磷酸酯多孔淀粉的制备及其在生物降解塑料膜中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜和包装材料在塑料垃圾中占有相当大的比例,用具有良好生物降解性能的薄膜材料替代它们既可减轻白色污染又可缓解石油资源短缺。淀粉基生物降解塑料薄膜是一种重要的可降解高分子材料。本论文在保证材料生物可降解性的同时,改善材料的力学性和耐水性。主要内容包括磷酸酯多孔淀粉的制备和淀粉基生物降解塑料薄膜的制备。
     多孔淀粉比原淀粉具有更大的表面积和更多的活性羟基,采用多孔淀粉以干法制备磷酸酯淀粉可有效的提高产品取代度,其冻融稳定性、抗剪切性、热稳定性以及与PVA的相容性也得到改善。对改性淀粉进行增强、增塑和交联处理后,采用模压工艺生产的生物降解膜力学性能得到改善,生物降解性也有所提高。
     1以淀粉酶在淀粉糊化温度以下水解淀粉,得到多孔淀粉。最佳制备条件为:pH5.2,酶用量1%(占淀粉质量百分比),反应时间6h,反应温度50℃。
     2采用更加环保的干法工艺生产磷酸酯多孔淀粉,通过五因素二次正交旋转组合试验得出磷酸盐含量、尿素含量、pH值、反应温度、反应时间对取代度影响关系的五元二次回归方程:
     Y=-2.2814-0.02248Z_1+0.02436Z_2+0.320223+0.00268Z_4+0.3881Z_5+0.00376Z_1Z_2-0.00357Z_1Z_5+0.00335Z_2Z_3+0.01132Z_2Z_4-0.00171Z_3Z_4-0.04016Z_3Z_5-0.00631Z_4Z_5+0.00147Z_1~2-0.00290Z_3~2。
     3确定淀粉与PVA用量为7∶3。(质量比)增塑剂:水15%、甘油20%、聚乙二醇15%;(占淀粉质量百分比)交联剂:六次甲基四胺1.5%、硼酸2%;单硬脂酸甘油酯0.6%;尿素3.5%。(占淀粉与PVA总质量的百分比)
     4采用三因素二次正交旋转组合试验得出加热温度、模压压力、保压时间对生物降解膜性能影响关系的三元二次回归方程:Y=-1374.78+13.43Z_1-7.31Z_2-46.13Z_3-0.52Z_1Z_3+0.87Z_2Z_3-0.242Z_2~2。
     5红外光谱和X-射线衍射的结构分析表明:在改性淀粉的羟基上引入了磷酰基团,并未破坏原淀粉的基本化学结构;交联剂在改性淀粉和PVA之间形成了C-O-C化学交联键;酯化和交联反应均有较强的淀粉晶区破坏作用。
     6利用土埋法进行生物降解试验,结果表明150d时,生物降解膜失重率可达到60%。
Film, ground film and packing materials possess a large proportion in plastic garbage. To replace them with film material with good degradability can alleviate the white pollution and the petroleum resource shortage. Starch-based biodegradable plastic film is a kind of important degradable polymer material. This paper will focus on how to improve the mechanical properties and water-resistance of the material, at the same time ensuring its biodegradability. The major work includes the preparation of phosphate porous starch and the starch-film.
     Porous starch has more surface area and hydroxyl group than native starch. In this paper it has been proved that many properties of starch and starch material, such as freeze-thaw stability, resist shearing, heat-resistant stability, and consistency with PVA, can be improved greatly when starch is modified by hydrolytic and phosphorylation, and many properties of starch film, such as tensile strength, water-resistance and biodegradability also can be improved greatly when metamorphic starch is cross linked, plasticized, strengthened at the same time.
