正构烷烃分布特征及稳定同位素组成在湖泊污染监测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊是人类生存环境的重要组成部分。随着城镇化与工业化的加速,湖泊水体污染也成为最为突出的水环境问题之一。快速有效的监测湖泊污染状况、并对其做出准确评价,是我们制定有效、有序利用水资源方案,以实现流域可持续发展的基础。
     博斯腾湖是中国内陆最大的淡水湖,而且也是影响南疆地区生态环境和人类生存发展的重要水资源。由于其独特的水环境特征,以及人们在开发利用中存在许多问题,加之自然气候的影响,目前存在较严重的水环境问题。对该湖泊的研究可以揭示人类和自然对湖泊水环境的影响,提供监测湖泊演化的指标和信息。
     本文以干旱区浅水湖泊博斯腾湖为研究对象,从环境地球化学的角度出发,将沉积物正构烷烃分布特征与稳定同位素组成特征分析运用于湖泊有机污染与富营养化问题研究,以期寻找快速有效的监测方法,弥补已有的监测于段的不足。
     本文对博斯腾湖采得的47个水样和41个沉积物样品进行相应的分析,得到以下结论:
     (1)由于博斯腾湖出入水口位于同侧,且相距较近,为半封闭湖泊,使得湖泊水动力条件较差,开都河口来水未能与湖水充分混合即被出水口抽走;同时,博斯腾湖的各排污口主要分布于黄水湾区域。这些条件使得湖区的水化学环境存在区域性差异,水样电导率等值线和pH等值线均有所反映:开都河口其值偏小黄水湾处偏大,而湖中心区值间于两者之间,且较稳定;同时也影响入湖碎屑物质的搬运和沉积过程。
     (2)选用主峰碳、CPI、OEP、Paq、∑nC23-/∑nC24+等五个参数对博斯腾湖沉积物中正构烷烃分布特征进行描述和源解析。结果显示:整体上博斯腾湖的陆源有机质来源均占有一定比例;位于河口的BST-47有机质几乎全为陆源高等植物的输入(∑nC23-/∑nC24+=0.08);其他采样点呈双峰型分布,显示陆源和水生共同输入的结果;BST-40、31、7、9的∑nC23-/∑nC24+值略大于1,显示水生生物比高等植物输入占优势;靠近湖泊东边尾端的采样点BST-17、24、25,陆源物质相对含量比湖心部分有所增高,为湖尾水生生物相对减少所致。湖泊不同区域水生生物含量差异明显,而陆源输入相对稳定,推断湖心及湖尾部分的陆生高等植物来源主要由风力输送控制,而水生生物繁殖则主要与湖泊水介质状况,以及湖泊水体深度有关;BST-22由于沉积环境的差异,有机质遭受较强的降解,与其它样品缺乏可对比性。
     (3)根据正构烷烃分布特征,提出nC17/(∑nC14:nC34)、nC23/(∑nC14:nC34)与nC17/nC23三个参数可以反映湖区沉水植物与浮游植物繁殖状况,以及湖泊富营养化程度。若nC17/(∑nC14:nC34)与nC23/(∑nC14:nC34)值均很低,反映低等水生植物不发育或很少发育,对应为贫营养水体;若nC23的相对丰度高,而nC17含量很少,表现为0     将三个参数应用于博斯腾湖沉积物的研究,得到较好的验证。结果如下:开都河河水的注入使得该处水质良好(nC17/(∑nC14:nC34)=1.2%; nC23/(∑nC14:nC341:1.68%);黄水湾、黑水湾、以及往南延伸至靠近开都河入水口附近,水体受污染比较严重,呈富营养状态(nC17/(∑nC14:nC34)≥22.8%; nC17/nC23≥2.66);往湖心方向处于过渡状态;湖中央区至湖尾属于中度污染区域(nC17/nC23≤0.49)。
     (4)博斯腾湖有机质碳同位素组成δ13Corg值间于-28.23‰~23.07‰。δ13Corg值的差异反映出整个湖区不同位置有机质物源组成差异较大,与正构烷烃分布特征分析结果一致。
     (5)表层沉积物碳酸盐以自生为主要来源,碳氧同位素组成呈正相关性。除紧挨开都河口与黄水沟排污口的少数样点碳酸盐碳、氧同位素组成表现出明显差异外,主湖区各样点同位素组成特征较一致。因此认为,博斯腾湖表层沉积物碳酸盐碳氧同位素组成的变化关系不能很好反映湖区污染程度。
Lake is an important part of human living environment. With the acceleration of urbanization and industrialization, lake water pollution becomes one of the most prominent water environmental problems. To monitor lake pollution Fast and effectively, and make an accurate assessment of it, is the base to make programs to use water resources effectively and orderly, and then achieve sustainable development.
