rAAV(重组腺相关病毒)介导干扰素-α基因治疗鼻咽癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌是我国南方及亚洲中国人种高发的头颈部肿瘤,中晚期鼻咽癌患者5-10年生存率仅有40%左右,局部复发和远处转移是影响患者生存率的主要因素。目前所采用的放化疗在治疗鼻咽癌时常发生严重的并发症,影响患者生活质量,这就需要我们更积极地寻找全身综合治疗手段,预防和治疗鼻咽癌的复发和转移,全面提高鼻咽癌的总生存率,改善生存质量。
     随着肿瘤生物学的发展,肿瘤的生物治疗已逐渐成为治疗恶性肿瘤的第四模式,肿瘤的生物治疗在肿瘤综合治疗中发挥越来越大的作用。干扰素(IFN)作为主要的肿瘤生物治疗制剂之一,以其抑制肿瘤相关病毒的繁殖、抑制肿瘤细胞增生和诱导分化、促进凋亡,免疫调节及抑制肿瘤血管生成等功能,已被广泛应用于治疗14种以上的恶性肿瘤。但干扰素在鼻咽癌的治疗作用了解不多。本研究通过体内外实验,探讨干扰素对EB病毒阳性鼻咽癌细胞生长、转移的作用。
     目前临床使用干扰素为蛋白制剂,蛋白形式的干扰素在体内半衰期短,需长期给药,使用药量大且血药浓度并不稳定,易出现全身各系统的毒副作用,目前认为干扰素抗肿瘤作用效果有限,这可能与干扰素在体内很难达到有效治疗剂量有关等。针对干扰素治疗肿瘤策略上存在的问题,本实验以重组腺相关病毒(rAAV)作为转基因载体,介导干扰素基因的表达,使机体细胞长期稳定表达基因,产生有生物活性的干扰素蛋白,同时以临床常规外源性干扰素治疗方法为对照,探讨干扰素在鼻咽癌的治疗作用及作用机制,为鼻咽癌生物治疗提供有价值的理论依据。
     一、重组腺相关病毒(rAAV)载体的包装与鉴定
     采用分子克隆的方法将IFN-α表达序列插入pAAV质粒的BamHⅠ及EcoRⅠ酶切位点之间,将EGFP表达序列插入pAAV质粒的XhoⅠ及EcoRⅠ酶切位点之间分别成功构建pAAV-IFN-α及pAAV-EGFP;采用无辅助病毒的双质粒共转染方法,pAAV-IFN-α(或pAAV-EGFP)及rAAV包装辅助质粒pDG共同转染HEK-293FT细胞,包装病毒;采用氯仿处理-PEG/NaCL沉淀-氯仿抽提3个步骤分离、浓缩和纯化重组腺相关病毒(rAAV)。
     通过Real-Time PCR定量检测,确定包装病毒滴度均介于10~(11)v.g./ml~10~(12)v.g./ml之间。通过不同滴度rAAV-EGFP转染C666-1细胞,其结果显示48小时以5×10~4v.g./细胞转染效率最高,达95%以上,纯化后的rAAV仍保持较强的感染性。RT-PCR及Western结果显示IFN-α在转录及翻译水平表达,表明rAAV-IFN-α载体的高效性。
     二、rAAV-IFN-α对EBV(+)鼻咽癌细胞株的作用研究
     IFN-α蛋白抑制EBV(+)鼻咽癌细胞株C666-1细胞生长的半数抑制剂量(IC50)实验;rAAV-IFN-α转染C666-1细胞的细胞增殖实验(MTT);rAAV-IFN-α转染C666-1细胞流式细胞检测;细胞凋亡检测;RT-PCR鉴定rAAV-IFN-α转染C666-1细胞后IFN-α表达及转移相关基因表达变化;高效液相芯片技术(Liquichip)检测rAAV-IFN-α转染C666-1细胞后细胞上清中人IFN-α的含量。数据采用SPSS10.0统计软件包进行统计学处理。
     结果显示:采用MTT试验,当IFN-α蛋白浓度达到1×10~5IU/ml,C666-1细胞增殖明显受抑制(达50%),即IC50;MTT试验显示,rAAV-IFN-α转:染C666-1细胞培养48小时至72小时后,细胞平均吸光度与对照组比较无统计学差异(F=1.181,p=0.334)。流式细胞术结果显示,与对照组比较,rAAV-IFN-α转染48小时后能改变C666-1细胞周期,使G1期细胞比例增加(F=39.675,P=0.000),效果优于IFN-α蛋白,但无统计学差异(P=0.059)。运用三种细胞凋亡检测方法结果显示,体外IC50浓度的IFN-α及rAAV-IFN-α均不能引起C666-1细胞明显凋亡。RT-PCR显示rAAV介导IFN-α表达后显著抑制C666-1细胞中EB病毒LMP-1及EBNA-1的表达,并下调肿瘤细胞MMP-9及VEGF的表达,IC50浓度的IFN-α亦能引起相同效应,但效果较弱。高效液相芯片技术(Liquichip)检测结果显示rAAV-IFN-α转染C666-1细胞后培养上清中IFN-α的含量随培养时间延长而增加,但培养至72小时总体浓度仍低于20U/ml。
     三、rAAV介导IFN-α基因对EBV(+)鼻咽癌肝移植瘤生长和转移的实验研究
     BALB/c-nu/nu雄性裸鼠64只建立EBV(+)鼻咽癌肝移植瘤动物模型。将64只裸鼠随机分成4组,即A组rAAV-IFN-α组、B组IFN-α组、C组rAAV-EGFP组及D组PBS组,每组16只;其中每组随机取8只用于观察抗肿瘤效果,其余8只用于生存期观察。观察rAAV-IFN-α、IFN-α对裸鼠鼻咽癌肝移植瘤生长和转移抑制的效应。免疫组化检测移植瘤组织中MMP-9的表达和微血管密度(MVD)。原位末端标记(TUNEL法)检测肝脏移植瘤肿瘤细胞凋亡。RT-PCR分析肿瘤组织IFN-α表达及转移相关基因表达变化。高效液相芯片技术检测血清中人IFN-α及鼠IL-12、GM-CSF、IFN-r、IL-2、IL-10、TNF-α的含量。确定不同组动物的生存期。数据采用SPSS10.0统计软件包进行统计学处理。
