黔东南浅变质岩隧道围岩分级与评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围岩分级一直是隧道及地下工程中的重要课题。由于工程地质环境的不同,围岩分级方法的适宜性受到了质疑和关注。因此,在特定的工程地质条件下,研究围岩分级体系有着重要的实践意义。
     本文以黔东南浅变质岩隧道群为研究对象,通过现场调查和室内试验,分析黔东南浅变质岩的物理力学性质、围岩破坏形式及影响围岩稳定性的主要因素,探索适合本地区隧道施工阶段的围岩动态分级法,为贵州境浅变质岩区内高速公路安全快速的建设提供强有力的保障,且为类似工程提供经验和数据积累。本文主要研究成果如下:
     (1)通过对地形地貌、岩性调查及地质体追踪等现场调研活动,判断出隧址区内地质构造较简单,地质活动不强烈,无断层等重大不良地质体;通过室内试验得到了浅变质岩的基本物理力学参数,该浅变质岩多为软岩~较坚硬岩;结合施工现场实际情况,分析了隧址区内施工中潜在的地质灾害情况。
     (2)通过对施工阶段掌子面观测,分析了隧址区围岩变形破坏的类型,本区内围岩变形破坏以混合型为主,即围岩不仅受岩石强度的制约,还受结构面的制约,与之对应的围岩破坏的主要形式主要是掉块、弯折内鼓、顶部拱曲、塌落、松弛及崩塌。
     (3)通过对现场超前地质预报测试分析,得到了该区完整围岩、断层破碎带、富水带、裂隙发育带等的地质体的雷达分析图。
     (4)根据隧址区围岩特性及稳定性的影响因素分析,确定了围岩分级的基本因素为岩石的坚硬程度和岩体的完整程度,修正因素为地下水及结构面产状与洞轴线的组合关系,并对各个指标进行了相关性分析。在实际工程中,可利用超前地质预报和BQ法对围岩级别进行综合判断,这将大大提高围岩级别的准确性。
     (5)通过施工监控量测及其后期分析,得到了与浅变质岩围岩级别相适应的收敛范围,为围岩级别的判定提供了校核。
     (6)利用灰色系统理论对围岩级别进行了分析,将其结果与上述方法进行对比,约有85%的结果是一致的,这说明运用运用灰色理论进行围岩级别是可行的。但通过现场反馈信息看出,综合运用超前预报和BQ法判断围岩级别更为快捷。
Classification of wall rock is always an important topic of the tunnel and underground engineerings. Because of different engineering geological conditions, the adaption of classification of wall rocks has been severely focused and queried. Thus, it is important for certain engineering circumstance to study classification of wall rock systemtically.
     It is analysed for epimetamorphic rock in southeast of Guizhou by field investigations and laboratory tests in this paper, including the physical-mechanical properties, destructional forms and main influencing factors of wall rock. And it is discussed to classify the wall rock dynamically in construction of tunnels. All researches will be not only profit for safety construction of XiaRong high way, but also useful for similar projects. The main results are as follow:
     (1) Judging from the investigation of landform, lithology and geologic body, it was concluded that the geological structures of tunnel site are relatively simple, and the geologic activities were not strong. The indoor tests of the basic physical-mechanical parameter for epimetamorphic is performed. It is mainly soft or relatively hard rock. It is investigated that the environmental engineering issues, on the basis of the construction site.
     (2) The types of deformation and failure of wall rock were analysed by observing work face of tunnel. In this region, wall rock are influenced by solid of rock and structural plane. There are some failure types of wall rock, such as block, bend the drum, arched top, collapse, relaxation and collapse.
     (3) By the geological prediction test, the typical radar reflectogram of geological phenomenon was obtained including the whole wall rock, fault zone, water-rich zone, fracture zone, etc.
     (4) According to the features and stability factors on wall rock, it can be confirmed that the basic classification factors are hardness degree of rock and integrated degree of rock mass. Modified factors are ground water and syntagmatic relations between the orientation of discontinuity and the axis of tunnel. Relevant relationship of respective index were analyzed. It is feasible to determine and evaluate the classification of wall rock in tunnel excavation by the geological forecast test and BQ method together.
     (5) It is obtained the convergence level of the range of epimetamorphic rock by monitore and measuration in the construction and post-analysis, which provide a standard to determine the degree of the wall rock.
     (6) The classification of wall rock was done by grey relational theory. Compared with the geological forest test and BQ method,the results of classification by grey relational theory are the same about 85%. It shows that the grey relational theory is feasible for the classification. But it is simple and efficient to utilize the advanced prediction test and BQ method together in determining the grade of wall rock on the basis of the feedback information.