     Bosten Lake is the largest fresh lake in inland of China. It is also the important water resource which influence the ecological environment and human survival and development. Because of its unique water features, problems in development and utilization, and effects by climate, Bosten Lake exists serious water environmental problems. Study of the lake can reveals influences to lake water environment by human and natural activities, and provides monitoring indicators and information on lake evolution.
     Taking Bosten Lake, an arid areas shallow lake, as the study object, from the perspective of environmental geochemistry, we use the n-alkanes distribution and stable isotope composition of surface sediments, to analyse lake organic pollution and eutrophication problems. Hope to find a fast and efficient monitoring method to make up the deficiency of existing monitoring tools.
     We sampled 47 water samples and 41 surface sediment samples, did corresponding analysis, and obtained some conclusions as follow:
     (1) Because Bosten Lake is a semi-closed lake, the inlet and outlet are on the same side and in close proximity, the hydrodynamic condition is poor. Water from Kaidu River can not mix up with lake water fully. Moreover, sewage outfalls mainly distribute in Huangshui bay area. All these conditions make hydrochemistry environment diversely in different regions. It is reflected in conductivity contour and pH contour:The values are little in Kaidu River estuary, big in Huangshui region. middle and steady in lake center, shallow-water circulation by winds is another important driving force. Its also work upon fragmental products transport and deposition.
     (2) Choosing peak carbon, CPI, OEP, Paq,∑nC23-/∑nC24+ to describe the distribution of n-alkanes and do source analysis, the results tell us that terrestrial organic matter occupies certain proportion'in the whole lake. BST-47 is near the Kaidu River inlet, and its organic matter is almost from terrestrial plants. Except this, other samples are all showed a double-peak distribution, indicating terrestrial and aquatic input together. The∑nC23-/∑nC24+ values of BST-40、31、7、9 are slightly larger than 1, displaying that aquatic input is predominate compared with terrestrial input. BST-17、24、25 are near the end of the lake, the percentage of terrestrial matter is higher than the center of lake due to the decline of aquatic. Aquatic content has significant difference in different regions, but terrestrial input comparatively steady, inferring that terrestrial input in the center and end of lake is controlled by wind, however aquatic is relating to water media and the depth. BST-22 has no comparability with other samples for the different depositional environment.
     (3) According to n-alkanes distribution, We submit three parameters: nC17/(∑nC14:nC34), nC23/(∑nC14:nC34) and nC17/nC23, which can reflect the reproductive status of Submersed Macrophyte and Phytoplankton, to discuss the relative level of lake eutrophication. If both of the nC17/(∑nC14:nC34) and nC23/(∑nC14:nC34) values are small, it indicates that water is dystrophic and lower hydrobiont is not developed or seldom. If the content of nC23 is high, but nC17 is low, it is explained as large population of submerged vegetation and high lake productivity. Water is polluted in a certain degree and corresponds to moderate nutrient level. If the content of nC17 is high, but nC23 is low, it reflects that submerged vegetation degrades and Phytoplankton takes dominance. Pollution in the region is serious and it shows eutrophication. If both of nC17 and nC23 have certain contents, nC17/nC23 approach to 1, it indicates a intermediate state of the above two status.
