嘉陵江流域不同尺度水土保持减沙效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结合国家“九五”和“十五”三峡工程泥沙问题攻关课题—“嘉陵江典型小流域水土保持减沙效果研究”课题,以嘉陵江流域为研究区,运用基础理论知识和最新研究进展成果,以现场调研、资料分析、经验公式计算和模型验证等手段,通过多种水土保持减沙研究方法系统辨析了嘉陵江流域不同水土保持单项措施,不同水土保持组合措施和不同尺度的流域水土保持减沙效果。
     通过对嘉陵江流域内治理的胖土地沟与未治理的白米沟流域进行比较,在降雨条件相同时,径流量与断面平均含沙量、时段径流量与输沙量关系,显示了治理流域径流量与含沙量(输沙量)关系较为平稳,波动不大、且含沙量小。未治理流域两者关系波动较大,且有随径流量增大含沙量(输沙量)增大趋势。在一次降雨条件下,水保综合措施减沙效果对流域出口断面的水、沙影响明显。
     通过对嘉陵江中尺度流域的水土保持措施减沙研究,得出:蟠龙河流域经过综合治理后,减沙总量以农业+工程措施、生物+工程措施所占比重相当,生物+农业措施所占比重较小。单位面积减沙效益最高的则是生物+农业措施的组合。蒙溪河流域三类水保治理措施组合中,农业+生物措施居三种水保措施组合减沙量之首。同时农业+生物措施单位面积减沙率也大于其它两种水保治理措施组合,其减沙效果十分显著。根据流域降雨产沙模型计算结果看,90年代以来,流域水保治理措施实施以后减沙效益明显。而且,随着水土保持措施的不断深入实施,越往后期,减沙效益越明显。研究表明李子溪流域后期水土流失状况较前期有了明显好转。
     通过对嘉陵江大尺度流域的水土保持措施减沙研究,得出:三峡入库沙量减少主要是由于嘉陵江来沙量减少所致。
     根据水保分析法计算,嘉陵江流域水保治理后(1989-1998)干支流各测站年平均减沙量占治理前的百分数在33.8%-62.7%之间,且由于水土保持措施将发挥越来越大的减蚀作用。
     单从1989-1998年减沙幅度(输沙量减小幅度为66.2%)来看,嘉陵江减沙效果相当突出。分析流域来水来沙的变化、降雨落区分布、水库工程的拦沙、人为因素(如采沙)的影响等几个因素的减沙影响量并将其影响剔除后,流域水土保持措施发挥的减水减沙效益为:嘉陵江流域水土保持措施的减水约在1%~3%之间,减沙效益约在10%~25%之间。
     在RULSE方程基础上改进的流域年输沙量计算新方法,可以对流域的年泥沙输出量进行较准确的计算和预测。嘉陵江流域的流域输沙量模拟值与实测值波动趋势一致,且相对误差都控制在25%以内,对于条件复杂的大型流域而言,模拟效果已比较理想。
     川中丘陵区水保法、水文法对河流同一测站减沙计算成果归纳及对比看出,同一河流测站水文法研究的河流减沙量均大于水保法研究的河流减沙量;并且有水文法的减沙幅度基本是干流大于支流,而水保法的减沙幅度基本是支流大于干流。
     嘉陵江流域“长治”工程(水土保持措施)对不同等级流域河流的减沙幅度,1989~1996年平均为4.0%~17.2%;1996水平年为7.5%~31.06%。水土保持治理对河流的减沙幅度(比重)随河流流域面积的增大而减小。
     研究表明各单项水保措施蓄水保土作用的影响因素非常复杂,各主要影响因子(降雨、植被、土壤、坡度等)在不同条件下的作用千差万别,水保措施减蚀作用有很大不确定性。所以,在不同的治理流域,水保措施综合治理导致流域下游出口断面减水减沙效益的波动范围较大。
This paper is based on the research subject of "9th five-year and 10th five-year Key Research Programs "sediment reduction of soil and water conservation in typical small watershed of Jialingjiang River" to systematically analyze sediment reduction effects of single soil conservation measures, different combination of conservation measures and different scale watersheds by exercising basic knowledge and most advanced recent research results and by means of site investigation, model simulation, data analysis and many kinds of research methodology of sediment reduction of soil and water conservation.