     结果显示:肝脏鼻咽癌移植瘤3周后,A、B、C、D组肿瘤平均体积分别为(239.00±44.80)mm~3、(340.25±75.96)mm~3、(424.75±67.22)mm~3、(430.75±112.05)mm~3,四组肿瘤体积经方差分析提示有非常显著意义(F=10.397,P=0.000),经多重比较rAAV-IFN-α与其他三组差异均有显著意义(P=0.000),IFN-α组与EGFP及PBS组比较均有显著差异(P=0.029),而EGFP组与PBS组比较差异无显著意义(P=0.880)。A、B、C、D组肝内转移分别为12.5%、37.5%、100%、100%;肺转移为0.0%、50.0%、87.5%、100%;平均生存期分别为(18.25±2.49)天、(15.13±1.13)天、(12.88±1.25)天、(12.63±1.19)天,4组之间有显著统计学差异(F=20.848,P<0.001),其中rAAV-IFN-α生存时间较IFN-α组(P=0.001)及对照组(P=0.000)显著延长,IFN-α组较EGFP组与PBS组亦显著延长(P<0.01)。凋亡平均指数分别为(12.20±1.92)、(8.80±1.64)、(4.00±1.58)、(3.40±1.14),经单因素方差分析差异有非常显著意义(F=34.118,P=0.000),多重比较提示A组较其他三组均有显著差异,IFN-α较rAAV-EGFP及PBS组亦有显著差异(P=0.000),而rAAV-EGFP与PBS组间无统计差异(P=0.561)。rAAV-IFN-α及IFN-α组移植鼻咽癌肿瘤组织MMP-9表达较rAAV-EGFP及PBS组显著下降,经秩和检验差异有显著差异(P=0.000)。rAAV-IFN-α及IFN-α组肝脏移植鼻咽癌肿瘤组织MVD(1.60±1.14)、(1.80±0.84)较对照组(13.00±2.74)、(13.20±2.59),明显下降,经单因素方差分析差异有非常显著意义(F=53.498,P=0.000)。RT-PCR结果显示rAAV-IFN-α组肝脏移植鼻咽癌细胞内有IFN-αmRNA表达,在IFN-α组及对照组无IFN-αmRNA表达。在rAAV-IFN-α组及IFN-α组鼻咽癌细胞MMP-9mRNA、VEGFmRNA表达与对照组比较表达下降。用rAAV-IFN-α及IFN-α治疗荷瘤裸鼠后3周,A、B、C、D组裸鼠血清中IFN-α含量(U/ml,(?)±s)分别为(7.01±2.68)(5.59±1.42)(1.81±0.48)、(1.30±0.34),rAAV-IFN-α组血清中IFN-α的含量较IFN-α组含量高,但无统计学差异(P=0.126),但较对照组显著升高(P=0.000);检测四组裸鼠血清中IL-12含量分别为(pg/ml,(?)±s)(105.02±43.43)(56.99±13.93)(0.00±0.00)(0.00±0.00),rAAV-IFN-α组较IFN-α组(P=0.002)及对照组比较均有显著统计学差异;四组裸鼠血清中GM-CSF含量(pg/ml,(?)±s)分别为(105.23±21.05)、(100.52±14.59)、(72.42±22.76)、(63.08±26.100),rAAV-IFN-α组比较IFN-α组无统计学差异(P=0.687),较对照组有显著增长(P<0.01)。IFN-r、IL-2、IL-10、TNF-α四种细胞因子含量治疗组与对照组之间无统计学差异。
     结论:
     1、本研究采用的rAAV-IFN-α治疗策略能有效抑制鼻咽癌的生长和转移;从抑制移植瘤生长、转移抑制效果和生存时间比较,rAAV-IFN-α基因治疗优于外源性IFN-α蛋白治疗。
     2、IFN-α主要通过抑制肿瘤血管增生,免疫调节作用发挥其抗EBV(+)鼻咽癌生长和转移作用,IFN-α对EBV(+)鼻咽癌细胞的直接抑制作用有限。
     3、IFN-α可能通过抑制EBV LMP-1及EBNA-1基因表达发挥其抗EBV(+)鼻咽癌生长和转移作用。
Nasopharyngeal carcinoma (NPC), a type of head and neck cancer, shows adistinct racial distribution among Chinese living in South China and and SoutheastAsia.The 5-10 years survival rate of advanced NPC patients is only 40%. The majorfactors affecting the survival of NPC patients include local recurrence andmetastases. Besides this, a serious side-effect was observed in patients with currentionizing-radiation therapy and chemotherapy, which affect the living quality ofNPC patients. It is critical to develop some novel therapies, which can enhanceoverall survival rate and improve living quality by preventing and antagonizingmetastases in NPC patients.
