Res Commun 1994;201:950-956
    [11]Jurmamm MJ, Dammenhayn L, Schaefers HJ, et al. Pulmonary reperfusion injury: evidence for oxygen-derived free radical mediated damage and effects of different free radical scavengers. Eur J Cardiothorac Surg 1990;4:665-670
    [12]Eppinger MJ, Jones ML, Deeb GM, et al. Pattern of injury and the role of neutrophils in reperfusion injury of rat lung. J Surg Res 1995;58:713-718
    [13]Eppinger MJ, Deeb GM, Bolling SF, et al. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol 1997; 150:1773-1784
    [14]Naidu BV, Krishnadasan B, Farivar AS, et al. Early activation of the alveolar macrophage is critical to the development of lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2003;126:200-207
    [15]Moore TM, Khimenko P, Adkins WK, et al. Adhesion molecules contribute to ischemia and reperfusion-induced injury in the isolated rat lung. J Appl Physiol 1995;78:2245-2252
    [16]Gilmont RR, Dardano A, Engle JS, et al. TNF-alpha potentiates oxidant and reperfusion-induced endothelial cell injury. J Surg Res 1996,61:175-182
    [17]al-Mehdi AB, Zhao G, Dodia C, et al. Endothelial NADPH oxidase as the source of oxidants in lungs exposed to ischemia or high K+. Circ Res 1998;83:730-737
    [18]Ishiyama T, Dharmarajan S, Hayama M, et al. Inhibition of nuclear factor kappaB by IkappaB suppressor gene transfer ameliorates ischemia-reperfusion injury after experimental lung transplantation. J Thorac Cardiovasc Surg 2005;130:194-201
    [19]Farivar AS, Delgado MF, McCourtie AS, et al. Crosstalk between thrombosis and inflammation in lung reperfusion injury. Ann Thorac Surg 2006;81:1061-1067
    [20]Von Wichert P. Studies on the metabolism of ischemic rabbit lungs. Conclusions for lung transplantation. J Thorac Cardiovasc Surg 1972;63:285-291
    [21]De Leyn P, Flameng W, Lerut T. Pattern of AMP degradation in ischemic rabbit lung tissue. J Invest Surg 1995;8:7-19
    [22]Chang DM, Hsu K, Ding YA, et al. Interleukin-1 in ischemia-reperfusion acute lung injury. Am J Respir Crit Care Med 1997;156:1230-1234
    [23]Esme H, Fidan H, Koken T, et al. Effect of lung ischemia-reperfusion on oxidative stress parameters of remote tissues. Eur J Cardiothorac Surg 2006;29:294-298
    [24]Boyle EM Jr, Canty TG Jr, Morgan EN, et al. Treating myocardial ischemia-reperfusion injury by targeting endothelial cell transcription. Ann Thorac Surg 1999;68:1949-1953
    [25]Marczin N. The biology of exhales nitric oxide (NO) in ischemia-reperfusion-induced lung injury:a tale of dynamism of NO production and consumption. Vascul Pharmacol 2005;43:415-424
    [26]Clark SC. Lung injury after cardiopulmonary bypass. Perfusion 2006;21:225-228
    [27]Moore TM, Khimenko P, Adkins WK, et al. Adhesion molecules contribute to ischemia and reperfusion-induced injury in the isolated rat lung. J Appl Physiol 1995;78:2245-2252
    [28]Matrin TR, Nakamura M, Matute-Bello G. The role of apoptosis in acute lung injury. Crit Care Med 2003;31:S184-S188
    [29]Ross SD, Tribble CG, Gaughen JR Jr, et al. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg 1999;67: 1428-1433
    [30]Fischer S, Cassivi SD, Xavier AM, et al. Cell death in human lung transplantation: apoptosis induction in human lungs during ischemia and after transplantation. Ann Surg 2000;231:424-431
    [31]Saelens X, Festjens N, Vande Walle L, et al. Toxic proteins released from mitochondria in cell death. Oncogene 2004;23:2861-2874
    [32]Beere HM. "The stress of dying":the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117:2641-2651
    [33]Qayumi AK, English JE, Duncan S, et al. Extended lung preservation with platelet-activating factor-antagonist TCV-309 in combination with prostaglandin E1. J Heart Lung Transplantation 1997;16:946-955
    [34]Buccellato LJ, Tso M, Akinci OI, et al. Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. J Biol Chem 2004;279:6753-6760
    [35]Date H, Triantafillou AN, Trulock EP, et al. Inhaled nitric oxide reduces human lung allograft dysfunction. J Thorac Cardiovasc Surg 1996;111:913-919
    [36]Zhang X, Shan P, Alam J, et al. Carbon monoxide modulates Fas/Fas ligand, caspases, and Bcl-2 family proteins via the p38alpha mitogen-activated protein kinase pathway during ischemia-reperfusion lung injury. J Biol Chem 2003;278:22061-22070