     The results of parameters used in the research of Bosten Lake sediments are: Water quality in Kaidu River inlet is good because of fresh water input (nC17/(∑ nC14:nC34)=1.2%; nC23/(∑nC14:nC34)=1.68%). Huangshui Bay, Heishui Bay, and southward extending to Kaidu River inlet nearby, water, pollution is more serious (nC17/(∑nC14:nC34)≥22.8%; nC17/nC23≥2.66). To the lake heart direction region, it shows a intermediate state (nC17/nC23=0.74). The center and end of lake is medium-polluted (nC17/nC23≤0.49).
     (4) Theδ13Corg are between-28.23‰and-23.07‰, shows a significant difference in organic source composition in whole lake. It is agreed with the results of n-alkanes distribution.
     (5) Carbonates in surface sediments are mainly anthigenic, its carbon and oxygen isotope composition shows positive correlation. Except the samples very near the estuary and sewage outfall, other samples'δ13C andδI8O are comparatively stable. The variation relation about stable carbon and oxygen isotope composition can not reflect the degree of contamination well.
引文
1. Azevedo D A, Moreira L S, de Siqueira D S.,1999. Composition of ezxtractable organic matter in aerosols from urban areas of Rio de Janeiro city Brazil [J]. Atmospheric Environment,33:4987-5001.
    2. Bagheri S, Stein M, Dios R.,1998. Utility of hyperspectral data for bathymetric mapping in a turbid estuary [J].19(6):1179-1188.
    3. Barnes. M. A., Barnes. W. C.,1978. Organic compounds in lake sediments. In:Lerman. A. (Ed.), Lakes:Chemistry, Geology, Physics. Springer-Verlag, Berlin,127-152.
    4. Bernd Wunnemann, Steffen Mischke, Fahu Chen.,2006. A Holocene sedimentary record from Bosten Lake, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology 234: 223-238.
    5. Canuel, E. A., Martens, C. S.,1996. Reactivity of recently deposited organic matter: degradation of lipid compounds near the sediment-water interface [J]. Geochimica et Cosmochimica Acta.60:1793-1806.
    6. Cranwell, P.A.,1984. Lipid geochemistry of sediments from Upton Broad, a small productive lake [J]. Organic Geochemistry 7,25-37.
    7. Bourbonniere R A, Meyers P A.,1996. Anthropogenic influences on hydrocarbon contents of sediments deposited in eastern Lake Ontario since 1800 [J]. Environmental Geology,28(1): 22-28.
    8. Clark A J.,1967. The beginning of a genetic analysis of recombination proficiency [J] Cellular Physiology.70:165-180.
    9. Clark R C, Blumer M,1967. Distribution of n-paraffins in marine organisms and sediment [J]. Limnology and Oceanography 12,79-87.
    10. Connan I, Cassou A M.,1980. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels [J]. Geochimica et Cosmochimica Acta. 44:1-23.
    11. Dean W E.,1999. The carbon cycle and biogeochemical dynamics in lake sediments [J]. Journal of Paleolimnology,21(4):375~393
    12. Eglinton G, Calvin M.,1967. Chemical fossils. Scientific American.261:32-43.
    13. Eglinton G, Scott P M, Besky T, Burlingame A L.,1964. Calvin M. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science.145:263-264.
    14. Fabien C, Stephanie H, Dolors P.,2009. Marc Lucotte. Sources of organic matter and methylmercury in littoral macroinvertebrates:a stable isotope approach [J]. Biogeochemistry. 94:81-94.
    15. Ficken K J, Li B, Swain D L, Eglinton G.,2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes [J]. Organic Geochemistry. 31:745-749.
    16. Fontes J C, Gasse F, Givert E.,1996:Holocene environmental changes in Lake Bangong basin (western Tibet). Part 1:Chronology and stable isotopes of carbonates of Holocene lacustrine core [J]. Palaeogeography, Palaeoclimateology, Palaeoecology 120,25-47.