     Biotherapy has been becoming progressively the fourth model in controlingmaligmant tumor with development of tumor biology. Biotherapy of tumor playsthe key role in general treatment, especialy in targeting recurrence and metastases.Interferon(IFN), one of major biotherapic medicine, has been used worldwidely forthe treatment of more than 14 types of cancer, including some hematogenousmalignancies and some solid tumors.IFN has diverse biological functions, includingsurppressing tumor related virus, inducing differentiation of tumor cells, promotingapoptosis of tumor cells, inhibiting proliferating of tumor cells, immunomodulatingimmune systems of patients and inhibiting angiogenesis of tumor. However, there is a poor understanding about effects of IFN on NPC. In the present study, we willinvestigate the effects of IFN on proliferative activity and metastases formation inEBV positive NPC tumor cells in vitro and in vivo.
     Pharmacokinetics studies indicated that IFNs exhibit an extremely shorthalf-life in the blood system after parenteral adminstration. Injections of high dosesof cytokines repeately, apparently needed to achieve effective antitumor response,often cause the adverse effects on the human body. In some clinical trials, somepoor response with cancer tissue were observed on patients due to an insuficientdelivery of the cytokine to the correct target site.Thus, some alternative strategies ofstable, effective and targeted delivery systems of INFs are urgently needed to bedeveloped. In this study, we constructed a recombinant adeno-associated viralvector harboring interferon alpha gene (rAAV-IFN-α),demonstrating efficient andcontinous expression of active IFN-αprotein.The antitumor effects of IFN-αgenedelivered by this new strategy are much better compared to that by conventionalclinical use of IFN-αprotein.Our results may suggest a novel therapeutic approachfor treatment of patients with advanced NPC
     Construction of the recombinant adeno-associated virus(rAAV) and Assay
     Plasmid pAAV-IFN-αwas constructed by inserting IFN-αgene into BamH I andEcoRI sites of plasmid pAAV using BglⅡⅠ/EcoRI enzymes.Plasmid pAAV-EGFPwas similarly constructed by inserting EGFP gene between the XhoI and EcoRI siteof pAAV. Recombinant AVV particles were produced by using a helper virus-freesystem.rAAV vectors and helper plasmid pDG were co-transfected into HEK 293-FTcells by calcium phosphate precipitation method.The supernatant fraction containingrAAV-IFN-αor rAAV-EGFP particles was decanted.rAAV particles were purified byHiTrap Heparin column chromatography.
     The final titer of the purified viral vectors was quantified by real-time PCR.The concentration of viral particles ranged from 10~(11) to 10~(12) v.g./ml. After C666-1cells, a kind of EBV-positive NPC cell line, were infected with rAAV-EGFP atdifferent concentration at 48 hr, the highest transfective efficiency (95%) was obtained with 5×10~4 v.g./cell multiplicity of infection (MOI).Transfective efficiencyof the purified viral vectors was maintained.rAAV-IFN-αinfected C666-1 cellsshowed the stable expression of IFN-αby RT-PCR and Western blot assay.The resultssuggested the higher transfective efficiency of rAAV-IFN-α.
     Effect of rAAV-IFN-αon EBV-positive NPC cell line
     A series of experiments were performed to study effects of IFN-αonEBV-positive NPC cell line C-666-1.These methods included half-percent cell growthsuppressed(IC_(50)) dose test of IFN-α, MTT assay for cell proliferation, flow Cytometryassay and apoptosis assay, detection of IFN-αand metastases-related genes inC-666-1 cell infected rAAV-IFN-αby RT-PCR and Western bloting, measurement ofIFN-αlevel in cell culture supematant by liquichip technique.
     The results showed that C-666-1 were relatively resistant to antiproliferativeeffects of IFN-α,whose IC_(50) was 1×10~5IU/ml. To determine the effect ofrAAV-IFN-α-infected C666-1 cells on growth,antiproliferative activity of withHighest transduction efficiency (95%) had not revealed for 48 hr, which opticaldensity(OD) was no statistically significant compared to control (F=1.181,p=0.334).Until 72hr rAAV-IFN-α-infected C666-1 cells growth had not beensuppressed. Flow Cytometry assay showed a significant increasing percentage ofrAAV-IFN-α-infected C666-1 cells in the G_1 phase compared to therAAV-EGFP-infected C666-1 cells in the G_1 phase (F=39.675,P=0.000).The effectof rAAV-IFN-αon cell cycle was better than that of IFN-αprotein bymulti-comparison, but no statistically significant. In vitro, no apoptosis wasobserved in rAAV-IFN-α-infected C666-1 cells or IFN-α- incubated C666-1 cells.By RT-PCR.assay, we found that the mRNA expression of LMP-1 and EBNA-1 inEBV-positive C666-1 cells were suppressed, and the mRNA expression MMP-9 andVEGF were down-regulated by rAAV-IFN-α.. IFN-αprotein of IC50 had the sameefffect on C666-1 cells but it was weak. The results of Liquichip test showed theamounts of IFN-αin culture supematant of rAAV-IFN-αinfected C666-1 cell wereelevated with increasing incubated cell time,but the total concentration of IFN-α measured at 72 hr was less than 20U/ml.