     Through the comparison between managemed Pangdigou baisn and unmanaged Baimigou basin in the Jialingjiang baisn,by the way of the relationship of the average runoff and the sediment quantity on profile,and time runoff and sediment with the same rainfall conditions, it's showing that relationship of runoff and sediment at the managed watershed is more stable , less volatile, and small sediment; while the relationship of unmanaged Watershed is not volatile, and there is increasing sediment with runoff increasing trend. Under one rain condition, it's markedly the effect of the Soil and Water Conservation comprehensive measures to reduce of water and sand exporting cross-section of the river basin.
     On the research of the soil and water conservation measures to reduce sediment at the middle scale of the Jialingjiang baisn, it's drawn that in the Panlong River with comprehensive management, the total amount of reduced sand is in the combination between engineering and agricultural measures and the combination between biological and engineering, but the combination between agricultural and agricultural measures for a smaller proportion. Per unit area by the sand-effective is the combination between the biological and agricultural measures. Among the three combinations in the Mengxihe basin, the biological and agricultural is the best. At the same time this combination to reduce the sand rate at per unit area is better than the other two and the effect is very significant. According results of the rainfall-sediment model, the reducing effects of soil and water have gained apparent benefits after management measures since the 90's. Moreover, with the deepening of soil and water conservation measures, more to the latter part of the sand is going with the more obvious benefits. Research shows that the combination between biological and agricultural has significantly better than the other two.
     On the research of soil and water conservation measures to reduce sediment in the large-scale Jialingjiang Basin, it's conclusion that: reducing the amount of sand of the Three Gorges storage is mainly due to decreasing sediment.
     According to the analysis of soil and water conservation method, tributary stations was taken to the average percentage accounted for 33.8%-62.7% in the Jialingjiang basin after management compared to former from 1989 to 1998, and the soil and water conservation measures will play an increasing role in reducing erosion.
     Improved method on the basis of RULSE to calculate annal sediment is a new way that can provide more accurate calculations and forecasts. Jialingjiang basin basin fluctuations of simulated data and measured data has the same trend, and the relative error is less than 15% in control, so the simulation results have been satisfactory on the conditions for large-scale complex basin.
     At the Hilly region in Sichuan taking the method of soil and water conservation and hydrologicalmethods to analyse the same station.we can conclusion that results of hydrological way are greater than the other way; And the main stream is greater than tributary by the hydrological way,but it's opposite by the method of water and soil conservation.
     According to Reducing amount of the different grades river range in the Jialing baisn caused by "Changzhi" project (soil and water conservation measures), it's an average of 4.0 percent to 17.2 percent from 1989 to 1996; for the year 1996 is 7.5 percent to 31.06 percent. Effect of Soil and water conservation is becoming small with the baisn's area increaseing.
     Research shows that the impact of individual water and soil is very complex, the role of the major factors (rainfall, vegetation, soil, slope, etc.), has huge diversity in different conditions, so the effect is uncertainly. Therefore, in a different managemed baisn, the sediment reduction effect caused by soil and water conservation measures fluctuated the larger scope.
引文
[1]包为民.基于径流系数的简化产流模型及应用[J].人民黄河,2006,(28)6:27-28.
    [2]蔡哈特.水文尺度问题与水文模型探究[J].广东科技,2007,(173):265-267.
    [3]蔡强国.黄土高原小流域侵蚀产沙过程与模拟[M].北京:科学出版社,1998:8.
    [4]崔凌峰.榆林地区无定河流域一期重点治理的成效与经验[J].中国水土保持,1995,(10):37-39.
    [5]胡春宏.流域泥沙资源优化配置关键技术的探讨[J].水利学报,2005,36(12):1404-1213.
    [6]黄河水利委员会水土保持局.黄河流域水土保持研究[M].郑州:黄河水利出版社.1997:56-58.
    [7]黄奕龙,傅伯杰,陈利顶.黄土高原水土保持建设的环境效应[J].水土保持学报,2003,(01):15-19.