     1 The optimum hydrolytic conditions were as follows: pH 5.2, the quantity ofα-amylase 1%, reaction time 6h, reaction temperature 50℃.
     2 By means of quadratic component rotational design, the experiment was conducted in order to get an optimized preparation scheme for degree of substitution (DS). Y=-2.2814-0.02248Z_1+0.02436Z_2+0.3202Z_3+0.00268Z_4+0.3881Z_5+0.00376Z_1Z_2-0.00357Z_1Z_5+0.00335Z_2Z_3+0.01132Z_2Z_4-0.00171Z_3Z_4-0.04016Z_3Z_5-0.00631Z_4Z_5+0.00147Z_1~2-0.00290Z_3~2。
     3 The optimum preparation starch film conditions were as follows: starch: PVA was 7:3, water 15%, glycerol 20%, polymeric glycol 15%, methenamine 1.5%, boric acid 2%, glyceryl monostearate 0.6%, urea 3.5%.
     4 By means of quadratic component rotational design, the experiment was conducted in order to get an optimized preparation scheme for starch film. Y=-1374.78+13.43Z~1-7.31Z_2-46.13Z_3-0.52Z_1Z_3+0.87Z_2Z_3-0.24Z_2~2。
     5 The structural characteristics of the films were investigated by infrared spectroscopy(IR) and X-ray diffraction. The results demonstrated that: phosphate groups were linked with the anhydrous glucose units. Phosphate porous starch and PVA were cross linked by methenamine and boric acid Crystal area was serious destroyed by esterification and cross linked.
     6 Biodegradation experiment was carried out with soil-burying method. The result showed that the ratio of lose weight of starch film is 60% after 150 days under the soil.
引文
1 陈和生,孙振亚.生物降解塑料的研究进展.塑料科技,2000,(4):36-39
    2 陈坚,堵国成.环境友好材料的生产与应用.北京:化学工业出版社,2002,93-97
    3 仇厚授,贺利民.可食性木薯淀粉复合膜研究.食品科学,2000,21(7):19-21
    4 杜连起,王阿莉,倪晓娜.不同取代度玉米淀粉磷酸酯理化性质的研究.中国食品学报,2005,5(2):34-38
    5 杜先锋,许时婴,王璋.食品成分对淀粉凝胶力学性能的影响.中国粮油学报.2002,17(2):6-8
    6 方祥,黄胜桥,刘少颜.α-淀粉酶制备微孔淀粉技术的研究.食品工业科技,2005,(1):60-62
    7 冯国涛,单志华.变性淀粉的种类及其应用研究(续).皮革化工,2005,22(4):18-21
    8 高建平,王为.淀粉基生物降解塑料材料.高分子材料科学与工程,1998,14(4):16-20
    9 高建平,于九皋.完全生物可降解热塑性淀粉复合材料.高分子材料科学与工程,1999,15(3):93-95
    10 贺爱军.降解塑料的开发进展.化工新型材料,2002,30(3):1-6
    11 胡飞,陈玲,温其标.淀粉微细化国内外研究概况与展望.郑州工程学院学报,2001,22(2):74-77
    12 黄格省.降解塑料发展现状述评(Ⅰ).石化技术与应用,2001a,19(4):276-281
    13 黄格省。降解塑料发展现状述评(Ⅱ).石化技术与应用,2001b,19(5):344-347
    14 黄立新,周家华,周俊侠,张力田.酯化交联淀粉反应及性质的研究.无锡轻工大学学报,2001,20(1):6-10
    15 黄棋尤.塑料包装薄膜——生产·性能·应用.北京:机械工业出版社,2003,484-489
    16 吉媛媛,魏文珑,左英英,王利珍.淀粉——聚乙烯醇塑料薄膜的研究.精细化工,1994,11(2):52-53
