环氧真空压力浸渍绝缘树脂的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘是电机可靠运行的保障,绝缘处理技术以及绝缘材料的性能是决定绝缘结构性能的重要因素。真空压力浸渍(V.P.I.)技术是现代最先进的绝缘处理技术,广泛应用于大容量电机的对地主绝缘中。V.P.I.技术包括云母带、V.P.I.树脂、V.P.I.设备和V.P.I.工艺等几大要素,其中V.P.I.树脂作为主绝缘材料的重要组成部分,对V.P.I.绝缘质量和运行的安全可靠性起着决定性的影响,因此开发新型的综合性能优良的V.P.I.树脂是电机技术发展进步的一个重要课题。
     本文以新型脂环族环氧化合物为基体树脂,采用甲基六氢邻苯二甲酸酐为固化剂,乙酰丙酮金属络合物为促进剂,并选择无毒或低毒且挥发性低的反应性硅氧烷化合物为环氧树脂活性稀释剂,在降低环氧树脂粘度的同时,利用硅氧烷的同步水解缩合反应形成长链-Si-O-Si-结构,并结合纳米技术对环氧树脂进行增强增韧改性,系统研究了环氧树脂的固化反应机理,通过对环氧V.P.I.树脂配方工艺的优化,研究了不同组分和含量对环氧树脂固化反应、固化物微观结构以及绝缘性能、耐热性、机械性能等的影响,制备了新型无毒环保的环氧V.P.I.树脂,一方面可以用于大容量电机的主绝缘,另一方面可以用于高温电机如H级绝缘。
     本文研究比较了含有环氧基、氨基或乙烯基的反应性硅氧烷,包括:γ-缩水甘油醚氧丙基甲基二乙氧基硅烷(GPMDS)、β-(3,4环氧环已基)乙基三乙氧基硅烷(ECETES)、γ-缩水甘油醚氧丙基三甲氧基硅(GPTMS)、β-(3,4环氧环已基)乙基三甲氧基硅烷(ECETMS)、γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MAPTMS)、乙烯基三乙氧基硅烷(VTES)和苯胺甲基三乙氧基硅烷(PMTES)对环氧V.P.I.树脂固化反应及固化物性能的影响,结果表明:在乙酰丙酮铝存在情况下,GPMDS的加入能够有效降低环氧树脂的粘度,改善其加工性能,且对固化反应没有明显的影响,固化物表现出良好的绝缘性、耐热性和机械性能。有机硅氧烷对环氧树脂固化反应和固化物性能的影响比较复杂,与其反应性基团(环氧基、乙烯基或氨基)以及烷氧基的结构有密切关系。环氧基和乙烯基硅氧烷对环氧树脂体系的影响主要取决于烷氧基的结构,含有甲氧基的硅氧烷水解缩合反应活性高,在乙酰丙酮铝促进作用下对环氧树脂固化交联反应影响比较大;而含有乙氧基的硅氧烷水解缩合反应活性比较低,对固化反应和固化物性能影响比较小;氨基硅氧烷中的氨基在较低的温度下能够与酸酐固化剂反应生成羧酸,从而促进环氧树脂固化反应,导致体系储存性降低,但对固化物绝缘性能没有不良影响。
     本文系统研究了GPTMS改性环氧树脂(GPTMS-EP)体系中环氧树脂固化与硅氧烷水解缩合同步反应之间的相互影响及对固化物性能的影响,结果表明:GPTMS-EP体系的固化反应和固化物性能与促进剂关系密切,乙酰丙酮铝(Al(acac)3)的促进作用使硅氧烷的水解缩合反应先于环氧树脂的固化反应而发生并影响后者的反应深度,在环氧树脂微观结构中产生相分离,从而导致固化物性能下降;而在乙酰丙酮钕(Nd(acac)3)存在的情况下,GPTMS对环氧树脂固化反应没有明显的影响,GPTMS-EP固化物表现出良好的耐热性、绝缘性和机械性能,Nd(acac)3是更适合于GPTMS-EP体系的潜伏性促进剂。
     本文通过差示扫描量热分析(DSC)和升温红外分析(Heating-FTIR)研究了乙酰丙酮金属络合物对环氧树脂固化反应的促进机理,结果表明,在一定温度下,乙酰丙酮金属络合物与酸酐反应形成过渡化合物,攻击环氧树脂开环从而引发固化反应。本文通过动态DSC方法研究了环氧树脂固化过程,推算了其理论凝胶温度和固化温度,并通过Kissinger、Friedman-Reich-Lev等方法研究了环氧V.P.I.树脂的固化反应动力学,计算了不同V.P.I树脂体系的固化反应参数;结果表明环氧V.P.I.树脂是复杂反应体系,且GPTMS和GPMDS可以降低环氧树脂的凝胶温度和固化反应温度。
     本文在有机硅氧烷(GPMDS)改性的基础上,采用纳米二氧化硅增强增韧环氧V.P.I.树脂,研究了纳米二氧化硅及其表面改性对环氧V.P.I.树脂固化反应、玻璃化转变和介电行为、耐热性能、热机械性能和微观结构等的影响。研究表明:纳米二氧化硅与环氧树脂基体具有良好的相容性,固化物性能取决于纳米二氧化硅的含量及其在环氧树脂基体中的分散情况。未经表面改性的纳米二氧化硅容易团聚,分散困难,在含量不高的情况下(不超过3 wt%)可以提高环氧V.P.I.树脂的强度和韧性,且对环氧树脂的耐热性没有明显的影响,但是由于大量的羟基被吸附在纳米二氧化硅表面而引入环氧V.P.I.树脂中,导致环氧树脂固化物直流电导和介质损耗增加,绝缘性能下降;而经过GPMDS表面处理的纳米二氧化硅(T-silica)分散性良好,受到冲击时作为应力集中点吸收部分能量,起到明显的增强增韧效果;T-silica在树脂基体中作为物理交联点,可明显提高环氧树脂固化物的玻璃化转变温度和耐热性,固化物具有良好的绝缘性能。
Groundwall insulation is employed to separate the copper conductors from the grounded stator core in the electric machines. The performances and service life of the groundwall insulation of the stator is critical to the service life of electric machines. At present,the vacuum pressure impregnation process (V.P.I.) is one of the most promising technologies for the groundwall insulation of electric machines and are widely adopted by many leading electrical equipment manufacturers around the world. Groundwall insulation systems for vacuum-pressure-impregnated (V.P.I.) coils of high voltage stators are usually glass-backed mica paper tape system. The coils are insulated with mica paper tape and then vacuum-pressure-impregnated with the impregnating resin. Therefore, the performance of the impregnating resin is one of the key factors accounting for the evolution of the groundwall insulation. Accordingly, the availability of an impregnating resin with improved dielectric properties as well as excellent mechanical performances and thermal stability for the V.P.I process is eagerly desired from the viewpoint of the moter/ or generator technology development.