    [8]国务院三峡工程建设委员会办公室泥沙课题专家组[M].长江三峡工程泥沙问题研究.北京:知识产权出版社,2002:140-145.
    [9]简碧梧,美国水土保持概况[M].他山之石(水土保持系列1),1993:1-3.
    [10]江忠善.纸坊沟流域水土流失综合治理减沙效益评价[J].泥沙研究,2004,20(5):47-51.
    [11]焦菊英,王万忠,李靖.黄土丘陵沟壑区水土保持人工林减蚀效应[J].研究林业科学,2002,38(5):87-95.
    [12]雷孝章,曹叔尤,戴华龙.川中丘陵区“长治”工程的减沙效益研究[J].泥沙研究,2003,(1):52-58.
    [13]李国英.深入研究黄土高原土壤侵蚀规律[J].黄河报,2006,12(4):15-19.
    [14]李清河.黄土区小流域土壤侵蚀系统模拟的研究.北京林业大学博士学位论文,1998,2-4.
    [15]林秉南.关于黄河治理的一些看法[J].科技导报,2003,(6):3-7.
    [16]刘斌,冉大川,罗全华.河龙区间晋西北地区水土保持措施典型调查[J].人民黄河,1999,21(9):39-42.
    [17]刘洪波,菅瑞卿,郑合英.黄丘一区水平梯田田坎侧坡的稳定性研究[J].中国水土保持,2005,(11):39-41.
    [18]刘孝盈等.美国田纳西河水土保持减沙效果分析[J].水利学报,2005,36(7):840-845.
    [19]陆中臣,陈劭锋,陈浩.黄土高原侵蚀产沙的地貌临界[J].水土保持研究,2006(13)1:1-7.
    [20]马炼,张明波,郭海晋.嘉陵江流域水保治理前后沿程水沙变化研究[J].水文学报,2002,(22)1:27-26.
    [21]马志尊.从海河流域水土流失现状谈[J].海河水利,2002,42(13):21-24.
    [22]牛银栓.黄土高原水土流失诸因素分析及治理展望[J].水土保持研究,2001,8(1):85-88.
    [23]钱意颖,徐明权.黄河中游河口镇至潼关地区水利水土保持工程对洪水的影响[M]. 郑州:黄河水利出版社,2001,305-307.
    [24]钱正英.中国可持续发展水资源战略研究综合报告.2000,22-23.
    [25]冉大川.河龙区间水土保持措施减水减沙效果分析[M].郑州:黄河水利出版社,2002,198-121.
    [26]山西省水利科学研究所河渠研究室等.水库泥沙[M].水利电力出版社,1979,55-59.
    [27]陕西省水土保持局.水土保持林草措施[M].北京:农业出版社,1979,97-100.
    [28]史培军.土壤侵蚀过程与模型研究[J].资源科学,1999,21(5):9-18.
    [29]水利部长江委水文测验研究所.三峡水库来水来沙条件分析研究论文集[M].武汉:湖北科学技术出版社,1992,165-174.
    [30]四川省琼江流域水土流失综合调查报告.四川省水土保持,1983,10-15.
    [31]孙立达.水土保持林体系综合效益研究与评价[M].中国科学技术出版社,1995,75-79.
    [32]孙立达等.小流域综合治理理论与实践[M].北京:中国科学技术出版社,1992,39-41.
    [33]汤立群等.大中流域长系列径流泥沙模拟[J],水利学报,1997,(6):68-72.
    [34]唐克丽.黄河流域的侵蚀与径流泥沙变化[M].北京:中国科学技术出版社,1993,23-27.
    [35]王宏,张智忠.渭河主要支流产流产沙规律水保措施减水减沙效益[J].水土保持通报,1995,15(4):56-59.
    [36]王礼先.长江中上游水土保持及环境保护[M].北京:中国林业出版社,1995,12-15.
    [37]王润,姜彤,Lorenz King.欧洲莱茵河流域管理行动计划评述[J].水科学进展,2000,11(2):221-226.
    [38]王万忠,焦菊英.黄土高原水土保持减沙效益预测[M].郑州:黄河水利出版社,2002,26-29.