     Effects of rAAV-IFN-αand IFN-αon growth and metastases of establishedxenograft EBV-positive NPC tumor in vovo
     64 male nude mice (BALB/c nu/nu) were used to establish liver xenograftEBV-positive NPC matastases model by direct injection of 1×10~6/ml C666-1 cellsinto the liver.The 64 nude mice were divided into 4 groups of 16,A group withrAAV-IFN-α, B group with IFN-α, C group with rAAV-EGFP and D group with PBs.8 mice from each group were randomly chosen to evaluate the therapeutic effects andwere sacrificed at the third weekend of C666-1 cell injection.The remainder were leftto evaluate the long-term survival time until die naturelly.The survival time of theremainder mice were recorded, and a survival curve was constructed and analyzed bya log-rank test.Effect of rAAV-IFN-αand IFN-αon growth and metastases ofxenograft NPC were observed in vovo.Immunohistochemical assay was used to detectthe expression of MMP9 and MVD.The apoptosis of xenograft NPC tissue wasanalyzed by TUNEL staining. RT-PCR was performed to test the mRNA level ofIFN-α,MMP9 and VEGF in transplanted tumor.Liquichip technique was applied tomeasure the amount of human IFN-αand murine IL-12、GM-CSF、IFN-r、IL-2、IL-10、TNF-αin the mice serum. The data were Statistically analyzed by SPSS10.0.
     The results showed the volume of the transplanted tumor in 4 groupsrespectively were (239.00±44.80)mm~3、(340.25±75.96)mm~3、(424.75±67.22)mm~3、(430.75±112.05)mm~3 after implanting directly C666-1 cells into the liver for 3weeks.The volumes of the transplanted tumors in 4 groups differed significantly(F=10.397,P=0.000).rAAV-IFN-αgroup had a significant differences with othergroups by mul-comparesion (P=0.000).Satistical difference were significant, whichwere found between IFN-αand the controls (P=0.029) but not between group C andgroup D. Metastases rate in liver were 12.5%、37.5%、100%、100% and metastasesrate in lung were 0.0%、50.0%、87.5%、100% in group A,B,C,D respectively. Theaverage survival time in 4 groups were respectively (18.25±2.49)days、 (15.13±1.13))days、(12.88±1.25))days、(12.63±1.19))days. Survival analysisdemonstrated satistical significance among 4 groups (F=20.848,P<0.001).Survivaltime of rAAV-IFN-αwas much longer than IFN-αgroup (P=0.001) and 2 controlsgroups (P=0.000). Furthermore, survival time of IFN-αgroup was longer than twocontrol groups (P<0.01).The apoptotic indices for rAAV-IFN-α, IFN-α,rAAV-EGFP,PBS groups were calculated to be (12.20±1.92)、(8.80±1.64)、(4.00±1.58)、(3.40±1.14), There were significant differences among 4groups(F=34.118, P=0.000).Group A had a significant differences compared to theother 3 groups by mul-comparison.Satistical difference were also found betweenIFN-αand the controls (P=0.000),but not between rAAV-EGFP and PBS groups.
     Immunohistochemical analyses on rAAV-IFN-αand IFN-αgroups showed thatthe MMP9 expression was down-regulated compared to rAAV-EGFP and PBS groupsin the transplanted tumor of liver tissue,which had satistical significance (P=0.000).Immunohistochemical detection of CD31 revealed significantly a lower microvesseldensity in rAAV-IFN-α(1.60±1.14) and IFN-αgroup (1.80±0.84) than that in theEGFP (13.00±2.74) or PBS (13.20±2.59) groups respectively; which had asignificant difference (F=53.498, P=0.000).Additionally, the expression of IFN-αmRNA was confirmed in the transplanted tumor of rAAV-IFN-αgroup, but not foundin the other groups.The expression of MMP9 mRNA and VEGF mRNA intransplanted NPC were decreased in group A and B compared to controls.
     We examined the amounts of IFN-αin the serum produced from intravenousrAAV-IFN-αbefore 3 weeks or from subcutaneous injection of IFN-αfor 3 weeksThe results showed that the serum IFN-αlevel(U/ml, (?)x±s) in rAAV-IFN-αgroup(7.01±2.68) was higher than IFN-αgroup (5.59±1.42),which had no satisticaldifference (P=0.126).There was a significant difference in the amounts of IFN-αofserum between treatment groups and controls (1.81±0.48)、(1.30±0.34) (p=0.000).To confirm the cytokine induction by rAAV-IFN-αand IFN-αused in this study, wefound the level of IL-12,GM-CSF were increased after treatment.The serum IL-12 level(pg/ml,(?)±s) were respectively (105.02±43.43)、(56.99±13.93)、(0.00±0.00)、(0.00、0.00),which had the satistical difference Between treatment groups andcontrol groups (P=0.002). The serum GM-CSF level (pg/ml,(?)±s) were respectively(105.23±21.05)、(100.52±14.59)、(72.42±22.76)、(63.08±26.100), which satisticaldifference was not found between group A and group B but between treatment groupsand control groups.The levels of IFN-r、IL-2、IL-10、TNF-αin serurn were alsomeasured and found no significant differences between treatment groups andcontrols.
     Conclusion
     1、Our results suggested that the growth and metastases of liver transplantedNPC were suppressed efficiently and that survival time was prolongedremarkblely after treatment by intravenous rAAV-IFN-αor subcutaneousinjection of IFN-α, The effects on antiprolification,metastasticsuppression,survival time and apoptosis analysis with rAAV-IFN-αdeliverywas more powerful than that of IFN-αprotein delivery, rAAV-mediatedIFN-αgene therapy is a promising strategy in suppressing growth andmetastases of EBV-positive NPC tumor.
     2、The effects of IFN-αon EBV-positive NPC may be attributed toantiangiogenesis and immunomodulatary role in this experiment.But it islimited that antitumor direct response of IFN-αhad been observed.
     3、The effects of IFN-αon suppressing growth and metastases of EBV-positiveNPC tumor.may be obtained by inhibiting expression of LMP-1 andEBNA-1 in EB virus.
引文
1. Ferlay J, Bray F, Pisani P, et al. GLOBOCAN2000: Cancer incidence, Mortality and Prevalence Worldwide. Vision 2001. IARC Cancer BaseNo.5
    2. Lin MT, Hsieh CY, Chang TH, et al. Prognostic factor affecting the outcome of nasopharyngeal carcinoma. J Clin Oncol, 200; 33(10): 501-508.