    [37]Fischer S, MacLean AA, Liu M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation. Am J Respir Crit Care Med 2000;162:1932-1939
    [38]Majno G, Joris I. Apoptosis, oncosis, necrosis. An overview of cell death. Am J Pathol 1995;146:3-15
    [39]Zhang X, Shan P, Alam J, et al. Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem 2005;280:8714-8721
    [40]Sanderson TH, Kumar R, Murariu-Dobrin AC, et al. Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia. Neurol Res 2009;31:947-958
    [41]Fiser SM, Tribble CG,Long SM, et al. Ischemia-reperfusion injury after lung transplantation increase risk of late bronchiolitis obliterans syndrome. Ann Thorac Surg 2002;73:1041-1047
    [42]Lang JD, Lell W. Pro:inhaled nitric oxide should be used routinely in patients undergoing lung transplantation. J Cardiothorac Vasc Anesth 2001;15:785-789
    [43]Clayton CE, Carraway MS, Suliman HB, et al. Ihaled carbon monoxide and hyperoxic lung injury in rats. Am J Physiol Lung Cell Mol Physiol.2001;281:L949-L957
    [44]Krishnadasan B, Naidu BV, Byrne K, et al. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2003; 125:261-272
    [45]Fisher AB, Dodia C, Tan ZT, et al. Oxygen-dependent lipid peroxidation during lung ischemia. J Clin Invest 1991;88:674-679
    [46]Chiu JJ, Wung BS, Shyy JY, et al. Reactive oxygen species are involved in shear stress-induced intercellular adhesion molecule-1 expression in endothelial cells. Arterioscler Throb Vasc Biol 1997;17:3570-3577
    [47]Hsieh HJ, Cheng CC, Wu ST, et al. Increase of reactive oxygen species (ROS) in endothelial cells by shear flow and involvement of ROS in shear-induced c-fos expression. J Cell Physiol 1998; 175:156-162
    [48]de Perrot M, Liu M, Waddell TK, et al. Ischemia-reperfusion-induced lung injury. Am J Respir Crit Care Med 2003; 167.490-511
    [49]Jalali S, Li YS, Sotoudeh M, et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18: 227-234
    [50]Lander HM. An essential role for free radicals and derived species in signal transduction. FASEB J 1997;11:118-124
    [51]Muller JM, Davis MJ, Kuo L, et al. Changes in coronary endothelial cell Ca2+ concentration during shear stress- and agonist-induced vasodilation. Am J Physiol Heart Circ Physiol 1999;276:H1706-H1714
    [52]Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997;22:269-285
    [53]Qayumi AK, Jamieson WR, Godin DV, et al. Response to allopurinol pretreatment in swine model of heart-lung transplantation. J Invest Surg 1990;3:331-340
    [54]Baeuerle PA, Baltimore D. NF-kappa B:ten years after. Cell 1996;87:13-20
    [55]Eppinger MJ, Deeb GM, Bolling SF, et al. Mediators of ischemia-reperfusion injury of rat lung. Am J Pathol 1997;150:1773-1784
    [56]Jellinek H, Hiesmayr M, Simon P, et al. Arterial to end-tidal CO2 tension difference after bilateral lung transplantation. Crit Care Med 1993;21:1035-1040
    [57]Barillari G, Albonici L, Incerpi S, et al. Inflammatory cytokines stimulate vascular smooth muscle cells locomotion and growth by enhancing alpha5betal integrin expression and function. Atherosclerosis 2001;154:377-385
    [58]Koksoy C, Kuzu MA, Ergun H, et al. Intestinal ischemia and reperfusion impairs vasomotor functions of pulmonary vascular bed. Ann Surg 2000;231:105-111
    [59]Maus UA, Waelsch K, Kuziel WA, et al. Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation:role of the CCL2-CCR2 axis. J Immunol 2003; 170:3273-3278
    [60]Shoji T, Omasa M, Nakamura T, et al. Mild hypothermia ameliorates lung ischemia reperfusion injury in an ex vivo rat lung model. Eur Surg Res 2005;37:348-353
    [61]De Perrot M, Sekine Y, Fischer S, et al. Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. Am J Respir Crit Care Med 2002;165:211-215
    [62]Fisher AJ, Donnelly SC, Hirani N, et al. Elevated levels of interleukin-8 in donor lungs are associated with early graft failure after lung transplantation. Am J Respir Crit Care Med 2001;163:259-265
    [63]Khimeknko PL, Bagby GJ, Fuseler J, et al. Tumor necrosis factor-alpha in ischemia and reperfusion injury in rat lungs. J Appl Physiol 1998;85:2005-2011
    [64]Wickersham NE, Johnson JJ, Meyrick BO, et al. Lung ischemia-reperfusion injury in awake sheep:protection with verapamil. J Appl Physiol 1991;71:1554-1562