    17 姜浩然.生物可降解高分子材料的开发.盐城工学院学报(自然科学版),2002,15(3).36-37
    18 焦书科,周彦豪.现代塑料手册.北京:中国石化出版社,2003,44-47
    19 李军,陈存社.酶法制备微孔淀粉的工艺研究.北京工商大学学报(自然科学版),2005,23(2):9-12
    20 李云飞,殷涌光,金万镐.食品物性学.北京:中国轻工业出版社,2005.42-48
    21 刘娅,赵国华,陈宗道.改性淀粉在降解塑料中的应用.包装与食品机械,2003,21(2):20-22
    22 刘艺苑.生物降解塑料的研究概况.塑料开发,1996,22:439-444
    23 刘志伟.国内外生物降解塑料标准化现状和动向.中国塑料,1999,(2):7-11
    24 钱伯章,朱建芳.可降解塑料的应用现状和发展趋势.上海化工,2004,29(10):43-46
    25 汪超,李斌,徐潇,谢笔钧.魔芋葡甘聚糖的流变特性研究.农业工程学报,2005,21(8):157-160
    26 王佩璋,王澜,李田华.淀粉的热塑性研究.中国塑料,2002,16(4):39-43
    27 王文择.淀粉化学和工艺学.北京:中国食品工业出版社,1988,176-203
    28 王锡臣,赵华.改性淀粉在降解材料中的应用研究.塑料加工,1999,27(3):33-35
    29 王锡臣,赵华.改性淀粉在降解材料中的应用研究.塑料加工,1999,27(3):33-35
    30 温耀贤.功能性塑料薄膜.北京:机械工业出版社,2005,1-5
    31 吴谋成.食品分析与感官评定.北京:中国农业出版社,2002,85-87
    32 吴其晔.高分子材料流变学.北京:高等教育出版社,2002,121-126
    33 吴勇.生物降解塑料及其活性污泥检测法.塑料科技,1997,(4):37-40
    34 伍玉碧.木薯及木薯淀粉的开发利用.木薯精细化工,2001,(1),1-4
    35 熊汉国,蔡明耀,胡雪峰,朱卓平,曾庆想.淀粉的塑化及其生物降解餐具性能研究.中国粮油学报,2002,17(2):55-58
    36 徐光良.农田地膜应用现状及发展趋势.宁波农业科技,2001,(4):2-3
    37 徐卫河,肖咏梅,曹少魁.淀粉基生物降解塑料的开发与进展。工程塑料应用,2001,29(4):44-46
    38 严冰,赵耀明。聚丙交酯及可降解脂肪族聚酯类纤维的结构与生物降解性能.合成纤维,2000,29(3):16-19
    39 杨惠娣.生物降解塑料开发现状与发展趋势.中国塑料,1999,10(4):1-9
    40 姚卫蓉,姚惠源.多孔淀粉的研究Ⅰ:酶和原料粒度对形成多孔淀粉的影响.中国粮油学报,2001,16(1):36-38
    41 姚献平,郑丽萍.淀粉衍生物及其在造纸中的应用技术.北京:中国轻工业出版社,1999,56-63
    42 应宗荣.降解性高分子材料的研究开发进展.现代塑料加工应用,2000,12(1):40-43
    43 于浩.磷酸酯淀粉的生产及应用.应用技术,1997,(7):6-7
    44 詹世平,陈淑花,刘华伟,李卓,黄慧,孙永正,谭绩业.共混对淀粉玻璃化转变特性的影响.食品研究与开发,2006,27(1):3-5
    45 张长德,鲍浪,佟泽民.[Mn(H_2P_2O_7)_3]~(3-)引发淀粉与苯乙烯乳液接枝共聚研究.高分子材料科学与工程,1993,9(6):29-32
    46 张光华,朱军峰,王卓妮,李俊国.玉米淀粉醋酸酯的制备及成膜性能.高分子材料科学与工程.2006,22(4):223-226
    47 张捷,于九皋.多糖类生物降解材料的研究进展.中国塑料,1995,9(6):17-25
    48 张力田.变性淀粉.广州:华南理工大学出版社,1992:82-101
    49 张立平,吴春玉,宋育贤.国外可降解塑料的开发与应用.国外油田工程,2001,(10):37-39
    50 张燕萍.变性淀粉制造与应用.北京:化学工业出版社,2001:317
    51 赵锴,陆天健,全学军,杨细平.多孔淀粉制备与应用的研究进展.重庆工学院学报,2005,19(5):130-132
    52 赵思明,熊善柏,张声华.稻米淀粉糊老化过程的流变学和质构特性.华中农业大学学报.2004,21(2):161-165
    53 周鹏,谭英杰,梁玉蓉.可降解塑料的研究进展.山西化工,2005,25(1):23-26
    56 周琼,刘雄,周才琼,陈宗道.交联微孔淀粉的制备.食品与发酵工业,2004,30(2):138-141
    57 周永元.纺织浆料学.北京:中国纺织出版社,2004:120-125
    58 Albertsson A C, Barenstedt C, Karlsson S. Susceptibility of enhanced environmentally degradable polyethylene to thermal and photo-oxidation. Polymer Degradation and Stability, 1992, 37: 163-171
    
