呼出气体及其冷凝物中肺癌标志物及其检测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是对人类健康构成威胁最大的恶性肿瘤之一,实现肺癌的早期诊断可以大幅提高肺癌病人的生存率。呼吸诊断直接检测肺部呼出气体相关成分的改变,可以成为新型,无创,便捷的诊断手段。寻找可做呼吸诊断的肺癌标志物可能为肺癌的早期诊断提供关键步骤。
     本研究在呼出气体中挥发性有机物VOCs,以及呼出气体冷凝物EBC中肺癌标志物的检测方法进行了研究,主要包括以下内容:
     采用固相微萃取-气相色谱-质谱联用系统分析88例肺癌患者、70例肺良性疾病患者、85例正常健康人呼出气体中VOCs的表达,筛选出26种肺癌特征性VOCs。证明此组VOCs对肺癌病人与对照组有具有可分性,并优化选择了十六醛,8-已基十五烷,十九醇,2,5-叔丁基4-甲基苯酚,十三烷,十五酮,十三酮七种标志物建立肺癌诊断的模型。达到88.5%的正确率,其中敏感度为88.2%(假阴性率为11.8%),特异度为88.6%(假阳性率为11.4%)。此模型可作为肺癌早期诊断和筛查的手段。
     用固相微萃取-气相色谱-质谱联用系统,检测肺癌组织以及肺癌细胞株新陈代谢气体中VOCs,并以正常肺组织和正常支气管上皮细胞株为对照,研究其VOCs表达差异。检测腺癌细胞株A549、小细胞癌细胞株NCI-H446、鳞癌细胞株SK-MES-1培养液顶空气体中的VOCs,测得十五酮,十九烷,二十烷有较高表达。检测18例原发性肺癌患者的手术标本顶空VOCs,并以癌旁正常组织作对照,测得癸烷、十五酮、十九烷、二十烷等12种VOCs较癌旁正常肺组织高表达。与呼吸诊断征性VOCs相比,细胞水平上的特异性VOCs均属于烷烃类和含氧有机物,并有相同的特特异性VOC如十五酮,但不完全一致。表明肿瘤细胞逐步代谢与呼吸气体中特征性VOCs有关,但并非单一决定因素。
     对呼出气冷凝物EBC中的肺癌标志物的检测进行了初步探索,选择癌胚抗原CEA作为冷凝物中的待测物。设计了简易冷凝物采集装置收集呼吸冷凝物果。研究了LAPS(光寻址电位传感器)的原理,完成LAPS器件封装和测试系统的搭建,进行了LAPS器件特性曲线的测试。设计基于LAPS的免疫传感器测定CEA的检测方法。用过碘酸钠法制备了脲酶联CEA抗体,用双抗体夹心的酶免疫方法测定标样CEA,用上述LAPS器件系统进行测试,Ⅰ-Ⅴ曲线指示氢离子浓度下降。证明了基于LAPS的免疫传感器用于呼吸冷凝物中CEA检测的可行性。
Lung cancer is one of the most threatening malignant tumors of human health. Early diagnosis significantly improves the survival rate of patients with lung cancer. Breath detection could be a new, non-invasive and convenient diagnosis method. And the research of biomarkers for lung cancer in the exhale breath provides a key step in the early diagnosis of lung cancer.
     This paper reports research for lung cancer markers in the detection of volatile organic compounds (VOCs) in exhale breath and exhale breath condensate (EBC) which is as followed.
     This paper analyzed VOCs in the exhaled breath of 243 samples by solid-phase micro-extraction and gas chromatography-mass spectroscopy technique (SPME-GCMS) system, including 88 samples of lung cancer,70 samples of lung benign disease and 85 samples of health person.26 characteristic VOCs of lung cancer were screened for further statistical approaches to demonstrate the separability between patients group and control group. A diagnostic model for lung cancer was set up based on 7 selected characteristic VOCs. This model achieved a correct rate of 88.5% with a sensitivity of 88.2% (false negative rate of 11.8%) and a specificity of 88.6% (false positive rate of 11.4%).This diagnostic model can be used as a screening method for high-risk groups.
     The detection of VOCs in lung cancer tissue and lung cancer cell metabolism was conducted using SPME-GCMS system, while chose the normal lung tissue and the primary human bronchial epithelial cell as contrast. As the result it has been found, 2-pentadecanone,nonadecane and eicosane were detected in all the three lung cancer cell lines A549, NCI-H446 and SK-MES-1. By comparing the difference of VOCs in the eighteen lung cancer tissues, it was found out that twelve VOCs such as decane, 2-pentadecanone, nonadecane and eicosane had greater concentration.