    3. Yu KH, Teo PM, Lee WY, et al. Patterns of early treatment failure in non-metastatic nasopharyngeal carcinoma: a study based on CT scanning. Clin Oncol.1994; 观者 6(3): 167-171.
    4. Baron S, Yyring S K, Fleischmann W R, et al. The interferons: mechanisms of action and clinical applications[J]. JAMA. 1991; 266 (10): 1375-1383
    5.杨吉成,李丽娥,,盛伟华,等.基因工程IFNα-2a和IFNα-2b对肿瘤细胞生长的抑制作用.实用癌症杂志.1999,14(3):164-166
    6.魏海明,吴惠联.IFN对癌基因调控的研究.中国肿瘤生物治疗杂志.1996;3(3):233-235
    7. Jing H, Linj J, Tao J, et al. Suppression of human ribsomae protein L23A expression during cell growth inhibition by IFN-β[J]. Oncogene. 1997; 14 (4): 473-476
    8.陈汉春,罗志勇,罗赛群,等.羟基脲联合IFN-α对K562细胞生长及凋亡相关基因表达的影响.中华医学杂志.2000;80(8):606-609
    9.杨吉成,李丽娥,盛伟华,等.基因工程IFN-α2a和IFN-α2b对肿瘤细胞生长的抑制作用.实用癌症杂志.1999;14(3):164-166
    10.魏海明,吴惠联.IFN对癌基因调控的研究.中国肿瘤生物治疗杂志.1996;3(3):233-235
    11. Jing H, Linj J, Tao J, et al. Suppression of human ribsomae protein L23A expression during cell growth inhibition by IFN-β. Oncogene. 1997; 14 (4): 473-476
    12.陈汉春,罗志勇,罗赛群,等.羟基脲联合IFN-α对K562细胞生长及凋亡相关基因表达的影响.中华医学杂志.2000;80(8):606-609
    13.吕海,金大地,史占军,等.两种新型IFN-α的克隆、表达及其抗骨肉瘤活性.中华骨科杂志.1999;19(1):14-17
    14. Xie R, Gupta S, Miele A, et al. The tumor suppressor interferon regulatory factor 1 interferes with SP1 activation to repress the human CDK2 promoter. J Biol Chem .2003;278:26589- 26596
    15. Sangfelt O, Erickson S, Castro J, et al. Induction of apoptosis and inhibition of cell growth are independent responses to interferon-a in hematopoietic cell lines. Cell Growth Differ.1997;8:343 - 352
    16. Otsuki T, Yamada O, Sakaguchi H, et al. Human myeloma cell apoptosis induced by interferon-α. Br J Haematol, 1998; 103(2):518 - 529
    17. Selleri C, Sato T, Vecchio L, et al. Involvement of fasmediated apoptosis in the inhibitory effects of interferon-α in chronic myelogenous leukemia. Blood. 1997; 89:214-219
    18. Nagatani T, Okazawa H, Kambara T, et al. Effect of natural interferon-β the growth of melanoma cell lines. Melanoma Res. 1998; 8(4):295 - 299
    19. Kito M, Akao Y, Ohishi N, et al. Induction of apoptosis in cultured colon cancer cells by transfection with human interferon-β gene. Biochem Biophys Res Commun.1999;257(3):771 - 776
    20. Kaser A, Nagata S, Tilget H, et al. Interferon-α augments activation induced T cell death by upregulation of Fas ( CD95/ APO-1) and Fas ligand expression. Cytokine. 1999; 11 (10)6:736 - 743
    21. Zella D, Barabitskaja O, Casareto L, et al. Recombinant IFN-α(2b) increases the expression of apoptosis receptor CD95 and chemokine receptors CCR1 and CCR3 in monocytoid cells. J Immunol. 1999; 163:3169 - 3175
    22. Sedger L, Shows D, Blanton R, et al. IFN-γ mediates a novel antiviral activity through dynamic modulation of TRAIL and TRAIL receptor expression. J Immunol. 1999; 163:920 - 926
    23. Gong B, Almasan A. Apo2 ligand/ TNF-related apoptosis inducing ligand and death receptor 5 mediate the apoptotic signaling induced by ionizing radiation in leukemic cessl. Cancer Res.2000; 60:5754 - 5760
    24. Mamta C, Douglas W, Ernest C, et al. Preferential induction of apoptosis by interferon (IFN)-β compared with IFN-α_2 xorrelation with TRAIL/ Apo2L induction in melanoma cell lines. Clin Cancer Res.2001; 7: 1821-1831
    25. Peter K, Andrew R, Joseph R, et al. Response of hairy cells to IFN-α involves induction of apoptosis through autocrine TNF-α and protection by adhesion. Blood.2002; 100: 647-653
    26. Jonathan I, Paul S, Paul P, et al. Inhibition of tumorigenicity and metastasis of human bladder cancer growing in athymic mice by interferon-13 gene therapy results partially from various antiangiogenic effects including endothelial cell apoptosis. Clin Cancer Res.2002; 8: 1258-1270
    27. Stout AJ, Gresser I, Thompson WD. Inhibition of wound healing in mice by local interferon alpha/beta injection. Int J Exp Pathol. 1993, 74(1): 79-85
    28. Qin H, Jason D, Alan W, et al. Transcriptional suppression of matrix metalloproteinase-2 gene expression in human astroglioma cells by TNF-α and IFN-γ. J Immunol. 1998; 161: 6664-6673
    29. Ma Z, Qin H, Etty N, et al. Transcriptional suppression of matrix metalloproteinase-9 gene expression by IFN-γ, and IFN-β: critical role of STAT-1α. J Immunol.2001; 167: 5150 - 5159
    30.李放,王秋娟,高文青.家蚕细胞基因工程人IFN-α对小鼠的免疫调节作用.中国现代应用药学杂志.1999,16(5):31-34
    31.钱绩虎,邵荣标,丁昌慧,等.IFN-α对人体液免疫功能调节作用的实验研究.南通医学院学报.1999;19(2):164-165
    32. Saily M, Koistenen P, Soppi E, et al. Effect of interferon alpha on immunoglobulin production by peripheral blood mononuclear cells in multiple milkman[J]. Eur J Haematol. 1996; 57(2): 171-173
    33.戴振声,陈勤奋,谢弘,等.γ-IFN诱导Jurkat细胞表达B7.1/CD80、B7.2/CD86分子.中国生化药物杂志.2001;22(6):287-289