    [39]王文楷,王超,刘爱荣.黄河水患灾害与生态环境建设[J].中国减灾,2000,15(5):29-32.
    [40]王向东.土地利用的变化对流域产流产沙及环境的影响和人工神经网络技术在流域产流产沙中的应用.中国水利水电科学研究院博士学位论文,1999,41-45.
    [41]王占礼,黄新会,牛振华.国内主要流域侵蚀产沙模型评述[J].水土保持研究,2004,11(4):28-33.
    [42]吴长文.林地坡面的水动力学特性及其阻延地表径流的研究[J].水土保持学报,1995,9(2):65-68.
    [43]吴发启,赵晓光,刘秉正.黄土高原南部坡耕地土壤侵蚀预报[J].土壤侵蚀与水土保持学报,1998,4(2):72-76.
    [44]吴钦孝,赵鸿雁,韩冰.黄土丘陵区草灌植被的减沙效益及其特征[J].草地学报,2003,(01):63-66.
    [45]席承藩.长江流域土壤与生态环境建设[M].北京:科学出版社,1994,58-61.
    [46]夏之骅.三十年来美国推行水土保持事业的简评.他山之石(水土保持系列1),1993,1-4.
    [47]徐建华.黄土高原产流产沙机制及水土保持措施对水资和泥沙影响的机理研究[M]. 黄河水利出版社,2005,26-29.
    [48]徐乾清.对未来防洪减灾形势和对策的一些思考[J].水科学进展,1999,10(3):235-241.
    [49]徐学选,崔小琳,穆兴民.黄土高原水土保持与水环境[J].水土保持学报,1994,8(4):72-78.
    [50]许炯心.黄河中游多沙粗沙区水土保持减沙的近期趋势及其成因[J].陕西省水土保持,2004,(11):14-17.
    [51]肖培青,姚文艺.WEPP模型的侵蚀模块理论基础[J].人民黄河,2005,27(6):38-50.
    [52]杨艳生.数值分析和土壤侵蚀研究[M].南京:东南大学出版社,1992,89-90.
    [53]姚文艺,丁文峰等.坡沟系统侵蚀产沙特征模拟试验研究[J].农业工程学报,2006,22(3):10-14.
    [54]袁希平,雷廷武.水土保持措施及其减水减沙效益分析[J].农业工程学报,2004,20(2):296-300.
    [55]张经济等.无定河流域水沙变化现状、成因及发展趋势的研究[M].黄河水利出版社,1999,393-398.
    [56]张胜利等.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社,1994,45-48.
    [57]章文波,刘宝元.基于GIS的中国土壤侵蚀预报信息系统[J].水土保持学报,2003,17(2):89-92.
    [58]赵银岐.水土保持对流域产沙量的影响[J].水科学与工程技术,2005,(3):41-43.
    [59]赵正红.长江上游土石山区小流域水土资源保护与开发利用研究[J].甘肃农业科技,1995,(7):18-20.
    [60]周建军.关于三峡水库入库泥沙条件的讨论[J].水力发电学报,2005,24(1):16-23.
    [61]中国水土保持学会.山区可持续发展理论与实践[M].北京:中国林业出版社,1997,74-78.
    [62]中国水土保持学会.水土保持持续发展.北京:中国林业出版社,1995,25-29.
    [63]中国土木工程学会.中国土木工程学会土木工程可持续发展指南.北京:中国建筑工业出版社,1999,33-39.
    [64]中华人民共和国国标.水土保持综合治理-效益计算方法.国家技术监督局,1996,15-17.
    [65]中美农业科技合作1986年访美技术报告(水土流失控制部分),国际泥沙研究培训中心,1986.
    [66]ANDERSON,H.W.Rain-snow flood sources meteorologically defined.(Abstract)[J].Bull,1958,39(3):174-175.
    [67]B.B.Ross.Water quality improvement resulting from continuous no-tillage prevention[J].Final report of the Department of the biological systems engineering.2001,8(3):12-17.
    [68]Bayer,L.D.How serious is soil erosion?[M]Proceedings of the soil sciences Society of America.1950:1-5.