     Meanwhile, the relation between the characteristic VOCs screened from patients with lung cancer and lung cancer cell lines was analyzed. There was certain overlap in the characteristic VOCs (2-pentadecanone), but not exactly the same. This result indicated that tumor cell metabolism is related with characteristic VOCs, but not the only determining factor.
     This paper makes preliminary research in the detection of lung cancer markers in EBC and chose Carcinoembryonic antigen (CEA) as the biomarker of lung cancer in EBC. A design of the determination of CEA was proposed based on light addressable potentiometric sensor (LAPS), and its performance on the collection of EBCs has been evaluated. The principle of LAPS measurement, along with the test result of hydrogen ion was also analyzed. Urease-CEA antibody was prepared and the process for the detection of CEA using sandwich technic method has been simulated in microloan ELISA plates. Finally a primary experiment has been conducted to demonstrate the feasibility of the detection of CEA in EBC using LAPS.
引文
[1]杨德昌,杨栓盈.肺癌诊断水平的现状和进展[J].中华结核和呼吸杂志,2008,24(8):450-451.
    [2]Denoix P.F. Tumor, Node and Metastasis (TNM) [M]. Paris, Bull Inst Nat Hyg,1944,169.
    [3]Goldstraw P., Crowley J., Chansky K., et al. The IASLC Lung Cancer Staging Project:proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours [J]. J Thorac Oncol,2007,2(8):706-714.
    [4]Groome P.A., Bolejack V., Crowley J J., et al. The IASLC Lung Cancer Staging Project:validation of the proposals for revision of the T, N, and M descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours [J]. J Thorac Oncol. 2007,2(8):694-705.
    [5]Postmus P.E., Brambilla E., Chansky K., et al. The IASLC Lung Cancer Staging Project:proposals for revision of the M descriptors in the forthcoming (seventh) edition of the TNM classification of lung cancer [J]. J Thorac Oncol,2007,2(8):686-693.
    [6]林关福.PET/CT在肺癌诊断中的应用[J].上海医学影像,2007,16:309-311.
    [7]蒲敬泽,蒋华庭,钟洪伟.肺癌MRI的临床应用比较[J].实用医技杂志,2007,14(22).
    [8]丁翠敏,杨书芳,金普乐等.痰液中survivin、p53蛋白检测对肺癌的诊断价值[J].国际呼吸杂志,2007,27(20):1535-1537.
    [9]杨艳,潘秦镜等.纤维支气管镜ThinPrep刷片细胞病理诊断在肺癌分型中的应用[J].中国肿瘤临床,2007,34(23):1358-1361.
    [10]Julian W.G., Hyun W.S., Evor L.H. An electronic nose system to diagnose illness [J]. Sensors and Actuators B,2000(17):19-24.
    [11]Matthias L.H. Pylori Infection Increases Levels of Exhaled Nitrate [J]. HELICOBACTER,2005, 10(5):385-390.
    [12]Pauling L, Robinson A.B., Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography [J]. Proc Nat Acad Sci USA,1971,68:2374-2376.
    [13]Gordon S.M., O'Neill H.J. Volatile organic compounds in exhaled air from patients with lung cancer [J]. Clin Chem,1985,31:1278-1282.
    [14]Michael P., Kevin G., J. Michael, B. Hughes, Joel G., Renee N.C., Leigh B., W.P. McVay. Volatile organic compounds in breath as markers of lung cancer:a cross-sectional study [J]. Lancet,1999, 353:1930-1933.
    [15]Michael P., Renee N.C., Andrew R.C.C. Detection of lung cancer with volatile markers in the breath[J]. Chest,2003,123:2115-2123.
    [16]Michael P., Nasser A., John H.M.A. Prediction of lung cancer using volatile biomarkers in breath [J]. Cancer biomarkers 2007(3):95-109.
    [17]Wang P., Tan Y., Li R. A novel method for diagnosis diabetes using an electronic nose [J]. Biosensors & Bioelectronics,1997(12), No.9-10:1031-1036.
    [18]Zhang Q.T., Wang P., Li J.P., Gao X.M. Diagnosis of Diabetes by imaging detection of breath using gas-sensitive LAPS [J]. Biosensors & Bioelectronics,2000,15(5-6):249-256.
    [19]X. Chen, M.F. Cao, Y. Li et al. A study of an electronic nose for detetction of lung cancer based on a virtual SAW gas sensors array and imaging recognition method [J]. Measurement Science and Technology,2005,16:1-11.