    [65]Palace GP, Del Vecchio PJ, Horgan MJ, et al. Release of tumor necrosis factor after pulmonary artery occlusion and reperfusion. Am Rev Respir Dis 1993; 147:143-147
    [66]de Perrot M, Fischer S, Liu M, et al. Prostaglandin E1 protects lung transplants from isohemia-reperfusion injury:a shift from pro-to anti-inflammatory cytokines. Transplantation 2001;72:1505-1512
    [67]Okada M, Yamashita C, Okada M, et al. Contribution of endothelin-1 to warm ischemia/reperfusion injury of the rat lung. Am J Respir Crit Care Med 1995;152: 2105-2110
    [68]Fagan KA, Tyler RC, Sato K, et al. Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am J Physiol 1999;277:L472-L478
    [69]Gladwin MT, Schechter AN, Kim-Shapiro DB, et al. The emerging biology of the nitrite anion. Nat Chem Biol 2005;1:308-314
    [70]Hataishi R, Rodrigues AC, Neilan TG, et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006;291:379-384
    [71]Lefer DJ, Nakanishi K, Johnston WE, et al. Antineutrophil and myocardial protecting actions of a novel nitric oxide donor after acute myocardial ischemia and reperfusion of dogs. Circulation 1993;88:2337-2350
    [72]Pabla R, Buda AJ, Flynn DM, et al. Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ Res 1996; 78:65-72
    [73]Kuwano K, Hara N. Signal transduction pathways of apoptosis and inflammation induced by the tumor necrosis factor receptor family. Am J Respir Cell Mol Biol 2000; 22:147-149
    [74]Forstell C, Fratacci MD, Wain JC, et al. Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 83: 2038-2047
    [75]Ardehali A, Laks H, Levine M, et al. A prospective trial of inhaled nitric oxide in clinical lung transplantation. Transplantation 2001;72:112-115
    [76]Meade MO, Granton JT, Matte-Martyn A, et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med 2003; 167:1483-1489
    [77]Sage E, Mercier O, Van den Eyden F, et al. Endothelial cell apoptosis in chronically obstructed and reperfused pulmonary artery. Respir Res 2008;9:19
    [78]Myles PS, Venema HR. Avoidance of cardiopulmonary by-pass during bilateral sequential lung transplantation using inhaled nitric oxide. J Cardiothorac Vase Anaesth 1995;9:571-574
    [79]Della Rocca G, Pugliese F, Antonini M. Inhaled nitric oxide during anesthesia for bilateral single lung transplantation. Minerva Anesteriol 1998;64:297-301
    [80]Cornfield DN, Milla CE, Haddad IY. Safety of inhaled nitric oxide after lung transplantation. J Heart Lung Transplant 2003;22:903-907
    [81]Lindberg L, Sioberg T, Ingermansson R. Inhalation of nitric oxide after lung transplantation. Ann Thorac Surg 1996;61:956-962
    [82]Adatia I, Lillehei C, Arnold JH. Inhaled nitric oxide in the treatment of postoperative graft dysfunction after lung transplantation. Ann Thorac Surg 1994;57:1311-1318
    [83]Meade MO, Granten JT, Matte-Martyn, et al. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am J Respir Crit Care Med 2003;167:1483-1489
    [84]Ross SD, Kron IL, Gangemi JJ, et al. Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-icB. Am J Physiol Lung Cell Mol Physiol 2000;279:L528-L536
    [85]Della Rocca G, Coccia C, Pugliese F. Intraoperative inhaled nitric oxide during anesthesia for lung transplantation. Transplant Prooced 1997;29:3362-3366
    [1]C.A.Janeway Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harbor Symposia on Quantitative Biology 1989;54:1-13
    [2]B.Lemaitre, E.Nicolas, L.Michaut, et al. The dorsoventral regulatory gene cassette spatzle/Toll/catus controls the potent antifungal response in Drosophila adults. Cell 1996;86:973-983
    [3]R. Medzhitov, P. Preston-Hurlburt, C.A.Janeway Jr. A human homologur of the Drosophila toll protein signals activation of adaptive immunity. Nature 1997;388:394-397
    [4]S.Akira, S.Uematsu, O.Takeuchi. Pathogen recognition and innate immunity. Cell 2006;124:783-801
    [5]B.Beuter, C.Eidenschenk, K.Crozat, et al. Genetic analysis of resistance to viral infection. Nature Reviews Immunology 2007;7:753-766
    [6]R.Medzhitov. Recogntion of microorganisms and activation of the immune response. Nature 2007;449:819-826
    [7]N.J.Gay, F.J.Keith. Drosophila Toll and IL-1 receptor. Nature 1991;351:355-356