    17. Galimov E M.,2006. Isotope organic geochemistry [J]. Organic Geochemistry.37:1200-1262.
    18. Gasse F, Fontes J C, Plaziat J C, Carbonel P, Kaczmarska I, Deckker P, Soulie-Marsche 1, Callot Y, Dupeuble P A.,1987. Biological remains, geochemistry and stable isotopes for the reconstruction of environmental and hydrological changes in the Holocene lakes from North Sahara [J]. Palaeogeography, Palaeoclimateology, Palaeoecology 60:1-46.
    19. Gelpi E, Schneider H, Mann J, Oro J.,1970. Hydrocarbons of geochemical significance in microscopic algae [J]. Photochemistry,9:603-612.
    20. Giger W, Schaffner C, Wakeham S G.1980. Aliphatic and olefinic hydrocarbons in recent sediments of Greifensee. Switzerland [J]. Geochimica et Cosmochimica Acta,44:119-129.
    21. Gitelson A, Garbuzoy G. Szilagyi F, Mittenzwey K-H, Karnieli A, Kaiser A.,1993. Quantitative remote sensing methods for real-time monitoring of inland waters quality [J]. Remote sensing.14(7):1269-1295.
    22. Henrichs S M.,1992. Early diagenesis of organic matter in marine sediments:progress and perplexity [J]. Marine Chemistry.39(1-3):119-149.
    23. Krishnamurthy R V, Bhattacharya S K, Sheela K.,1986. Palaeoclimatic changes deduced from 13C/12C and C/N ratios of Karewa lake sediments [J], India. Nature,323:150-152.
    24. Leng M J, Lamb A L, Lamb H F, Telford R J.,1999. Palaeoclimatic implications of isotopic data from modern and early Holocene shells of the freshwater snail Melanoides tuberculata, from lakes in the Ethiopian Rift Valley [J]. Journal of Paleolimnology.21:97-106.
    25. Leng M J, Marshall J D.,2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives [J]. Quaternary Science Reviews,23:811~831.
    26. Matsuda H, Koyama T.1977. Early diagenesis of fatty acids in lacustrine sediments from recent sediments and some source materials [J]. Geochimica et Cosmochimica Acta, 41:1825-1834.
    27. Mckenzie J A.,1985. Carbon isotopes and productivity in the lacustrine and marine environment [M]. In:Strunn,W.(eds),Chemical Processes in Lakes. J. Wiley, Toronto, pp. 99~118.
    28. Meyers P A, Leenheer M J. Eadie B J. Maule S J. Organic geochemistry of suspended and settling particulate matter in Lake Michigan [J]. Geochimica et Cosmochimica Acta. 1984,48:443-452.
    29. Meyers P A,1997. Organic geochemical proxies of paleoceanographic, paleolimnologic and paleoclimatic processes [J]. Organic Geochemistry.27:213-250.
    30. Meyers P A. Keuchi N T.,1978. Fatty acids and hydrocarbons in surficial sediments of Lake Huron [J]. Organic Geochemistry.1:127-138.
    31. Mischke.S, Wunnemann.B.,2006. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry:Possible palaeoclimatic implications [J]. Quaternary International 154-155:100-112.
    32. M.R. Talbot.1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates [J]. Chemical Geology (Isotope Geoscience Section).80:261-279.
    33. Nakai. N.1972. Carbon isotopic variation and the paleoclimate of sediments from Lake Biwa [J]. Proceedings of the Hapan Academy.48:516-521.
    34. Ogura, K., Machihara, T., Takada, H.,1990. Diagenesis of biomarkers in Biwa lake sediments over 1 million years [J]. Organic Geochemistry 16,805-813.
    35. Okuda T, Kumata H, Naraoka H, Takada H.,2002. Origin of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) in Chinese Cities Solved by Compound-Specific Stable Carbon Isotopic Analyses [J]. Organic Geochemistry,33:1737-1745.