     In this study, multifunctional-reactive silicon compounds with very low toxicity have been used as reactive diluents for epoxy impregnating resin based on a kind of cycloaliphatic epoxy resin and methyl-hexahydrophthalic anhydride (MHHPA) system, with the catalysis of aluminum (III) acetylacetonate (Al(acac)3). This is based on the following considerations: firstly, the organosiloxane are effective diluents since they have very low viscosities and are mutually soluble with the epoxy resin at all temperatures; secondly, the existence of the reactive groups like epoxide, amino, or vinyl groups enables the diluents to be involved in the cross-linking networks of the epoxy resin; and at last, the reactivity of Si-OR makes the structure design possible. It can be expected that polysiloxane may be produced in the cross-linking network of the cured epoxy resin via synchronous reactions, which could improve the toughness of the epoxy matrix. Besides, nano-silica particles have been employed to enhance the epoxy impregnating resin. To develop an eco-friendly epoxy impregnating resin system for groundwall insulation of large generators, the curing reaction mechanism has been fully studied, the formulation and the curing techniques have been optimized, and the influence of different constitution on the curing reaction, microstructure, and final performances have been studied and characterized.
     In this paper, influences of different reactive organo-siloxanes on the curing reaction and performances of epoxy V.P.I. resin have been studied and compared. The results show that: in the presence of Al(acac)3, the addition of GPMDS can obviously reduce the epoxy viscosity, improve the processability and toughness without imparment to the insulating properties and thermal stabilities. The influences of organo-siloxanes on the curing reaction and performances of epoxy V.P.I. resin are very complicated and greatly related to the reactive structures (epoxide, amino, or vinyl groups) and the silicon structures.
     In this paper, the interaction between the hydrolysis/condensation of (3-glycidoxypropyl) trimethoxysilane (GPTMS) and the curing reaction of epoxy resin have been studied, as well as the influences on the properties of the cured samples. The results show that the influence of GPTMS on the curing reaction of epoxy resin is very complicate and is greatly influenced by the catalysts. With the catalysis of Nd(acac)3, the incorporation of GPTMS into epoxy resin has a slight influence on the curing reaction, and considerable enhancement in toughness have been obtained without impairments to thermal stability and insulating properties. Differently, with the catalysis of Al(acac)3, the hydrolysis and condensation of GPTMS prior to the curing polymerization of epoxide and anhydride can been greatly facilitated and detected by the DSC analysis which induces phase separation and inhomogeneity in the micro-morphologies of the cured sample and accordingly decreased glass transition temperature, thermal stability, insulating and mechanical performances.
     DSC and Heating-FTIR have been employed to study the accelerating mechanism of Al(acac)3 on the curing reaction between the epoxy resin and MHHPA. The results show that the catalytic mechanism is that Al(acac)3 first reacts with MHHPA to form a carboxylic anion as a transition state at elevated temperatures, then the carboxylic anions attack the epoxide groups to initiate the curing reaction. Kissinger’s and Friedman-Reich-Lev’s methods have been employed to study the curing kinetics of the epoxy V.P.I. resin. The results show that the epoxy V.P.I. resin is a complicate reacting system, and the introduction of GPTMS or GPMDS into the system can lower down the gel temperature and the curing temperature.
     Nano-silica particles have been introduced into epoxy resin to achieve good toughness and mechanical strength. The results have shown that with the incorporation of GPMDS, the nano-silica particles exhibit good compatibility with the epoxy matrix and the enhancement is determined by the concentration and dispersion of nano-silica particles. Nano-silica particles without surface treatment are easy to aggregate and hard to disperse, thereby enhancement can be obtained only at low silica loadings (no more than 3 wt%) when there’s no great aggregations. The incorporation of untreated nano-silica particles results in decreased volume resistivity and increased dielectric loss due to the large amount of–OH groups adhered to the particle surface. Surface treatment of nano-silica with GPMDS can improve the dispersion of the nanosilica particles, and accordingly improve the toughness, strength, the glass transition temperature, the insulating properties, and the thermal stabilities of the epoxy/nano-silica composites.
引文
1.孙曼灵,环氧树脂应用原理与技术, 2003,北京,机械工业出版社.
    2.王川波,高压电气绝缘及测试,1998.
    3. Stone GC, Boulter EA, Culbert I, and Dhirani H, Electrical insulation for rotating machines. IEEE press series on power eigineering, ed. M.E. EI-Hawary. Vol2, 2004, New Jersey: A John Wiley & Sons, Inc., Publication.
    4. Emery FT, High dielectric performance stator winding insulation system for global VPI'd air cooled generators. in Electrical insulation conference and electrical manufacturing & coil winding technology conference. 2003.
    5. Emery FT, and Weddleton RF, Latest advances associated with the insulation systems of high voltage stator coils. in the 1996 IEEE International Symposium on Electrical Insulation. 1996. Montreal, Canada.
    6. Chabra OP, and Kumar MC, Techno-scientific aspects of epoxy mica vacuum pressure imprgnation insulation system for rotating electrical machines and generators. in the 2000 IEEE International Symposium on Electrical Insulation. 2000. Anaheim, CA USA.
    7. Frost NE, Hughes D, Laurenty D, etc. A review of vacuum pressure impregnation procedures for form wound stators. in Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Technology Conference. 2003.
    8. Emery FT, Improved groundwall insulation system for air cooled generators. in IEEE.
    9.陈宗旻,叶学淳,田建辉, VPI绝缘现状及对策,电器工业(材料专辑) 2002: 1-4.
    10左瑞霖,梁国正,常鹏善等,耐高温无溶剂绝缘漆的研究进展,绝缘材料2002 (2): 26-33.
    11. Stone GC, Boulter EA, Culbert I, etc. Electrical insulation for rotating machine. IEEE press series on power engineering, ed. M.E. EI-Hawary. Vol. 3. 2004, New Jersey: A John Wiley & Sons, Inc., Publication. 74-87.
    12.陈宗旻,真空压力浸渍树脂现状及发展.绝缘材料, 2003(3): p. 37-39.
    13. Mills R, Payne C, and Younsi K, Insulation cure monitoring on global VPI large AC motors. in the 2002 IEEE International Symposim on Electrical Insulation, 2002, Boston, MA USA.
    14. Emery FT, Barrutia E, and Smith JDB, Latest advances in mica paper tapes for application toVPI'ed high voltage generators, in Conference Record of the 1998 IEEE International Symposium on Electrical Insulation, 1998, Arlington, Virginia, USA.
    15. Smith JDB, and Jerson DD, Maleic anhydride-epoxy resin prepolymer, (vinyl or isopropenyl) phenyl glycidyl ether and anhydride, 1992, Westinghouse Electric Corp: US5106924
    16. McDermid W, Insulation systems and monitoring for stator winding of large rotating machines, IEEE Electrical Insulation Magazine, 1993. 9(4): 7-14.