    [8]A.Poltorak, X.He, I.Smirnova, et al. Defective LPS singnaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science 1998;282:2085-2088
    [9]S.T.Qureshi, L.Lariviere, G.Leveque, et al. Endotoxintolerant mice have mutations in toll-like receptor 4(Tlr4). Journal of Experimental Medicine 1999; 189:615-625
    [10]O.Takeuchi, T.Kawai, P.F.Muhlradt, et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. International Immunology 2001; 13:933-940
    [11]H. Wagner. Interactions between bacterial CpG-DNA and TLR9 bridge innate and adaptive immunity. Current Opinion in Microbiology 2002;5:62-69
    [12]A.M.Krieg. CpG motifs in bacterial DNA and their immune effects. Annual Review of Immunology 2002;20:709-760
    [13]C.Coban, K.J.Ishii, T.Kawai, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. Journal of Experimental Medicine 2005;201:19-25
    [14]S.S.Diebold, T. Kaisho, H.Hemmi, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004;303:1529-1531
    [15]F.Heil, H.Hemmi, H.Hochrein, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004;303:1526-1529
    [16]F.Hayashi, K.D.Smith, A.Ozinsky, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001;410:1099-1103
    [17]F.Plattner, F.Yarovinsky, S.Romero, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host and Microbe 2008;3:77-87
    [18]F.Yarovinsky, D.Zhang, J.F.Andersen, et al. Immunology:TLR11 activation of dendritic cells by a protozoan profiling-like protein. Science 2005;308:1626-1629
    [19]M.S.Jin, J.O.Lee. Structure of the Toll-like receptor family and its ligand complexes. Immunity 2008;29:182-191
    [20]J.Choe, M.S.Kelker, A.Wilson. Structure biology:crystal structure of human toll-like receptor 3(TLR3) ectodomain. Science 2005;309:581-585
    [21]H.M.Kin, B.S.Park, J.I.Kim, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 2007;130:906-917
    [22]M.S.Jin, S.E.Kim, J.Y.Heo et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 2007;130:1071-1082
    [23]J.Y.Kang, X.Nan, M.S.Jin, et al. Recognition of lipopeptide patterns by Toll-like receptor 2-Toll-like receptor 6 heterdimer. Immunity 2009;31:873-848
    [24]M.Karin, Y.Yamamoto, Q.M.Wang. The IKK NF-Kb system:a treasure trove for drug development. Nature Reviews Drug Discovery 2004;3:17-26
    [25]A.Goto, K.Matsushita, V.Gesellchen, et al. Akirins are highly conserved nuclear proteins required for NF-κB-dependent gene expression in drosophila and mice. Nature Immunology 2008;9:97-104
    [26]M.Yamamoto, K.Takeda. Role of nuclear IκB proteins in the regulation of host immune responses. Journal of Infection and Chemotherapy 2008; 14:265-269
    [27]J.R.Delaney, M.Mlodzik. TGF-β activated kinase-1:new insights into the diverse roles of TAK1 in development and immunity. Cell Cycle 2006;5:2852-2855
    [28]Y.Komatsu, H.Shibuya, N.Takeda, et al. Targeted disruption of the Tabl gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mechanisms of Development 2002;119:239-249
    [29]H.Sanjo, K.Takeda, T.Tsujimura, et al. TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Molecular and Cellular Biology 2003; 23:1231-1238
    [30]M.Inagaki, YKomatsu, GScott, et al. Generation of a conditional mutant allele for Tab1 in mouse. Genesis 2008;46:431-439
    [31]A.Adhikari, M.Xu, Z.J.Chen. Ubiquitin-mediated activation of TAK1 and IKK. Oncogene 2007;26:3214-3226
    [32]R.M.Hofinann, C.M.Pickart. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 1999;96:645-653
    [33]T.Kawai, S.Akira. TLR signaling. Seminars in Immunology 2007;19:24-32
    [34]M.Yamamoto, T.Okamoto, K-Takeda, et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunology 2006;7:962-970
    [35]Jiang Z, Georgel P, Li C, et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci USA 2006,103:10961-10966
    [36]Goldstein DR, Tesar BM, Akira S, et al. Critical role of the Toll-like receptor signal adaptor protein MyD88 in acute allograft rejection. J Clin Invest 2003;111:1571-1578
    [37]Chowdhury P, Sacks SH, Sheerin NS. Toll-like receptors TLR2 and TLR4 initiate the innate immune response of the renal tubular epithelium to bacterial products. Clin Exp Immunol 2006; 145:346-356
    [38]Han KJ, Su X, Xu LG, et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways. J Biol Chem 2004;279:15652-15611