    59 Anon. Eur Plast News . 1998,25(3): 24-26
    
    60 Bikiaris D, Pavlidou E, Prinos J. Biodegradation of octanoated starch and its blends with LDPE . Polymer Degradation and Stability, 1998,60(2): 437-447
    
    61 Bikiaris D, Panyiotou C. LDPE/Starch blends compatibilized with PE-g-MA copolymers. J.Appl. Polym. Sci., 1998, 70(3): 1503-1521
    
    62 Chasin M, Langer R. Biodegradable polymer as drug release systems. Drugs and Pharmaceutial Science, 1990, 65: 35-39
    
    63 Coffin D R, Fishman M L. Physical and mechanical properties of highly plasticized pectin/starch films. J Appl Polym Sci, 1994, 54(9): 1311-1316
    
    64 Delton L M. The rule of starch in biodegradation thermoplastic material. Starch, 1999,(86): 141-145
    
    65 Fred S K, Harry G. Replaced oil and fat with potato-based ingredient. Food Tech, 1987,(3): 110-111
    
    66 Inouse T, Ogata S, et al. Complexation between quaternary ammonium salts and high molecular weight ploy(ethylene oxide)(PEO). Macromolecules, 1984, 185: 1409-1417
    
    67 Jingan Z, Michael A. Madson, et al. Cavities in porous corn starch provide a large Sstorage space. Cereal Chem, 1996, 73(3): 379-380
    
    68 Jophn W, Sons H C J. Truly biodegradable thermoplastic starch composite. J. Polym Sci, 1997, 63(3): 1047-1055
    
    69 Jurgen L. Properties and applications of compostable starchbased plastic material. Polymer Degradation and Stability, 1998, 59: 245-249.
    
    70 Kshirsagar N J, Rangaprasad R, Naik V G. and Kale D D. Ion-beam synthesis and growth mechanism of diamond-like materials . Polym Mater, 1992, 24: 17-20
    
    71 Lim S, Seib P A, Preparation and pasting properties of wheat and corn starch phosphates. Cereal Chemistry. 1993, 70(2): 137-144.
    
    72 Masahiko O, Kouji T, Tomita A. Structure-biodegradability relationship of polyesters. Polymer Preprints, 1998, 39(2): 152-153
    
    73 Mino G., Kaizerman S. A new method for the preparation of graft copolumers. J. Polym. Sci, 1958, 35: 242-245
    
    74 Naitovc M H. Push is on to commercialize biodegradable lactide polymers. Plastics Technology, 1995,41(3): 15-18
    
    75 Owen R F. Food chemistry. New York: Marcel Dekker. Inc. 1996: 201-204
    
    76 Peanasky J S, Long J M, Wool R P. J. Polym Sci., Part B: Polymer Physics 1991, 29: 565-579
    
    77 Poonam A, David D A. Thermal analysis investigation of partially hydrolyzed starch. ThermochimicaActa, 1998,319: 17-25
    
    78 Potts J E. Aspects of degradation and stabilization of polymers. Jellinked: Elsevier, 1978: 16-21
    
    79 Randal L S. Preparation thermal properties and extrusion of high-amylose starch acetates. Carbohydrate Polymers, 1996, 29(1): 57-62
    
    80 Rivard C, Moens L, Roberts K, Brigham J, Kelley S. Starch esters as biodegradable plastics-Effects of ester group chain-length and degree of substitution on anaerobic biodegradation. Enzyme Microb.Technol, 1995,17(9): 848-852
    
    81 Siddaramaiah R B, Somashekar R. Structure-property relation in polyvinyl alcohol/starch composites. Polymer Science, 2004, 91(1): 630-635
    
    82 Sitohy M Z, EI-Saadany S S, Labib S M, et al. Physicochemical properties of different type of starch phosphate monoesters. Starch, 2000, 52(4): 101-105
    
    83 Thomas M, Richard V. Amino acids as plasticizers for starch-based plastics. Starch, 1997,49(6): 245-249
    
    84 Tian Y K, Hou L Y, Yu X D. Application status question on biodegradable polymers. Shanhai huagong, 1999, 24(5): 28-30
    
    85 Gross R A, Kalra B. Biodegradable polymers for the environment. Science, 2002, 297: 803 - 807.