    17. Smith JDB, and Emery FT, Insulating resin of epoxy resin, epoxy diluent, phenolic accelerator and organotin catalyst. 2002, Siemens Westinghouse Power Corporation: US6384152 B2
    18. Markovitz, M., Low viscosity epoxy resin compositions. 1986, General Electric Company: US 4603182.
    19. Nakajima, H., et al., Epoxy impregnating resin composition. 1987, Mitsubishi Denki Kabushiki Kaisha: United Stated.
    20. Yodis JC, Recent developments in impregnation technology, in Electrical Insulation Conference and Manufactureing & Coil Winding Conference, 1997.
    21.孙曼灵,环氧树脂及其应用的新进展/环氧树脂应用原理与技术. 2003,北京:机械工业出版社. Vol(12):661-677.
    22.赵景丽,张广成,李河清,环氧树脂研究进展,塑料, 2002, 31(3): 40-44.
    23. Chikhi N, Fellahi S, Bakar M, Modification of epoxy resin using reactive liquid (ATBN) rubber, European Polymer Journal, 2002, 38(2): 251-264.
    24. Ratna, D. and Banthia AK, Rubber toughened epoxy, Macromolecular Research, 2004, 12(1): 11-21.
    25. Wetzel B, Rosso P, Haupert F, etc. Epoxy nanocomposites - fracture and toughening mechanisms, Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.
    26. Lee J, and Yee AF, Inorganic particle toughening II: toughening mechanisms of glass bead filled epoxies, Polymer, 2001, 42(2): 589-597.
    27. Johnsen BB, Kinloch AJ, Mohammed RD, etc. Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, 2007, 48(2): 530-541.
    28. Becker O, and Simon GP, Epoxy layered silicate nanocomposites, Inorganic Polymeric Nanocomposites and Membranes, 2005, 179: 29-82.
    29. Yildiz E, Ozarslan O, Inan TY, etc. Toughening of epoxy resins by amine terminated poly(arylene ether ketone)s having pendant tertiary butyl groups, Polymer Bulletin, 2007, 58(3): 503-511.
    30. Yun NG, Won YG, and Kim SC, Toughening of epoxy composite by dispersing polysulfone particle to form morphology spectrum, Polymer Bulletin, 2004, 52(5): 365-372.
    31. Johnsen BB, Kinloch AJ, and Taylor AC, Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms, Polymer, 2005, 46(18): 7352-7369.
    32. Hodgkin JH, Simon GP, and Varley RJ, Thermoplastic toughening of epoxy resins: a critical review, Polymers for Advanced Technologies, 1998, 9(1): 3-10.
    33. Widmaier JM, Nilly A, Chenal JM, etc. Dependence of the phase separation process on therelative onset of network formation in simultaneous interpenetrating polymer networks, Polymer, 2005, 46(10): 3318-3322.
    34. Jansen BJP, Rastogi S, Meijer HEH, etc. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 4. Comparison of properties of semi- and full-IPNs, and copolymers of acrylate-aliphatic epoxy systems, Macromolecules, 1999, 32(19): 6290-6297.
    35.李芝华,丑纪能,邓飞跃,弹性体增韧环氧树脂研究进展,广州化学, 2007, 32(2): 73-78.
    36. Unnikrishnan KP and Thachil ET, Toughening of epoxy resins, Designed Monomers and Polymers, 2006, 9(2): 129-152.
    37. Ramos VD, DaCosta HM, Soares VLP, etc. Modification of epoxy resin: a comparison of different types of elastomer, Polymer Testing, 2005, 24(3): 387-394.
    38. Ratna D, Phase separation in liquid rubber modified epoxy mixture: relationship between curing conditions, morphology and ultimate behavior, Polymer, 2001. 42(9): 4209-4218.
    39.廖希异,谢建良,环氧树脂增韧改性技术研究进展.四川化工, 2007, 10(1): 15-19.
    40. He SJ, Shi KY, Bai J, etc. Studies on the properties of epoxy resins modified with chain-extended ureas. Polymer, 2001, 42(23): 9641-9647.
    41. Auad ML, Proia M, Borrajo J, etc. Rubber modified vinyl ester resins of different molecular weights. Journal of Materials Science, 2002, 37(19): 4117-4126.
    42. Michler GH and Bucknall CB, New toughening mechanisms in rubber modified polymers. Plastics Rubber and Composites, 2001, 30(3): 110-115.
    43. Huang Y and Kinloch AJ, Modelling of the toughening mechanisms in rubber-modified epoxy polymers Part II: A quantitative description of the microstructure-fracture property relationships. Journal of Materials Science, 1992, 27: 2763-2769.
    44.孙乔,环氧树脂增韧改性面面观.
    45.常鹏善,左瑞霖,王汝敏等,环氧树脂增韧改性研究进展.材料导报, 2002, 16(2): 54-56.
    46. Yee AF and Pearson RA, Toughening mechanisms in elastomer-modified epoxies. Journal of Materials Science, 1986, 21: 2462-2474.
    47. Becu L, Maazouz A, Sautereau H, etc. Fracture behavior of epoxy polymers modified with core-shell rubber particles. Journal of Applied Polymer Science, 1997, 65(12): 2419-2431.
    48. Frounchi, M., M. Mehrabzadeh, and M. Parvary, Toughening epoxy resins with solid acrylonitrile-butadiene rubber. Polymer International, 2000, 49(2): p. 163-169.
    49. Russell B and Chartoff R, The influence of cure conditions on the morphology and phase distribution in a rubber-modified epoxy resin using scanning electron microscopy and atomic force microscopy. Polymer, 2005, 46(3): 785-798.
    50. Harani H, Fellahi S, and Bakar M, Toughening of epoxy resin using synthesized polyurethane prepolymer based on hydroxyl-terminated polyesters. Journal of Applied Polymer Science, 1998. 70(13): 2603-2618.
    51. Yilgor E and Yilgor I, 1,3-bis(gamma-aminopropyl)tetramethyldisiloxane modified epoxy resins: curing and characterization. Polymer, 1998, 39(8-9): 1691-1695.
    52. Ochi M and Shimaoka S, Phase structure and toughness of silicone-modified epoxy resin withadded silicone graft copolymer. Polymer, 1999, 40(5): 1305-1312.
    53. Martuscelli E, Musto P, Ragosta G, etc. Toughening of tetrafunctional (TGDDM) epoxy resins with telechelic extended perfluoroligomers. Journal of Materials Science, 2000, 35(15): 3719-3726.
    54. Ratna D, Banthia AK, and Deb PC, Acrylate-based liquid rubber as impact modifier for epoxy resin. Journal of Applied Polymer Science, 2001, 80(10): 1792-1801.
    55. Ratna D and Simon GP, Mechanical characterization and morphology of carboxyl randomized poly(2-ethyl hexyl acrylate) liquid rubber toughened epoxy resins. Polymer, 2001, 42(18): 7739-7747.
    56. Kong J, Tang YS, Zhang XJ, etc. Synergic effect of acrylate liquid rubber and bisphenol a on toughness of epoxy resins. Polymer Bulletin, 2008, 60(2-3): 229-236.
    57. Ratna D and Banthia AK, Toughened epoxy adhesive modified with acrylate based liquid rubber. Polymer International, 2000, 49(3): 281-287.