    38. Raab-Traub N. Epstein-barr virus in the Pathogenesis of NPC.Semin.Cancer Biol.2002; 12, 431-441.
    39. Lo Ak, Huang DP, Lo KW, et al.Phenotypic alterations induced by the Hong Kong prevalent Epstein-Barr virus-encoded LMP1 variant(2117-LMP1) in nasopharyngeal epithelial cells.Int.J Cancer. 2004; 109:919-925.
    40.Wei MX, De Turenne-Tessier M, Decaussin G, et al. Establishment of a monkey kidney epithelial cell line with the BARFl open reading frame from Epstein-Barr virus. Oncogene. 1997;14:3073-3081.
    41. Lo YM,Chan LY,Chan AT, et al. Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal Carcinoma.Cancer Res.1999;59:5452-5455.
    42. Lo YM,Chan AT,Chan LY, et al. Molecular prognostication of Nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr Virus DNA.Cancer Res.2000;60:6878-6881.
    43.Chan AT,Lo YM,Zee B, et al. Plasma Epstein Barr Virus DNA and residual disease after radiotherpy for Undifferentiated nasopharyngeal carcinaomaJ Natl.Cancer Inst. 2000;94:1614-1619.
    44. Feng WH,Westphal E,Mauser A, et al. Use of adenovirus vectors expressing Epstein- Barr virus (EBV) immediate early protein BZLF1or BRLF1 to treat EBV-positive tumors. J Virol.2002;76:10951 -10959.
    45. Li XP, Li G, Peng Y, et al. Suppression of Epstein-Barr virus-encoded latent membrane protein-1 by RNA interference inhibits the metastatic potential of nasopharyngeal carcinoma cells. Biochem Biophys Res Commun. 2004 Feb 27;315(1):212-8.
    46. Li JH,Chia M,Shi W. et al. Tumor-Targeted gene therpy for nasopharyngeal carcinoma.CancerRes.2002;62:171-178.
    47. XP Li, Christine Y.S. Li, XH Li, et al. Inhibition of Human Nasopharyngeal Carcinoma Growth and Metastasis in Mice by AAV Mediated Expression of Human Endostatin Molecular Cancer Therapeutics. 2006;5(5):1290-1298
    48. Hui AB, Cheung ST, Fong Y, et al. Characterization of a new EBV-associated nasopharyngeal carcinoma cell line. Cancer Genet Cytogenet, 1998;101(2):83-88.
    49. Cheung ST, Huang DP, Hui AB, et al. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein-Barr virus. Int J Cancer.1999;83(1):121-126.
    50. Ogasawara Y, Urabe M, Ozawa K. The use of heterologous promoters for adeno-associated virus (AAV) protein expression in AAV vector production. Microbiol Immunol. 1998; 42 (3): 177-185.
    51. Grimm D, Kem A, Rittner K, et al. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum Gene Ther. 1998; 9: 2745-2760.
    52. Maustshita T, Elliger S, Elliger C, et al. Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther. 1998; 7: 938-945.
    53. Choi VW, McCarty DM, Samulski RJ. AAV hybrid Serotypes: Improved vectors for gene delivery. Curr Gene Ther. 2005; 5(3): 299-310.
    54. During MJ, Samulski RJ, Elsworth JD, et al. In vivo expression of therapeutic human genes for dopamine production in the caudates of MPTP-treated Monkeys using an AAV vectors.Gene Ther. 1998; 5: 820-7.
    55. Sony S, Morgan M, Ellis J, et al. Sustained secretion of human alpha-Ⅰ antitrypsin from murine muscle transduced with adeno-associated virus vectors. Proc Natl Acad Sci USA. 1998; 95: 14384-8.
    56. Ye X, Rivera VM, Zoltick P, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science. 1999; 283: 88-91.
    57.吴小兵,董小岩,伍志坚等.一种快速高效分离和纯化重组腺相关病毒伴随病毒载体的方法.科学通报.2000;45(19):2071-2075.
    58. Takimoto T, Ishikawa S, Umeda R, et al. Effects of human interferon on cell proliferation and antigens induced by Epstein-Barr virus in epithelial hybrid cells derived from nasopharyngeal carcinoma. Otolaryngol Head Neck Surg. 1985; 93(4): 500-4.
    59.胡长坤,曹世龙 人白细胞干扰素对鼻咽癌上皮样细胞株细胞周期进程的影响 上海医科大学学报.1994:21(2):81-83
    60. Lam PK, To EW, Chan ES, et al. In vitro inhibition of head and neck cancer-cell growth by human recombinant interferon-alpha and 13-cis retinoic acid. Br J Biomed Sci. 2001; 58(4): 226-9
    61. Hu LF, Chen F, Zheng X, et al. Clonability and tumorigenicity of human epithelial cells expressing the EBV encoded membrane protein LMP1. Oncogene.1993; 8: 1575-83.