    36. Rhodes, T E, Gasse F, Ruifen L, Fontes J C, Keqin W, Bertrand P, Gibert E, Melieres F, Tucholka P, Wang Z, Cheng Z Y.,1996. A late Pleistocene-Holocene lacustrine record from lake Manas, Zunggar (northern Xinjing, western China) [J]. Palaeogeograpthy, Palaeoclimatology, Palaeoecology,120:105-121.
    37. Smith B N, E pstein S. Two categories of 13C/12C for high plants [J]. Plant Phys. 1971,43:380-384.
    38. StreetPerrott F A, Huang Y S, Perrott R A, Eglinton G, Barker P, Khelifa L B, Harkness D D, Olago D O.,1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems [J]. Science.278:1422-1462.
    39. Talbot M R, Livingstone D A.,1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators [J]. Palaeogeography, Palaeoclimateology, Palaeoecology.70:121-137.
    40. Teranes J L., McKenzie J A.,2001. Lacustrine oxygen isotope record of 20th-century climate change in central Europe:evaluation of climatic controls on oxygen isotopes in precipitation [J]. Journal of Paleolimnology.26:131-146.
    41. Thompson J B, Schultze-Lam S, Beveridge T J, Des Marais D J.,1997. Whiting events Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton [J]. Limnology and Oceanography.42:133~141.
    42. Viso A C, Pesando D, Bernard P, Marty J C.,1993. Lipid components of the Mediterranean seagrass Posidonia Oceanica [J]. Phytochemistry 34:381-387.
    43. Volkaman J K.,1986. A review of sterol markers for marine and terrigenous organic matter [J]. Organic Geochemistry.9:84-99.
    44. Volkman J K, Jeffrey S W, Nichols P D, Rogers G l, Garland C D., 1989. Fatty acid and lipid composition of 10 species of microalgae used in mariculture [J]. Journal of Experimental Marine Biology and Ecology.128(3):219-240.
    45.白志鹏,张利文,朱坦,冯银厂.稳定同位素在环境科学研究中的应用进展[J].同位素,2007.20(1):57-64.
    46.曹凤中译,凯恩斯著.水污染的生物监测[M].北京:中国环境科学出版社,1989.
    47.陈骏,王鹤年.地球化学[M].北京:科学出版社,2004.124,263.
    48.陈芳,夏卓英,宋春雷,李建秋,周易勇.湖北省若干浅水湖泊沉积物有机质与富营养 化的关系[J].水生生物学报.2007.31(04):467-472.
    49.陈克龙,刘晓宏.喜马拉雅冷杉和林芝云杉年轮稳定碳同位素气候意义比较[J].盐湖研究.2003.11(2):29-34.
    50.陈永静,马邕文,张春浩.废纸造纸废水有机污染物的降解研究[J].环境科学与技术.2008.31(6):127-131.
    51.程海鸥.海面溢油风化与鉴定技术研究[D].中国海洋大学硕士学位论文.2009.
    52.程英,裴宗平,邓霞,梁凤焦.生物监测在水环境中的应用及存在问题探讨[J].环境科学与管理.2008.33(2):111-114.
    53.成正才.博斯腾湖的咸化与淡化[J].干旱区资源与环境,996,(04).
    54.褚宏大.东海赤潮高发区沉积物中正构烷烃、脂肪酸的组成与分布[D].中国海洋大学硕士学位论文.2007.
    55.邓文胜,刘海.遥感技术在湖泊水污染监测中的应用.第七届ArcGIS暨ERDAS中国用户大会.会议论文.2006.
    56.韩龙喜,张防修,张芃,刘协亭.博斯腾湖湖流及矿化度分布研究[J].水利学报2004,(10).
    57.何瑛.全球气候变化下的新疆湿地演变特征初步分析——以博斯腾湖湿地为例[D].新疆师范大学,2005.