    58. Kong J, Ning RC, and Tang YS, Study on modification of epoxy resins with acrylate liquid rubber containing pendant epoxy groups. Journal of Materials Science, 2006, 41(5): 1639-1641.
    59.孔杰,宁荣昌,丙烯酸酯液体橡胶增韧环氧树脂的研究进展.热固性树脂, 2002, 17(1): 35-39.
    60. Ratna D, Banthia AK, and Deb PC, Toughening of epoxy resin using acrylate-based liquid rubbers. Journal of Applied Polymer Science, 2000, 78(4): 716-723.
    61. Ratna, D and Banthia AK, Toughening of epoxy resin by modification with 2-ethylhexyl acrylate-acrylic acid copolymers. Polymer International, 2000, 49(3): 309-315.
    62. He J, Raghavan D, Hoffman D, etc. The influence of elastomer concentration on toughness in dispersions containing preformed acrylic elastomeric particles in an epoxy matrix. Polymer, 1999, 40(8): 1923-1933.
    63. Kim JW, Kim JY, and Suh KD, Preparation and physical properties of rubber-modified epoxy resin using poly(urethane acrylate)/poly(glycidyl methacrylate-co-acrylonitrile) core-shell composite particles. Journal of Applied Polymer Science, 1997, 63(12): 1589-1600.
    64. Sultan JN and McGarry FJ, Effect of rubber particle size on deformation mechanisms in glassy epoxy. Polymer Engineering & Science, 1973, 13(1): 29-34.
    65.李志民,刘文西,陈玉如,环氧胶粘剂增韧改性剂.中国胶粘剂, 2003. 12(5): 46-51.
    66. Kim DS and Kim SC, Rubber modified epoxy resin. II: Phase separation behavior. Polymer Engineering & Science, 1994, 34(21): 1598-1604.
    67. Zhang JW, Zhang HD, Yan D, etc. Reaction-induced phase separation in rubber-modified epoxy resin. Science in China Series B-Chemistry, 1997, 40(1): 15-23.
    68.李绍英,韩孝族,张庆余,丁腈羟增韧环氧树脂形态与力学性能.高等学校化学学报, 1997, 18(9): 1541-1545.
    69. Kunz SC, Sayre JA, and Assink RA, Morphology and toughness characterization of epoxy resins modified with amine and carboxyl-terminated rubbers. Polymer, 1982, 23(13): 1897-1906.
    70.李红,宁荣昌,丙烯酸酯液体橡胶的合成及其增韧环氧树脂的研究进展.中国胶粘剂, 2007, 16(8): 56-60.
    71. Kar S, Gupta D, Banthia AK, etc. Study of impact properties and morphology of 4, 4 '-diaminodiphenyl methane cured epoxy resin toughened with acrylate-based liquid rubbers. Polymer International, 2003, 52(8): 1332-1338.
    72.赵峰,李方,姚康德,聚硅氧烷改性环氧树脂.热固性树脂, 1999(1): 27-31.
    73. Ahmad S, Gupta AP, Shamin E, etc. Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Progress in Organic Coatings, 2005, 54(3): 248-255.
    74. Gonzalez M, Kadlec P, Spepanek P, etc. Crosslinking of epoxy-polysiloxane system by reactive blending. Polymer, 2004, 45(16): 5533-5541.
    75. Tao ZQ, Yang SY, Chen JS, etc. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. European Polymer Journal, 2007, 43(4): 1470-1479.
    76. Hua, F.J. and C.P. Hu, Interpenetrating polymer networks of epoxy resin and urethane acrylate resin: 1. Kinetics of network formation. European Polymer Journal, 1999. 35(1): p. 103-112.
    77. Hua FJ and Hu CP, Interpenetrating polymer networks of epoxy resin and urethane acrylate resin 2. Morphology and mechanical property. European Polymer Journal, 2000, 36(1): 27-33.
    78. Park SJ and Jin JS, Energetic studies on epoxy-polyurethane interpenetrating polymer networks. Journal of Applied Polymer Science, 2001, 82(3): 775-780.
    79.刘野,杜明,环氧树脂增韧改性技术研究进展和新方法及其机理.化学与粘合, 2007, 29(3): 197-200.
    80. Kiefer J, Hilbom JG, Manson JAE, etc. Macroporous epoxy networks via chemcally induced phase separation. Macromolecules, 1996, 29(29): 4158-4160.
    81. Ormaetxea M, Forcada J, Mugika F, etc. Ultimate properties of rubber and core-shell modified epoxy matrices with different chain flexibilities. Journal of Materials Science, 2001, 36(4): 845-852.
    82. Lu F, Cantwell WJ, and Kausch HH, The role of cavitation and debonding in the toughening of core-shell rubber modified epoxy systems. Journal of Materials Science, 1997, 32(11): 3055-3059.
    83. Lin KF and Shieh YD, Toughening of epoxy resins with designed core-shell particles. Abstracts of Papers of the American Chemical Society, 1997, 213: 221-PMSE.
    84. Lin KF and Shieh YD, Core-shell particles designed for toughening the epoxy resins. II. Core-shell-particle-toughened epoxy resins. Journal of Applied Polymer Science, 1998, 70(12): 2313-2322.
    85. Lin KF and Shieh YD, Core-shell particles designed for toughening epoxy resins. I. Preparation and characterization of core-shell particles. Journal of Applied Polymer Science, 1998, 69(10): 2069-2078.
    86. Lestriez B, Maazouz A, Gerard JF, etc. Is the Maxwell-Sillars-Wagner model reliable for describing the dielectric properties of a core-shell particle epoxy system? Polymer, 1998,39(26): 6733-6742.
    87. Kim JW, Kim JY, and Suh KD, Preparation of impact modified epoxy resin by using poly(butyl acrylate)/poly(glycidyl methacrylate) core-shell composite particles. Journal of Macromolecular Science-Pure and Applied Chemistry, 1998, A35(2): 249-260.
    88. Hazot P, Pichot C, and Maazouz A, Synthesis of hairy acrylic core-shell particles as toughening agents for epoxy networks. Macromolecular Chemistry and Physics, 2000, 201(6): 632-641.
    89. Day RJ, Lovell PA, and Wazzan AA, Toughened carbon/epoxy composites made by using core/shell particles. Composites Science and Technology, 2001, 61(1): 41-56.
    90. Becu-Longuet L, Bonnet A, Pichot C, etc. Epoxy networks toughened by core-shell particles: Influence of the particle structure and size on the rheological and mechanical properties. Journal of Applied Polymer Science, 1999, 72(6): 849-858.
    91. Aerdts AM, Groeninckx G, Zirkzee HF, etc. Preparation of epoxy-functionalized methyl methacrylate-butadiene-styrene core-shell particles and investigation of their dispersion in polyamide-6. Polymer, 1997, 38(16): 4247-4252.
    92.张明耀,张会轩,杨海东等,核/壳结构增韧剂对环氧树脂的抗冲改性.应用化学, 1996. 13(1): 112-113.
    93. Bucknall CB and Partridge IK, Phase separation in epoxy resins containing polyethersulphone. Polymer, 1983, 24(5): 639-644.