    62. Laherty CD,Hu HM,Opipari AW,et al.The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear kappa B. J Bio Chem.1992;267:24157-24160.
    63. Liu FF. Novel gene therapy approach for nasopharyngeal carcinoma. Semin Cancer Biol. 2002;12(6):505-15.
    64. McCawley LJ,Matrisian LM. Matrix metalloproteinases:multifunction contributors to tumor progression.Mol Med,Today.2000;6:149-156.
    65. Von Marschall Z,Scholz A,Cramer T,et al. Effects of interferon olpha on vascular endthelial growth factor gene transcription and tumor angiogenesis.J Natl Cancer Lnst. 2003;95:437-48.
    66. Zhang JF,Hu C,Geng Y, et al.Treatment of a human breast cancer xenograft with an adenovirus vector containing an interferon gene results in rapid regression due to viral oncolysis and gene therpy.Proc Natl Acad Sci. 1996;93:4513-4518.
    67. Demers GW, Johnson DE,Machemer T,et al.Tumor growth inhibition by interferon-alpha using PEGylated protein or adenovirus gene transfer with constitutive or regulated expression. Mol Ther.2002;6:50-56.
    68. C.M.Iqbal Ahmed Duane E,Johnson G,et al Interferon a2b gene delivery using adenoviral adenoviral vector causes inhibition of tumor growth in xenograft models from a variety of cancers.Cancer Gene Ther, 2001;8:788-795.
    69. Ohashi M,Yoshida K,Kushida M,et al Adenovirus mediated interferon a gene transfer induces regional direct cytotoxicity and possible systemic immunity against pancreatic cancer.Bri J Cancer.2005;93:441-449.
    70. Ogasawara Y, Urabe M, Ozawa K. The use of heterologous promoters for adeno-associated virus (AAV) protein expression in AAV vector production. Microbiol Immunol. 1998;42(3):177-185.
    71. Michel U, Malik I, Ebert S, et al. Long-term in vivo and in vitro AAV-2-mediated RNA interference in rat retinal ganglion cells and cultured primary neurons. Biochem Biophys Res Commun. 2005;326(2): 307-12.
    72. Xiang-Ping Li, Christine Y.S. Li, Xiaohua Li, et al. Inhibition of Human Nasopharyngeal Carcinoma Growth and Metastasis in Mice by AAV Mediated Expression of Human Endostatin. Mol Cancer Ther. 2006; 5 (5): 1290-8.
    73. Summerford C,Samulski RJ.Membrane-associated heparin sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions.Hum Gene Ther.1998;9:2745-2760.
    74. Grimm D,Zhou SZ,Nakai H,et al.Preclinical in vivo evaluation of pseudotyped adeno-associated virues vectors for liver gene therapy. Blood.2003;102:2412-1419.
    75. Luebke AE,Foster PK,Muller CD,et al.Cochlear function and transgene expression in the Guinea pig cochlea,using adenovirus- and adeno-associated virrus -directed gene transfer. Hum Gene Ther.2001;12:773-781.
    76. Salmmon P,Le Cotonnec JY,Galazka A, et al.Pharmacokinetics and pharmacodymamics of recombinant human interferon-beta in healthy male volunteers.J Interferon Cytokine Res. 1996; 16:759-764.
    77. Suzuki K,Aoki K,Ohnami S,et al.Adenovirus-mediated gene transfer of interferon alpha improves dimethylnitrosamine-induced liver cirrhosis in rat model.Gene Therapy. 2003; 10:765-773.
    78. Maschall ZV,Scholz A,Cramer T,et al.Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis.J Nat Cancer Ins. 2003;95:437-447.
    79. Wang L,Zhao ZT,Qin LX, et al.High-dose and long -term therpy with interferon-alfa inhibits tumor growth and recurrence in nude mice bearing human hepatocellular carcinoma xenografts with high metastatic potential.Hepatology. 2000;32:43-48
    80. Santodonato L,Ferrantini M,Palombo,F et al.Antitumor activity of recombinant adeno viral vector expressing murine IFN-a in mice injected with metastatic IFN-resistant tumor cells.Cancer gene Therapy.2001;8:63-72.
    81. Kobayashi N,Kuramoto T,Chen s,et al.Therpeutic effect of introvenous interferon gene delivery with naked plasmid DNA in murine metastasis models.Mol Ther. 2002;6:737-744.
    1. Psyrri A, Fountzilas G. Advances in the treatment of locally advanced non-nasopharyngeal squamous cell carcinoma of the head and neck region. Med Oncol. 2006;23(1):1-15.
    2. Caponigro F, Ionna F, Cornelia G. New cytotoxic and molecular-targeted th erapies of head and neck tumors.Curr Opin Oncol. 2004 May;16(3):225-30.
    3. Kikuchi K, Kusama K, Sano M, et al.Vascular endothelial growth factor an d dendritic cells in human squamous cell carcinoma of the oral cavity. Anti cancer Res. 2006 May-Jun;26(3A): 1833-48.
    4. Modjtahedi H. Molecular therapy of head and neck cancer.Cancer Metastasi s Rev. 2005 Jan;24(1): 129-46.
    5. Norris JS, Norris KL, Holman DH, et al.The present and future for gene a nd viral therapy of directly accessible prostate and squamous cell cancers o f the head and neck.Future Oncol. 2005 Feb;1(1):115-23.