    58.胡汝骥,姜逢清,王亚俊,李宇安,谭芫,王前进.亚洲中部干旱区的湖泊.干旱区研究.2005,22(4):424-430.
    59.黄小忠,赵艳,程波,陈发虎,徐俊荣.新疆博斯腾湖表层沉积物的孢粉分析[J].冰川冻土.2004.26(5):602-609.
    60.孔繁祥,胡维平,范成新,王苏民,薛斌,高俊峰,谷孝鸿,李恒鹏,黄文钰,陈开宁.中国科学院南京地理与湖泊研究所.太湖流域水污染控制与生态修复的研究与战略思考[J].湖泊科学.2006,18(3):193-198.
    61.李江风,1991.新疆气候[M].北京:气象出版社.1-15.
    62.李红.河西走廊四种生态型芦苇适应干旱盐渍生境的分子进化途径研究[D].兰州大学,2007.
    63.李明财,易现峰,张晓爱,李来兴.青海高原高寒地区C4植物名录[M].西北植物学报.2005.25(5):1046-1050.
    64.李世杰,窦鸿身,舒金华,范云崎,刘吉峰.我国湖泊水环境问题与水生态系统修复的 探讨.中国水利.2006,13:14-17.
    65.李杏茹,王英锋,郭雪清,施燕支.北京大气颗粒物中正构烷烃污染特征的GC-MS法研究[J].分析测试学报.2008,27:103-105.
    66.李宇安,谭芫,姜逢清,王亚俊,胡汝骥.20世纪下半叶开都河与博斯腾湖的水文特征[J].冰川冻土,2003,(02)
    67.刘月杰.博斯腾湖芦苇湿地生态恢复研究[D].北京化工大学,2004.
    68.马井泉,周怀东,董哲仁.我国应用生态技术修复富营养化湖泊的研究进展[J].中国水利水电科学研究院学报.2005,3(3):209-215.
    69.买合木提·巴拉提,徐海量,艾合买提·那由甫.博斯腾湖排污现状和污染物总量控制[J].新疆环境保护,2003,(02)
    70.欧文佳,张成君.松嫩平原湖泊沉积物中有机质及碳酸盐中δ13C影响因素分析[J].同位素.2008.22(2):81-86.
    71.濮培民,李正魁,王国祥.提高水体净化能力控制湖泊富营养化[J].生态学报.2005,25(10):2757-2763.
    72.彭旭阳,张枝焕,何奉朋,高丹丹,卢松.北京地区典型土壤剖面分子标志物分布特征[J].地球化学进展.2008,23(6):580-589.
    73.秦伯强.我国湖泊富营养化及其水环境安全[J].科学对社会的影响.2007,3:17-23.
    74.邱东茹,吴振斌.富营养化浅水湖泊沉水水生植被的衰退与恢复[J].湖泊科学.1997.9(1):82-87.
    75.邱东茹,吴振斌.武汉东湖水生植物生态学研究——Ⅲ沉水植被重建的可行性研究[J].长江流域资源与环境.1998,7(1):42-48.
    76.沈吉,吴瑞金,安芷生.大布苏湖沉积剖面有机碳同位素特征与古环境[J].湖泊科学.
    77.盛龙生,苏焕华,郭丹滨,2005;色谱质谱联用技术[M].北京:化学工业出版社.
    78.孙玉芳.博斯腾湖湿地生态系统服务功能价值评估及可持续发展研究[D].新疆农业大学.2006.
    79.孙占东,王润,黄群.近20年博斯腾湖与岱海水位变化比较分析[J].干旱区资源与环境,2006,(05).
    80.万洪秀,孙占东,王润.博斯腾湖湿地生态脆弱性评价研究[J].干旱区地理,2006,(02).
    81.施雅风,沈永平,胡汝骥.西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J].冰川冻土.2002.24:219-226.
    82.水环境监测规范.中华人民共和国行业标准.1998年发布.SL219-98.
    83.唐海萍,刘书润.内蒙古地区的C4植物名录[J].内蒙古大学学报(自然科学版).2001,32(4):431-438.