    94. Pearson RA, Toughened plastics I: science and engineering. advances chemistry series, ed. C.K. Riew and J.K. Gillham. Vol. 17. 1993, Washingon, DC: ACS. 405.
    95. Hedrick JL, Yilgor I, Wilkers GL, etc. Chemical modification of matrix resin networks with engineering thermoplastics. Polymer Bulletin, 1985, 13: 201-208.
    96. Yamanaka K and Inoue T, Structure development in epoxy resin with poly(ether sulphone). Polymer, 1989, 30(4): 662-667.
    97. Bucknail CB and Gilbert AH, Toughening tetrafunctional epoxy resins using polyetherimide. Polymer, 1989, 30(2): 213-217.
    98.张小华,徐伟箭,无机纳米粒子在环氧树脂增韧改性中的应用.高分子通报, 2005(6): 100-105.
    99.惠雪梅,张炜,王小洁,环氧树脂纳米复合材料研究进展.合成树脂及塑料, 2003, 20(6): 62-65.
    100. Ochi M, Takahashi R, and Terauchi A, Phase structure and mechanical and adhesion properties of epoxy/silica hybrids. Polymer, 2001, 42(12): 5151-5158.
    101. Matejka L, Dusek K, Plestil J, etc. Formation and structure of the epoxy-silica hybrids. Polymer, 1999, 40(1): 171-181.
    102. Kang S, Hong SI, Choe CR, etc. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer, 2001, 42(3): 879-887.
    103.刘竞超,张华林,李小兵等,粒子分散性对环氧树脂/纳米SiO2材料性能的影响.合成树脂及塑料, 19(1): p. 30-33.
    104. Ng CB, Schadler LS, and Siegel RW, Synthesis and mechanical properties of TiO2-epoxy nanocomposites. Nanostructured Materials, 1999, 12(1-4): 507-510.
    105. Wazzan AA, Al-Turaif HA, and Abdelkader AF, Influence of submicron TiO2 particles on the mechanical properties and fracture characteristics of cured epoxy resin. Polymer-Plastics Technology and Engineering, 2006, 45(10): 1155-1161.
    106. Yano S, Ito T, Shinnoda K, etc. Properties and microstructures of epoxy resin/TiO2 and SiO2 hybrids. Polymer International, 2005, 54(2): 354-361.
    107.郑根稳,周兴平,董丽君等,高性能环氧树脂/层状硅酸盐纳米复合粘合剂.粘接, 2004, 25(3): 31-34.
    108.吕建坤,柯毓才,漆宗能,插层聚合制备粘土/环氧树脂纳米复合材料过程中粘土剥离行为的研究.高分子学报, 2000(1): 85-89.
    109. Zilg C, Mulhaupt R, and Finter J, Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromolecular Chemistry and Physics, 1999, 200(3): 661-670.
    110. Lan T and Pinnavaia TJ, Clay-reinforced epoxy nanocomposites. Chemical Materials, 1994, 6: 2216-2219.
    111. Wang MS, and Pinnavaia TJ, Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chemical Materials, 1994, 6: 468-474.
    112. LePluart L, Duchet J, and Sautereau H, Epoxy/montmorillonite nanocomposites: influence of organophilic treatment on reactivity, morphology and fracture properties. Polymer, 2005, 46(26): 12267-12278.
    113. LePluart L, Duchet J, Sautereau H, etc. Rheological properties of organoclay suspensions in epoxy network precursors. Applied Clay Science, 2004, 25(3-4): 207-219.
    114. LePluart L, Duchet J, Sautereau H, etc. Surface modifications of montmorillonite for tailored interfaces in nanocomposites. Journal of Adhesion, 2002, 78(7): 645-662.
    115. Zilg C, Mulhaupt R, Thomann R, etc. Epoxy nanocomposites based on organophilic-layered silicates: Improving toughness/stiffness/strength balance. Abstracts of Papers of the American Chemical Society, 2000, 219: U486-U486.
    116. Miyagawa H and Drzal LT, The effect of chemical modification on the fracture toughness of montmorillonite clay/epoxy nanocomposites. Journal of Adhesion Science and Technology, 2004, 18(13): 1571-1588.
    117. Wang K, Chen L, Wu JS, etc. Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules, 2005, 38(3): 788-800.
    118.曹诺,肖圣洁,肖卫东,环氧树脂的增韧改性研究现状.弹性体, 2006, 16(4): 68-72.
    119.杨岭,互穿聚合物网络技术及应用.上海塑料, 1999(2): 5-6,14.
    120. Jansen BJP, Rastogi S, Meijer HEH, etc. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 1. Morphology development and mechanical properties. Macromolecules, 2001, 34(12): 3998-4006.
    121. Jansen BJP, Rastogi S, Meijer HEH, etc. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 2. Mode of microscopic deformationstudied by in-situ small-angle X-ray scattering during tensile deformation. Macromolecules, 2001, 34(12): 4007-4018.
    122. Jansen BJP, Rastogi S, Meijer HEH, etc. Rubber-modified glassy amorphous polymers prepared via chemically induced phase separation. 3. Influence of the strain rate on the microscopic deformation mechanism. Macromolecules, 1999, 32(19): 6283-6289.
    1.洪晓斌,谢凯,盘毅等,有机硅改性环氧树脂研究进展.材料导报, 2005, 19(10): 44-48.
    2. Ochi M and Shimaoka S, Phase structure and toughness of silicone-modified epoxy resin with added silicone graft copolymer. Polymer, 1999, 40(5): 1305-1312.
    3. Ochi M and Takemiya K, Phase structure and toughness of silicone-modified epoxy resin with added aramid-silicone block copolymer. Polymer Blends and Polymer Composites, 1998, 137: 220-226.
    4. Hsiue GH, Wang WJ, and Chang FC, Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxy resins. Journal of Applied Polymer Science, 1999, 73(7): 1231-1238.
    5. He WD, Zou YF, and Pan CY, Influence of crosslinking degree of silicone rubber particles on properties of epoxy resin. Journal of Applied Polymer Science, 1998, 69(3): 619-625.
    6. Wang WJ, Perng LH, Hsiue GH, etc. Characterization and properties of new silicone-containing epoxy resin. Polymer, 2000, 41(16): 6113-6122.
    7. Hou SS, Chung YP, Chan CK, etc. Function and performance of silicone copolymer. Part IV. Curing behavior and characterization of epoxy-siloxane copolymers blended with diglycidyl ether of bisphenol-A. Polymer, 2000, 41(9): 3263-3272.
    8.李晓茹,从丽晓,张圣友等,聚硅氧烷改性环氧树脂的研究进展.有机硅材料, 2005, 19(5): 33-36.
    9.李光亮,有机硅高分子化学. Vol. 1. 1998,北京:科学出版社. 1-5.
    10. Ji Q, Wang J, Kwon O, etc. Secondary amino terminated poly(dimethyl siloxane) modified epoxy resins. Abstracts of Papers of the American Chemical Society, 1998, 216: U43-U43.