    [20]Scheideler L, Manke H.G., Schwulera U., Inacker O., Hammerle H. Detection of nonvolatile macromolecules in breath:a possible diagnostic tool? [J]. Am Rev Respir Dis,1993; 148: 778-784.
    [21]Hunt J.F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T.A., Gaston B. Endogenous airway acidification:implications for asthma pathophysiology [J]. Am J Respir Crit Care Med, 2000; 161:694-699.
    [22]Arias-Diaz J., Vara E., Torres-Melero J., Garcia C., Baki W., Ramirez-Armengol J.A., Balibrea J.L. Nitrite/nitrate and cytokine levels in bronchoalveolar lavage fluid of lung cancer patients [J]. Cancer,1994; 74:1546-1551.
    [23]Baldwin S.R., Simon R.H., Gram C.M., Ketai L.H., Boxer L.A., Devall L.J. Oxidant activity in expired breath of patients with adult respiratory distress syndrome [J]. Lancet,1986; 1:11-14.
    [24]Gokhan M.M., Kevin W.G., Richard A.R., Larryh. D., Israel R. Collection and Analysis of Exhaled Breath Condensate in Humans [J]. Am. J. Respir. Crit. Care Med., Volume 164, Number 5, September 2001,731-737.
    [25]Carpagnano G.E., Foschino-Barbaro M.P., Resta O., et al. Endothelin-1 is increased in the breath condensate of patients with non-small-cell lung cancer [J]. Oncology,2004,66:1802184.
    [26]Eleftherios D., Theodora K., Alexandra K., et al. VEGF, TNF-α and 8-isoprostane levels in exhaled breath condensate and serum of patients with lung cancer[J]. Lung Cancer, 2009,64(2):219-25
    [27]余皓.肺癌呼吸检测的电子鼻设计[D].杭州,浙江大学,2004.
    [28]苗明三.氧自由基,疾病与抗氧化中药[J].河南中医药学刊,2002,17(4).
    [29]陈瑾歆,唐聪明.氧自由基的研究进展[J].海南医学院学报,2004,10(3):206-208.
    [30]D. Dreher, A.F. Junod. Role of oxygen free radicals in cancer development [J]. European Journal of cancer,1996, Vol.32A,No.1:30-38.
    [31]Wolfram M., Jochen K.S., Gabriele F.E. Diagnostic potential of breath analysis-focus on volatile organic compounds [J]. Clinica Chimica Acta,2004,347:25-39.
    [32]Esterbauer H. Aldehydic products of lipid peroxidation In:Mc Bien DCH, Slater TF eds. Free Radicals, Lipid Peroxidation and Cancer [J]. London, Academic Press,1983:101-128.
    [33]Carpagnano G.E., Resta O., Foschino-Barbaro M.P., et al. Interleukin-6 is increased in breath condensate of patients with non-small-cell lung cancer [J]. Int J Biol Markers,2002,17:1412415.
    [34]Paul P.A., Todd A.A., I.A. Laird-Offringa. DNA methylation-based biomarkers for early detection of non-small cell lung cancer:an update [J]. Mol Cancer.2008 Oct 23(7):81.
    [35]Machado R.F., Laskowski D., Deffenderfer O., et al. Detection of lung cancer by sensor array analyses of exhaled breath [J]. Am J Respir Crit Care Med,2005,171:128621291.
    [36]Machado R.F., Laskowski D., Deffenderfer O., et al. Detection of lung cancer by sensor array analyses of exhaled breath [J]. Am J Respir Crit Care Med,2005,171:128621291.
    [37]Horvath. J.H., P.J. Barnes. On behalf of the ATS/ERS Task Force on Exhaled Breath Condensate. Exhaled breath condensate:methodological recommendations and unresolved questions [J]. I. Eur Respir J,2005; 26:523-548.
    [38]Liu C.Y., Wang C.H., Chen T.C., et al. Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer [J]. Br J Cancer,1998, 78:5342541.
    [39]O.U. Soyer, E.A. Dizdar et al, Comparion of two methods for exhaled breath condensate collection [J]. Allergy,2006,61:1016-1018.
    [40]刘加良,金号令,吕晓东等.呼出气冷凝液癌胚抗原测定对肺癌的诊断价值[J].临床内科杂志,2004,12(4):230-231.
    [41]张春燕,王玲珑,屠丽萍等.应用IRMA对肺癌病人血清及呼出气冷凝液CEA水平的观察[J].放射免疫学杂志,2004,17(2):123-124.