    84.唐运千,郑士龙,龚敏,史继扬,黄孝建.南海和冲绳海槽沉积物的生物标记化合物[J];热带海洋学报;1993年01期.
    85.万众华,武云志.水质监测技术的应用解决方案[J].中国水利.2004,01:32-33.
    86.王开勇,杨乐,庞玮.博斯腾湖入湖水质分析与评价[J].石河子大学学报(自然科学版).2008.26(4):423-426.
    87.王强,付晓文,徐志明等.稳定碳同位素在油气地球化学中的应用及存在的问题[J].天然气地球化学,2005.16(2):233-237.
    88.王铁冠.生物标志物地球化学研究[M].武汉:中国地质大学出版社.1990
    89.王亚俊,李宇安,谭芫.新疆博斯腾湖生态环境变迁分析[J].干旱区资源与环境,2007,(02)
    90.汪恕诚.资源水利——人与自然和谐相处[M].北京:中国水利水电出版社.2003.
    91.夏军,左其亭,邵民诚.博斯腾湖水资源可持续利用——理论·方法·实践[M].北京:科学出版社.2003.
    92.谢红霞.长江口潮滩芦苇与互花米草中重金属累积的比较研究[D].华东师范大学,2006.
    93.谢树成,梁斌,郭建秋,易轶.生物标志化合物与相关的全球变化[J].第四纪研究.2003,23(5):521-528.
    94.谢树成,姚檀栋,康世昌,段克勤,徐柏青,L.G.Thompson.青藏高原希夏邦马峰地区雪冰有机质的气候与环境意义[J].中国科学D辑.1999.(05).383-391.
    95.徐海量,陈亚宁,李卫红.博斯腾湖湖水污染现状分析[J].干旱区资源与环境,2003.17(3):95~97.
    96.许怀先,蒲秀刚,韩德馨.碳酸盐岩中烃源的识别——以西藏措勤盆地碳酸盐岩为例[J].地质学报,2002,(03)1998,(03).8-12:395-399.
    97.徐行.浅析滇池污染与综合治理[J].中国电子商务.2010.02:91-93.
    98.薛博.漳江口红树林湿地沉积物有机质来源追溯[D].厦门大学.2007.
    99.杨光华;包安明;陈曦,刘海隆,黄莹,史建康,沈利强.新疆博斯腾湖湿地生态质量的定量评价[J].干旱区资源与环境,2009,23(02):119-124.
    100.殷福才,张之源.巢湖富营养化研究进展[J].湖泊科学.2003,15(4):377-384.
    101.于国光,王铁冠,王娟,吴大鹏.烃类污染物在大气气溶胶源解析方面的应用[J].生态环境.2007,16(1):210-215.
    102.苑金鹏,赵汝松,江婷,程传格,李磊,时军波.济南地区表层土壤及沉积物中饱和烃分布特征及源解析[J].光谱实验室.2007,24(6):1106-1110.
    103.曾凡刚,彭林,李剑,胡国艺.兰州市大气总悬浮颗粒物中有机污染物分布特征及来源[J].岩矿测试.2002,21(2):125-128.
    104.张建平,胡随喜.博斯腾湖矿化度现状分析[J].干旱环境监测.2008,22(1):19-24..
    105.赵景峰,秦大河,长岛秀树,雷加强,魏文寿.博斯腾湖的咸化机理及湖水矿化度稳定性分析[J].水科学进展,2007,(04).
    106.赵湘桂,蔡德所,刘威,王旭涛.漓江水质硅藻生物监测方法研究[J].广西师范大学学报:自然科学版.2009,27(2):142-147.
    107.中国科学院地球化学研究所.高等地球化学[M].北京:科学出版社,1998.
    108.钟巍.博斯腾湖全新世湖相沉积物碳酸盐稳定同位素与古气候的初步研究[J].地理学与国土研究 1998,14(3),42~46.