    11.郑钦健,李航昱,含氨基聚硅氧烷改性环氧树脂.厦门大学学报, 2005, 44(3): 399-402.
    12. Yilgor E and Yilgor I, 1,3-bis(gamma-aminopropyl)tetramethyldisiloxane modified epoxy resins: curing and characterization. Polymer, 1998, 39(8-9): 1691-1695.
    13. Ochi M, Takemiya K, Kiyohara O, Effect of the addition of aramid-silicone block copolymer on phase structure and toughness of cured epoxy resins modified with silicone. Polymer, 1998, 39(3): 725-731.
    14. Ochi M, Takemiya K, Kiyohara O, Effect of the addition of aramid-silicone block copolymer on the phase structure and toughness of cured epoxy resins modified with RTV silicons. Polymer, 2000, 41(1): 195-201.
    15.张冰,刘香鸾,黄英,氨基聚硅氧烷对改性环氧树脂的形态与性能的影响.功能高分子学报, 2000, 13(1): 69-72.
    16.黎艳,刘伟区,宣宜宁,硅烷/聚硅氧烷化学改性双酚A型环氧树脂的研究.中国塑料,2004, 18(8): 40-43.
    17. Lee SS and Kim SC, Morphology and properties of polydimethylsiloxane-modified epoxy resin. Journal of Applied Polymer Science, 1997, 64(5): 941-955.
    18. Zhao F, Sun QC, Fang DP, Preparation and properties of polydimethylsiloxane-modified epoxy resins. Journal of Applied Polymer Science, 2000, 76(11): 1683-1690.
    19.孙曼灵,环氧树脂应用原理与技术(第二章),机械工业出版社,2003: 18.
    20.何崇军,蔡立彬,崔英德,环氧树脂固化体系的研究进展.广州化工, 2002, 30(4): 109-111.
    21. Baumann T, Oesterheld J, and Schuler R, Stator winding insulation. 2000, ABB Research Ltd: US 6140590.
    22. Smith JDB, Organotin amine complexes as latent catalysts for epoxy resins. in the EIC/EMCW Symposium. 1997, Chicago, IL.
    23. Smith JDB, Metal acetylacetonates as latent accelerators for anhydride-cured epoxy resins. Journal of Applied Polymer Science, 1981, 26(3): 979-986.
    24. Zhang ZQ and Wong CP, Study on the catalytic behavior of metal acetylacetonates for epoxy curing reactions. Journal of Applied Polymer Science, 2002, 86(7): 1572-1579.
    25.陈宗旻,乙酰丙酮铬在浸渍树脂中应用.电机技术, 1994(2): 30-32.
    26. Markovitz M, Hardenable composition consisting of an epoxy resin and a metal acetylacetonate. 1974, General Electric Company: US 3812214.
    27. Zong LM, Zhou SJ, Sgriccia N, etc. Dielectric properties of an epoxy-amine system at a high microwave frequency. Polymer Engineering and Science, 2005, 45(12): 1576-1580.
    28. Soares BG, Leyva ME, Moreira VX, etc. Morphology and dielectric properties of an epoxy network modified by end-functionalized liquid polybutadiene. Journal of Polymer Science Part B-Polymer Physics, 2004, 42(22): 4053-4062.
    29. Andjelic S and Mijovic J, Dynamics of reactive polymer networks in the presence of a nonpolar solvent by dielectric relaxation spectroscopy. Macromolecules, 1998, 31(9): 2872-2882.
    30. Zong LM, Kempel LC, and Hawley MC, Dielectric studies of three epoxy resin systems during microwave cure. Polymer, 2005, 46(8): 2638-2645.
    31. Tareev, Physics of Dielectirc Matrerials, translated from the Russian by A. Troitsky. Vol. 3. 1975, Moscow: Mir Pub.
    32.吴瑾光,近代傅里叶变换红外光谱技术及应用(上卷).北京:科学技术文献出版社. 1994: 16573-642.
    1. Hong SG and Lin JJ, The effects of glass beads and silane treatments on the curing behavior of a brominated epoxy resin: DSC analyses. Journal of Polymer Science Part B-Polymer Physics, 1997, 35(13): 2063-2071.
    2. Innocenzi P, Brusatin G, Guglielmi M, and Bertani R, New synthetic route to (3-glycidoxypropyl)trimethoxysilane-base hybrid organic-inorganic materials. Chemistry of Materials, 1999, 11(7): 1672-1679.
    3. Lin J, Siddiqui JA, and Ottenbrite RM, Surface modification of inorganic oxide particles with silane coupling agent and organic dyes. Polymers for Advanced Technologies, 2001, 12(5): 285-292.
    4. Hussain H, Rehman HU, and Ahmad Z, Preparation and properties of aramid-silica hybrids with inter-phase bonding through (3-glycidoxypropyl)-trimethoxysilane. Journal of Sol-Gel Science and Technology, 2005, 36(3): 239-248.
    5. Wong AKY and Krull UJ, Surface characterization of 3-glycidoxypropyltrimethoxysilane films on silicon-based substrates. Analytical and Bioanalytical Chemistry, 2005, 383(2): 187-200.
    6. Hu L, Zhang X, and Huang Y, Nanoscratch profiles of hybrid films based on (3-glycidoxypropyl)trimethoxysilane and modified with tetraethoxysilane. Plastics Rubber and Composites, 2004, 33(9-10): 457-461.
    7.幸松民,王一璐,有机硅合成工艺及产品应用.北京:化学工业出版社. 2000:255-257.
    8. Zhang ZY and Sakka S, Hydrolysis and polymerization of dimethyldiethoxysilane, methyltrimethoxysilane and tetramethoxysilane in presence of aluminum acetylacetonate. A complex catalyst for the formation of silxoanes. Journal of Sol-gel Science and Technology, 1999, 16: 209-220.
    9. Rocks J, Rintoul L, Vohwinkel F, etc. The kinetics and mechanism of cure of an amino-glycidyl epoxy resin by a co-anhydride as studied by FT-Raman spectroscopy. Polymer, 2004, 45(20): 6799-6811.
    10. Zhang ZQ and Wong CP, Study on the catalytic behavior of metal acetylacetonates for epoxy curing reactions. Journal of Applied Polymer Science, 2002,86(7): 1572-1579.
    11. Dakin TW, Conduction and Polarization Mechanisms and Trends in Dielectrics. IEEE Electrical Insulation Magazine, 2006, 22(5): 11-28.
    12. Troitsky A, Physics of dielectric materials. Moscow: Mir Publishers. 1975: 9-12.
    13.李翰如,电介质物理导论.成都:成都科技大学出版社,1990.
    14. Fink DG., Standard handbook for electrical engineers. Insulating materials. Blacklick, OH, USA: MCGraw-Hill Professional Publishing, 2006: 240-264.
    15.孙曼灵,环氧树脂应用原理与技术,北京:机械工业出版社, 2002.