    [42]Brown R.H. et al. Collection and analysis of trace organic vapour pollutants in ambient atmospheres::The performace of a Tenax-GC adsorbent tube[J]. J Chromatogr,1979,178:79.
    [43]Arthur C.L., Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers [J]. Anal.Chem,1990,62:2145-2148.
    [44]Andreas W., Alex S., Sergei M., et al. Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas [J]. International Journal of Mass Spectrometry, 2007; 265:49-59.
    [45]潘兴仪.卡方检验在医学科研中的应用[J].广西医学学报,2001,23(6).
    [46]Andreas S., Wojciech F., Tomas M., et al. Release of Volatile Organic Compounds from the Lung Cancer Cell Line NCI-H2087 In Vitro[J]. Anticancer Reasearch,2009,29:419-426.
    [47]郝燕,王悦,王平.等检测细胞代谢气体成分诊断肺癌的方法[J].浙江大学学报,2006.
    [48]张军平.固相微萃取在分析化学中的应用浅析[J].化学工程与装备,2009,(6):132-133.
    [49]Diana P., Paolo C., Massimo C., et al. Exhaled volatile organic compounds in patients with non-small cell lung cancer:cross sectional and nested short-term follow-up study [J]. Respiratory Research,2005,6:71.
    [50]Jobsis Q., Raatgeep H.C., Schellekens S.L., Hop W.C., Hermans P.W., de Jongste J.C.. Hydrogen peroxide in exhaled air of healthy children:reference values [J]. Eur Respir J,1998; 12:483-485.
    [51]Corradi M., Rubinstein I., Andreoli R., et al. Aldehydes in exhaled breath condensate of patients with chronic obstructive pulmonary disease [J]. Am J Respir Crit Care. Med 2003; 167: 1380-1386.
    [52]Van B. W.C.J., Dekhuijzen P.N.R., Harff G.A., Smeenk F.W.J.M. Variability of exhaled hydrogen peroxide in stable COPD and matched healthy controls [J]. Respiration,2002; 69:211-216.
    [53]Guatura S.B., Martinez J.A., Santos B.P.C., Santos M.L. Increased exhalation of hydrogen peroxide in healthy subjects following cigarette consumption [J]. Sao Paulo Med J,2000; 118: 93-98.
    [54]Nowak D, Antczak A., Krol M., et al. Increased content of hydrogen peroxide in the expired breath of cigarette smokers[J]. Eur Respir J,1996; 9:652-657.
    [55]Balint B., Donnelly L.E., Hanazawa T., Kharitonov S.A., Barnes P.J. Increased nitric oxide metabolites in exhaled breath condensate after exposure to tobacco smoke [J]. Thorax 2001; 56: 456-461.
    [56]Montuschi P., Collins J.V., Ciabattoni G., et al. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers [J]. Am J Respir Crit Care Med, 2000; 162:1175-1177.
    [57]Garey K., Neuhauser M.M., Robbins R.A., Danziger L.H., Rubinstein I. Markers of inflammation in exhaled breath condensate of young healthy smokers [J]. Chest,2004; 125:22-26.
    [58]乔华,王广发,丁翠敏.呼出气冷凝液收集器的设计及其临床应用探讨[J].临床内科杂志,2005,22(9):625-626.
    [59]Abigail S.J., Alessandra S., Charlotte C., et al. Comparison of biomarkers in exhaled breath condensate and bronchoalveolar lavage [J]. American Journal of Respiratory and Critical Care Medicine,2007,175:222-227.
    [60]许金美.采集呼出气冷凝液的简易方法[J].中华护理杂志,2004,39(11):806.
    [61]蔡华,徐莹刘清君等.基于微透镜阵列的化学图像传感器研究[J].传感技术学报,2007,20(1):58-63.
    [62]王丽江.结合纳米技术的细菌检测分子生物传感器的研究[D].杭州,浙江大学,2007,
    [63]Bergveld P., Development of an ion-sensitive solid-state device for neurophysiological measurements[J], IEEE Trans. Biomed. Eng.1970;17(1):70-71.
    [64]戴春祥.光寻址电位传感器新结构的研究[D].杭州,浙江大学,2008.
    [65]Mc Connell H., J. Parce and D. Hafeman, Light addressable potentiometric biosensor[J], J. Electrochem.1987; 134(8B):523-527
    [66]李毅.微纳集成传感器及其在重金属检测中应用的研究[D].杭州,浙江大学,2010.
    [67]牛婉婷.基于纳米磁珠和量子点的液相芯片关键技术研究[D].杭州,浙江大学,2010.