    [69]Brierley,G.J.,Cohe,T.,Fryirs,K.and Brooks,A..Post-European changes to the fluvial geomorphology of Bega Catchment[M]. Australia: implications for river ecology. Freshwater Biology,1999:45-48.
    
    [70] C.S. Howard. Suspended Sediment in the Colorado River, USGS, 1947:160-163.
    [71] CROFT, A. R. Some sediment phenomena along the Wasatch mountain front[J].Geophys. Res. 1962, 67(4):1511-1524.
    [72] DJ Eldridge, J Rothon. Runoff and Sediment Yield From a Semi-Arid Woodland in Eastern Australia[J]. Rangeland Journal, 2002,14 (1) 26-39.
    [73] Donald G. Frickel, Hydrology and Effects of Conservation Structures,WillowCreekBasin ValleyCounty[J]. USGSWater-Supply Paper, 1972,1532-1529.
    [74] Edward L. Noble, Sediment Reduction through Watershed Rehabilitation [M].U. S. Department of Agriculture Miscellaneous publication, 1997, 17(1)89-91.
    [75] Erosion, Sedimentation and Flooding in river Kosi National Institute of Hydrology, Jal Vigyal Bhavan, Roorkee,1993,247-249.
    [76] Eugene C. Buie, A History of Water Resource Activities of the United States Department of Agriculture, 1979, 7-8.
    [77] G. N. Zaimes, R. C. Schultz and T. M. Isenhart, Stream Bank Erosion Adjacent to Riparian Forest Buffers, Row-crop Fields, and Continuously-grazed Pastures along Bear Creek in Central Iowa, Journal of Soil and Water Conservation, 2004, 59(1):25-26.
    [78] George Villidis, Matt C Smith, Prioritizing Wetland Restoration for Sediment Yield Reduction,2003, 3(2):301-312.
    [79] H. Hengsdijk, G.W. meijerink, M. E. Mosugu, Modelling the effect of three soil and water conservation practices in Tigray, Ethiopia, Agriculture Ecosystems and Environment,2004,19(7):1462-1464.
    [80] H. L. TELLER, Impact of forest land use on floods, meeting of the Working Party on Watershed Management (European Forestry Commission) , 1967, 1(3):14-16.
    [81] HILL, L. W. Forest plantation development influences streamflow. Proc. Soc.Amer. For., Washington, D. C. p. 168-171 Hydrology, Transactions of the ASAE,1977,20 (6) :77-79.
    [82] INHART, K. G., A. R. ESCHNER and G. R. TRIMBLE, Effect on streamflow of four forest practices in the mountains of West Virginia. U. S. Forest Service Res.1963,15 (4) :12-15.
    [83] James C. Mundorff, Fluvial Sediment in Kiowa Creek Basin Colorado, USGS Water-supply Paper, 1798, 29-31.
    [84] James Meloneas, A Citizen's Guide to Erosion and Sediment Control in Maryland, The Chesapeake Bay Foundation, 2004, 29 (8) :158-159.
    [85] Jerry M. Bernard and Thomas A. Iivari SEDIMENT DAMAGES AND RECENT TRENDS IN THE UNITED STATES, International Journalof Sediment Research, 2004, 77-79.
    [86] Jiongxin Xu, Land Accretion of the Yellow River Delta as influenced by Drainage Basin Factors, Series A, Physical Geography, Issue 1, 2006,88-90.
    [87] John Cairns, Jr. Rehabilitating damaged ecosystem vol.1, CRC press US Florida,1988, 46-47.
    [88] LEOPOLD L. B. and T. MADDOCK. The flood control controversy. New York. Roland Press,1954,278-279.
    [89] Littke, J. P., and Hallberg, G. R., Big Spring basin water-quality monitoring program; design and implementation: Iowa Department of Natural Resources-Geological Survey Bureau, Open-File Report, 1991, 91-101.
    [90] Lloyd A. Reed, Effectiveness of Sediment-Control Techniques Used During Highway Construction in Central Pennsylvania, USGS, W-S P 2054, 1978, 56-58.