    16. May CA, Epoxy resins: chemistry and technology, New York: M. Dekker, 1988.
    17. Montserrat S, Roman F, and Colomer P, Vitrification, devitrification, and dielectric relaxations during the non-isothermal curing of diepoxy-cycloaliphatic diamine. Journal of Applied Polymer Science, 2006, 102(1): 558-563.
    18. Montserrat S, Roman F, and Colomer P, Vitrification and dielectric relaxation during the isothermal curing of an epoxy-amine resin. Polymer, 2003, 44(1): 101-114.
    19. Hsieh TH and Ho KS, Variation in dielectric properties of an epoxy-novolac molding compound during dynamic cure. Polymer Engineering and Science, 1999, 39(7): 1335-1343.
    20.唐丽娟等,环氧树脂/有机蒙脱土体系非等温固化动力学研究.粘接, 2006, 27(2): 1-4.
    21.韦春等,环氧树脂/液晶固化剂固化反应动力学研究.热固性树脂, 2002, 17(2): 15-18.
    22. Nunez L, Gomez-Barreiro S, and Gracia-Fernandez CA, Determination of dielectric and calorimetric properties in the cure reaction of two thermosets by dielectric analysis and differential scanning calorimetry. Polymer International, 2005, 54(11): 1484-1489.
    23. Nunez-Regueira L, Gracia-Fernandez CA, and Gomez-Barreiro S, Characterization of a thermoset by thermal analysis techniques: Criterion to assign the value of the alpha-transition temperature by dielectric analysis. Journal of Applied Polymer Science, 2005, 96(6): 2027-2037.
    24.李强,含硅大分子膨胀型阻燃剂的合成与应用研究,上海交通大学(材料学) , 2005: 51-52.
    25. Wu CS, Liu YL, Chiu YC, etc. Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis. Polymer Degradation and Stability, 2002, 78(1): 41-48.
    1.孙曼灵,环氧树脂应用原理与技术,北京:机械工业出版社, 2003: 213-217.
    2.王晓洁,谢群炜,张炜等,环氧树脂基体固化研究.玻璃钢/复合材料, 2001:10-12.
    3.王遵,邢素丽,曾竟成等,热固性树脂固化反应动力学模型研究进展.高分子材料科学与工程2007, 23(4): 11-14.
    4.赵卫娟,张佐光,孙志杰等,非等温法研究TGDDM/DDS体系固化反应动力学.高分子学报, 2006(4): 564-568.
    5. Kim WG and Lee JY, Contributions of the network structure to the cure kinetics of epoxy resin systems according to the change of hardeners. Polymer, 2002, 43(21): 5713-5722.
    6. Kim WG, Yoon HG, and Lee JY, Cure kinetics of biphenyl epoxy resin system using latent catalysts. Journal of Applied Polymer Science, 2001, 81(11): 2711-2720.
    7.徐冬梅,张可达,陆新华,端氨基树枝状大分子/环氧树脂体系固化动力学的FTIR研究.高校化学工程学报, 2006, 20(3): 385-389.
    8.常鹏善,左瑞霖,解云川等, FT-IR用于液晶环氧树脂固化动力学的研究.高分子材料科学与工程, 2004, 20(3): 168-174.
    9.赵敏,刘广田,焦会云等, FTIR法研究芳胺固化四溴双酚A环氧树脂反应动力学合成树脂与塑料, 2001, 18(2): 48-50.
    10.刘伟昌,刘德山,申胜军等,一种液晶环氧树脂固化动力学FTIR研究.功能高分子学报, 1999, 12(3): 307-311, 322.
    11.姚兴芳,巴信武,彭政等,环氧树脂固化过程两种固化机理机理的渡越.高分子材料科学与工程, 2002, 18(6): 41-47.
    12. Musto P, Abbate M, Ragosta G, etc. A study by Raman, near-infrared and dynamic-mechanical spectroscopies on the curing behaviour, molecular structure and viscoelastic properties of epoxy/anhydride networks. Polymer, 2007, 48(13): 3703-3716.
    13.唐丽娟等,环氧树脂/有机蒙脱土体系非等温固化动力学研究.粘接, 2006, 27(2).
    14. Navabpour P, Nesbitt A, Mann T, etc. Comparison of the curing kinetics of a DGEBA/acid anhydride epoxy resin system using differential scanning calorimetry and a microwave-heated calorimeter. Journal of Applied Polymer Science, 2007, 104(3): 2054-2063.
    15. Sun G., Sun HG, Liu Y, etc. Comparative study on the curing kinetics and mechanism of a lignin-based-epoxy/anhydride resin system. Polymer, 2007, 48(1): 330-337.
    16. Chen WM, Li P, Yu YH, etc. Curing kinetics study of an epoxy resin system for T800 carbon fiber filament wound composites by dynamic and isothermal DSC. Journal of Applied Polymer Science, 2008, 107(3): 1493-1499.
    17. Tatsumiya S, Yokokawa K, and Miki K, A dynamic DSC study of the curing process of epoxy resin. Journal of Thermal Analysis, 1997, 49(1): 123-129.
    18. Sun L, thermal rheological analysis of cure process of epoxy prepreg, Louisiana State University (Agricultural and Mechanical College) , 2002.
    19. Kissinger HE, Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 29: 1702-1706.
    20. Gonis J, Simon GP, and Cook WD, Cure properties of epoxies with varying chain length as studied by DSC. Journal of Applied Polymer Science, 1999, 72(11): 1479-1488.
    21. Sun LF, Pang SS, Sterling AM, etc. Dynamic modeling of curing process of epoxy prepreg. Journal of Applied Polymer Science, 2002, 86(8): 1911-1923.
    22. Sbirrazzuoli N and Vyazovkin S, Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochimica Acta, 2002, 388(1-2): 289-298.
    23. Flammersheim HJ and Opfermann JR, Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions. Thermochimica Acta, 2002, 388(1-2): 389-400.
    24.吴晓青,李嘉禄,康庄, TDE-85环氧树脂固化动力学的DSC和DMA研究.固体火箭技术, 2007, 30(3): 264-268.
    25. Flynn JH, A general differential technique for the determination of parameters for dα/dt=f(α) A exp(-E/RT) energy of activation, preexponential factor and order of reaction (when applicable). Journal of Thermal Analysis, 1991, 37(2): 293-305.
    26.陈宗旻,乙酰丙酮铬在浸渍树脂中应用.电机技术, 1994(2).
    27. Smith JDB, Metal acetylacetonates as latent accelerators for anhydride-cured epoxy resins. Journal of Applied Polymer Science, 1981, 26(3): 979-986.
    28. Zhang ZQ and Wong CP, Study on the catalytic behavior of metal acetylacetonates for epoxy curing reactions. Journal of Applied Polymer Science, 2002, 86(7): 1572-1579.
    29. Liu YF, Du ZJ, Zhang C, etc. Curing behavior and thermal properties of multifunctional epoxy resin with methylhexahydrophthalic anhydride. Journal of Applied Polymer Science, 2007, 103(3): 2041-2048.
    30. Ollier-Dureault V and Gosse B, Photooxidation of anhydride-cured epoxies: FTIR study of the modifications of the chemical structure. Journal of Applied Polymer Science, 1998, 70(6): 1221-1237.