    6. Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, 1 ung, and head and neck cancers.Oncology (Williston Park). 2006 Apr;20(5 Suppl 2): 15-25
    7. Rhee J, Oishi K, Garey J, Kim E. Management of rash and other toxicities in patients treated with epidermal growth factor receptor-targeted agents. C lin Colorectal Cancer. 2005 Nov;5 Suppl 2:S101-60.
    8. Kim ES, Vokes EE, Kies MS. Semin Oncol. Cetuximab in cancers of the 1 ung and head & neck.2004 Feb;31(1 Suppl 1):61-7.
    9. Caponigro F, Formato R, Caraglia M, et al. Monoclonal antibodies targetin g epidermal growth factor receptor and vascular endothelial growth factor w ith a focus on head and neck tumors. Curr Opin Oncol. 2005 May;17(3):21 2-7.
    10. Burtness B.The role of cetuximab in the treatment of squamous cell cancer of the head and neck.Expert Opin Biol Ther. 2005 Aug;5(8): 1085-93.
    11. Li XP, Li CY, Li X, et al. Inhibition of human nasopharyngeal carcinoma growth and metastasis in mice by adenovirus-associated virus-mediated expr ession of human endostatin. Mol Cancer Ther. 2006; 5(5): 1290-1298.
    12. Passey S. Endostatin gene therapy inhibits tumour growth. Lancet Oncol. 200 6 Mar; 7(3): 19
    13. Goodman L. Persistence—luck—Avastin. J Clin Invest, 2004, 113(7): 934
    14. Soo R, Putti T, Tao Q, et al. Overexpression of cyclooxygenase-2 in nasop haryngeal carcinoma and association with epidermal growth factor receptor expression. Arch Otolaryngol Head Neck Surg. 2005 Feb; 131(2): 147-52.
    15. Chen WC, McBride WH, Chen SM, et al. Prediction of poor survival by cyclooxygenase-2 in patients with T4 nasopharyngeal cancer treated by radi ation therapy: clinical and in vitro studies. Head Neck. 2005 Jun; 27(6): 503-12.
    16. Peng JP, Chang HC, Hwang CF, et al. Overexpression of cyclooxygenase-2 in nasopharyngeal carcinoma and association with lymph node metastasis. Oral Oncol. 2005 Oct; 41(9): 903-8.
    17. Yang CH, Kies MS, Glisson B, et al. A phase Ⅱ study of lonafarnib (SCH 66336) in patients with chenm-refractory advanced head and neck squamous cell carcinoma (HNSCC). J Clin Oncol, 2005, 23: 5565
    18. Maurizio C I, Yong L, Paul L, et al. Efficient generation of cytotoxic T 1 ymphocytes against cervical cancer cells by adeno-associated virus/human pa pillomavirus type 16 E7 antigen gene transduction into dendritic cells. Eur. J. Immunol, 2002, 32: 30-38
    19. Pan Y, Zhang J, Zhou L, et al. In vitro anti-tumor immune response induc ed by dendritic cells transfected with EBV-LMP2 recombinant adenovirus. Biochem Biophys Res Commun. 2006 Sep 1; 347(3): 551-7.
    20. Colgrove J. The ethics and politics of compulsory HPV vaccination. N Eng 1 J Med. 2006 Dec 7; 355(23): 2389-91
    21.韩德民,黄志刚,张伟,等.重组人p53腺病毒注射液治疗喉癌的Ⅰ期临床试验及追踪观察.中华医学杂志,2003;84(23):17-20
    22.张珊文,肖绍文,刘长清,等.重组人p53腺病毒注射液联合放射线治疗头颈鳞癌的Ⅱ期临床试验.中华医学杂志,2003;84(23):11-16
    23.陈传本,潘建基,徐鹭英,等.重组人p53腺病毒注射液结合放射治疗鼻咽癌Ⅱ期临床试验观察.中华医学杂志,2003;84(23):21-23
    24. Karagiannis TC, El-Osta A. RNA interference and potential therapeutic appl ications of short interfering RNAs. Cancer Gene Ther. 2005 Oct; 12(10): 787- 95.
    25. Cejka D, Losert D, Wacheck V. Short interfering RNA (siRNA): tool or th erapeutic? Clin Sci (Lond). 2006 Jan; 110(1): 47-58
    26. Li XP, Liu X, Li CY, Ding Y, et al. Recombinant adeno-associated virus mediated RNA interference inhibits metastasis of nasopharyngeal cancer cells in vivo and in vitro by suppression of Epstein-Barr virus encoded LMP-1. Int J Oncol. 2006 Sep; 29(3): 595-603.
    27.唐瑶云,赵素萍,徐婧,等.FCU/5-氟胞嘧啶自杀基因前体药物系统联合放射治疗鼻咽癌的实验研究.中华病理学杂志,2006,35(8):483-487.
    28. Smyth MJ, Cretney E, Kershaw MH, Hayakawa Y. Cytokines in cancer im munity and immunotherapy. Immunol Rev. 2004 Dec; 202: 275-93
    29. Post DE, Shim H, Toussaint-Smith E, et al. Cancer scene inw~stigation: how a cold virus became a tumor killer. Future Oncol. 2005 Apr; 1(2): 247-58.
    30. Mathis JM, Stoff-Khalili MA, Curiel DT. Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene. 2005 Nov 21; 24(52): 7775-91.
    31. Chemajovsky Y, Layward L, Lemoine N. Fighting cancer with oncolytic vir uses. BMJ. 2006 Jan 21; 332(7534): 170-2.
    32. Vokes EE, Chu E. Anti-EGFR therapies: clinical experience in colorectal, lung, and head and neck cancers. Ontology. 2006; 20(5): 15-25.