    [91] Louis M. Glymph, Jr., Relation of Sedimentation to Accelerated Erosion in the Missouri River Basin, U.S. Department of Agriculture, SCS-TP-102,Jul,1951,12-13.
    [92] Lu Guanghui, Assessment of sediment and nutrient transport in reservoir watershed. Proc. Int'l. Symp. on Soil and Water Conservation and Land Management at Coarse Sediment Original Area of the Yellow River, 1994, 13-17.
    [93] Lu Guanghui, Assessment of sediment delivery ratio in Loess Plateau, China.Proc. IAG Regional Conf. On Geomorphology (RIO 99) Rio de Janeiro, Brazil, 1999,17-22.
    [94] Lu Guanghui, Flood control in Taiwan. LEISA Magazine on Low External Input and Sustainable Agriculture,2003,19,(2):29-31.
    [95] Luk, S. -H., Abrahams, A. D. and Parsons, A. J.. Sediment sources and sediment transport by rill flow and interrill flow on a semi-arid piedmont slope,southern Arizona. Catena,1993, (20)93-111.
    [96] Luna B. Leopold, Land use and sediment yield, Washington D. C. Government Printing Office, 1999, 2(20)40-42.
    [97] Merten, Gustavo, Effect of Sediment Load on Soil Detachment and Deposition in Rills, Soil Science Society of America Journal, 2000,69-72.
    [98] P. H Montgomery, Erosion and Related Land Use Conditions on the Lloyd Shoals Reservoir Watershed, Georgia,U. S. Department of Agriculture,1940 ,24-26.
    [99] Paul A. Oliver, Some Economic Considerations in River Control Work,Proceedings of the 2nd FISC ( Federal Inter-Agency Sedimentation Conference) ,1963,442-445.
    [100] PhilippeGourbesvile,Soilerosion in the vineyards of Champagne, Human Impacton Erosion and Sedimentation (Proceedings of Rabat Symposium S6,Aprill997) ,1997, (245):22-25.
    [101] R. G. Spomer, K. E. Saxton, and H. G. Heinemann, Water yield and erosion response to land management, Jouirnal of Soil and Water Conservation, 1973,168-171.
    [102] Reid L M. Sedimentation as an important environment influence on Dominican Republic reefs, Bulletin of Marine Science, 1981, 69(2):805-818.
    [103] Russ T. Brown and William P. Carey, Historical Suspended Sediment Data in the Tennessee and Cumberland River Basins, Aug. , Tenessee Valley Authority,1989,298-301.
    [104] Russell F. Flint, Fluvial sediment in Hocking River Subwatershed (North Branch Hunters Run). Ohio, U.S. Geological Survey Water-Supply Paper, 1972,19-23.
    [105] S. A. Schumm, The disparity between present rates of denudation and orogeny,USGS Professional Paper,1963,454-456.
    [106] ShixiongHu, Zhaoyin Wang, Gang Wang and Xiaoying Liu, "Effects of watershed management on the reduction of sediment and runoff in Jialing River,China" International Journal of Sediment Research,2004, 9-15.
    [107] Soil Conservation Service, A Manual of Conservation of Soil and Water,Agriculture Handbook, No. 61, U.S. Government Priting Off ice, 1954, 141-143.
    [108] South Carolina Department of Health and Environmental control Standard for Storm water Management and Sediment Reduction,2002,72-77.
    [109] Spatial patterns of sediment concentration in the United States.http://websever. cr. usgs. gov/ seidment/conc. frame.html.
    [110] Stanley A. Schumm, the Fluvial System, Wiley-Intercience, New York, 1976,325-327.
    [111] U.S. Department of Agriculture-Soil Conservation Service, Soil Survey of Clayton County, Iowa, 1982,238-240.
    [112] United Nation Environment Programme, The Pollution of Lakes and Reservoirs,Nairobi, UNEP P0 Box 30552 Kenya,1994, 25-29.
    [113] Waters TF. Sediment in streams: sources, biological effects and control.American Fisheries Society, Monograph, 1995, 251-253.
    [114] William G. Hoyt and Walter B. Langbein, Floods, Princeton University Press,1955, 185-187.