    31.吴瑾光,近代傅里叶变换红外光谱技术及应用(上卷).北京:科学技术文献出版社. 1994: 573-642.
    32.陈连喜,张惠玲,刘全文等,芳香胺改性双氰胺固化环氧树脂反应动力学研究.热固性树脂, 2006, 21(6): 11-13.
    33.卢晓东,黄玉东,张春华等,一种新型环氧树脂体系的固化动力学及耐热性研究.固体火箭技术, 2007, 30(2): 163-166.
    34.陆绍荣,环氧树脂/二氧化硅-二氧化钛纳米杂化材料的制备及其性能研究,湘潭大学高分子材料科学与工程, 2005: 69.
    35. Padma A, Rao RMVGK, Subramaniam C, etc. Cure characterization of triglycidyl epoxy/aromatic amine systems. Journal of Applied Polymer Science, 1995, 57(4): 401-411.
    1. Chikhi N, Fellahi S, and Bakar M, Modification of epoxy resin using reactive liquid (ATBN) rubber. European Polymer Journal, 2002, 38(2): 251-264.
    2. Stone GC, and Boulter EA, Electrical insulation for rotating machines. IEEE press series on power engineering,, ed. M.E. EI-Hawary. 2004: A John Wiley & Sons, Inc., publication.
    3. Yuen DCM, Choi V, Liu ZC, etc. The first 110 kv /35kV-31.5 MVA cast resin transformer. in Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004.
    4. Tareev BM, Physics of dielectric materials. 1975, Moscow: Mir Publishers,.
    5. Wetzel B, Rosso P, Haupert F, Epoxy nanocomposites - fracture and toughening mechanisms. Engineering Fracture Mechanics, 2006, 73(16): 2375-2398.
    6. Ratna D, Manoj NP, Varley R, etc. Clay-reinforced epoxy nanocomposites. Polymer International, 2003, 52(9): 1403-1407.
    7. Ragosta G, Abbate M, Musto P, etc. Epoxy-silica particulate nanocomposites: Chemical interactions, reinforcement and fracture toughness. Polymer, 2005, 46(23): 10506-10516.
    8. Seo KS and DS Kim, Curing behavior and structure of an epoxy/clay nanocomposite system. Polymer Engineering and Science, 2006, 46(9): 1318-1325.
    9. Rosso P, Ye L, Friedrich K, etc. A toughened epoxy resin by silica nanoparticle reinforcement (vol 100, pg 1849, 2006). Journal of Applied Polymer Science, 2006, 101(2): 1235-1236.
    10. Deng SQ, Ye L, and Friedrich K, Fracture behaviours of epoxy nanocomposites with nano-silica at low and elevated temperatures. Journal of Materials Science, 2007, 42(8): 2766-2774.
    11.曲忠先,焦剑,王雪荣,环氧树脂基纳米复合材料的研究进展.粘接, 2005, 26(3): 43-45.
    12. Kang S, Hong SI, Choe CR, etc. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer, 2001, 42(3): 879-887.
    13.肖忠柏,曹诺,肖圣洁等,纳米粒子对环氧树脂的增韧改性研究.胶体与聚合物, 2006, 24(2): 34-36.
    14. Preghenella M, Pegoretti A, and Migliaresi C, Thermo-mechanical characterization of fumed silica-epoxy nanocomposites. Polymer, 2005, 46(26): 12065-12072.
    15. Ho TH, Leu TS, Sun YM, etc. Thermal degradation kinetics and flame retardancy of phosphorus-containing dicyclopentadiene epoxy resins. Polymer Degradation and Stability, 2006, 91(10): 2347-2356.
    16. Wan MX and Li JC, Synthesis and electrical-magnetic properties of polyaniline composites. Journal of Polymer Science Part a-Polymer Chemistry, 1998, 36(15): 2799-2805.
    17. Bahar T and Celebi SS, Immobilization of glucoamylase on magnetic poly(styrene) particles. Journal of Applied Polymer Science, 1999, 72(1): 69-73.
    18. Gonon P, Sylvestre A, Teysseyre J, etc. Dielectric properties of epoxy/silica composites used for microlectronic packaging, and their dependence on post-curing. Journal of Materials Science-Materials in Electronics, 2001, 12(2): 81-86.
    19. Liu YL and Li SH, Using silica nanoparticles as curing reagents for epoxy resins to form epoxy-silica nanocomposites. Journal of Applied Polymer Science, 2005, 95(5): 1237-1245.
    20. James M, Ngai K, William G, etc. Physical properties of polymers. New York: Cambidge university press, 2004:72-146.
    21. Hutchinson JM, Studying the glass transition by DSC and TMDSC. Journal of Thermal Analysis and Calorimetry, 2003, 72(2): 619-629.
    22. Angell CA, Ngai KL, McKenna GB, etc. Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics, 2000, 88(6): 3113-3157.
    23. Forrest JA and Dalnoki-Veress K, The glass transition in thin polymer films. Advances in Colloid and Interface Science, 2001, 94(1-3): 167-196.
    24. Alves NM, Mano JF, and Ribelles JLG, Molecular mobility in polymers studied with thermally stimulated recovery. II. Study of the glass transition of a semicrystalline PET and comparison with DSC and DMA results. Polymer, 2002, 43(13): 3627-3633.
    25. Alves NM, J Mano F, and Ribelles JLG, Molecular mobility in polymers studied with thermally stimulated recovery - I. Experimental procedures and data treatment. Journal of Thermal Analysis and Calorimetry, 2002, 70(2): 633-649.
    26. Backfolk K, Holmes P, Ihalainen P, etc. Determination of the glass transition temperature of latex films: Comparison of various methods. Polymer Testing, 2007, 26(8): 1031-1040.
    27. Rahman MS, Al-Marhubi IM, and Al-Mahrouqi A, Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: A comparison study. Chemical Physics Letters, 2007, 440(4-6): 372-377.
    28. Fragiadakis, D and Pissis P, Glass transition and segmental dynamics in poly(dimethylsiloxane)/silica nanocomposites studied by various techniques. Journal of Non-Crystalline Solids, 2007, 353(47-51): 4344-4352.
    29. Rieger J, The glass transition temperature T-g of polymers - Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polymer Testing, 2001, 20(2): 199-204.
    30. Liu YH, Zheng SX, and Nie KM, Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer, 2005, 46(25): 12016-12025.
    31. Zhu YT, Cheng C, Jin WF, etc. Relationship between dielectric loss and interphase structure of filled-type polymer composites. in International Symposium on Electrical Insulating Materials. . 1995. 17-20 Sept. .
    32. Yu XL, Yi B, Wang XY, etc. Correlation between the glass transition temperatures and multipole moments for polymers. Chemical Physics, 2007, 332(1): 115-118.
    33. Jesionowski T and Krysztafkiewicz A, Comparison of the techniques used to modify amorphous hydrated silicas. Journal of Non-Crystalline Solids, 2000, 277(1): 45-57.