引文
[1]孙立功,刘杰.隧道工程[M].西南交通大学出版社,2006
    [2]陈秋南.隧道工程[M].机械工业出版社,2007
    [3]朱璐.基于地质超前预报技术的隧道围岩级别综合动态判定方法研究[D].长沙:中南大学,2008
    [4]王广德.复杂条件下围岩分类研究-以锦屏二级水电站深埋隧洞围岩分类为例[D].成都:成都理工大学,2003
    [5]王石春,何发亮,李苍松.隧道工程岩体分级[M].西南交通大学出版社,2007
    [6] Barton, N., R. Lien and J. Lunde, 1974,“Engineering classification of rock masses for the design of tunnel support.”Rock Mechanics , v. 6,No. 4, pp. 189-236
    [7]任洋.高地应力公路隧道施工阶段围岩分级方法研究及应用[D].成都:成都理工大学,2009
    [8]靳晓光,王兰生,卫红.公路隧道围岩变形监测及其应用[J].中国地质灾害与防治学报,2000,11(1)19-21
    [9]江勇顺.山区高速公路隧道围岩分级方法及应用研究—以西攀、攀田高速公路隧道为例[D].成都:成都理工大学,2007
    [10]公路隧道设计规范(JTG 026-90)[M].北京:人民交通出版社,1990
    [11]刘拓.高速公路小净距隧道设计和施工方法探讨[D].合肥:合肥工业大学,2007
    [12]公路隧道设计规范(JTGD70-2004)[M].北京:人民交通出版社,2004
    [13]白明洲,许兆义,王连俊等.隧道围岩分级的模糊信息分析模型及应用研究[J].铁道学报,2001,23 (6)85-88
    [14]章杨松.岩石质量指标的计算机模拟及其风险分析[J].地质灾害与环境保护,2002,13 (1)45-47
    [15]陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21 (12)1894-1900
    [16]何发亮,谷明成,王石春.TBM施工隧道围岩分级方法研究[J].岩石力学与工程学报,2002,2 (9)
    [17]陈炜韬,王明年,王玉锁等.黏质土隧道围岩分级指标的选取研究[J].岩土力学,2008,29 (4)901-910
    [18]史秀志,周健.隧道围岩分级判别的未确知均值聚类模型[J].土木工程与地质环境,2009, 31(2)62-67
    [19]厦蓉高速公路贵州境榕江格龙至都匀段隧道施工图.西安:中交第一公路勘察设计研究院有限公司,2008
    [20]严竞雄.千枚岩隧道岩性及施工期结构受力变形机理研究[D].北京:北京交通大学,2009
    [21]尚岳全,王清,蒋军等.地质工程学[M].清华大学出版社,2006
    [22]关辉辉,朱建群,刘栋.巫帮1#隧道水平岩层软弱围岩施工技术[J].西部交通科技,2010,38(9)66-69
    [23]张辉.高速公路隧道施工阶段围岩动态分级系统研究[D].长沙:长沙理工大学,2007
    [24]苏有财.观斗山隧道超前地质预报和围岩稳定性分级研究[D].成都:西南交通大学,2005
    [25]文竞舟.基于现场监控量测的倾斜层状隧道围岩稳定性的研究[D].重庆:重庆交通大学,2009
    [26]严林.石灰岩地区高速公路隧道围岩动态分级与支护合理性研究[D].重庆:重庆大学,2009
    [27]索巍.姚家山隧道围岩稳定性分析[D].西安:西安科技大学,2009
    [28]王石春,张可诚,李兆权.岩体质量分级因素定量指标的确定.见:隧道工程地质与声波探测技术.成都:西南交通大学出版社,2004,123~138
    [29]钟彤桂.铁路隧道[M].北京:人民铁道出版社,1996
    [30]关宝树.铁路隧道围岩分类.北京:人民铁道出版社,1997
    [31]朱晓宁,王惠勇.隧道围岩开挖稳定性等级综合评判实用方法研究[J].中南公路工程,2005,30(2):48-51
    [32]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1997
    [33]童宏纲.高速公路隧道围岩质量评价系统的研究[D].北京:中国地质大学,2000
    [34]任长吉.公路隧道围岩稳定性分析及支护对策研究[D].吉林:吉林大学,2008
    [35]陈岩.隧道施工期围岩级别快速鉴别及工程应用研究[D].北京:北京交通大学,2010
    [36] Singh, B.,J.C. Jethwa, A.K. Dube and B. Singh, 1992,“Correlation between observed support pressure and rock mass quality”, Tunneling and Underground Space Technology, Vol. 7, No. 1, pp. 59-74
    [37]李先伟,付学敏.不规则岩块点荷载试验的研究[J].岩土工程学报,1987,9 (1)1-11
    [38]侯龙清,胡明华,陈韧.泥质粉砂岩电荷强度与单轴抗压强度对比研究[J].路基工程,2008,6(1)26-27
    [39]张学义,鲍本健.点荷载试验确定岩基抗压强度标准值的分析[J].安徽地质,2008,12(4)268-272
    [40]张振营.六黄潜高速公路隧道施工中围岩快速分级及地质预报[D].吉林:吉林大学,2007
    [41]徐燕,佴磊.两步分级法在公路隧道动态施工围岩分级中的应用[J].现代隧道技术,2007,44(2)16-19
    [42]黄生文,张辉,李森林等.隧道监控量测在围岩动态分级中的应用[J].长沙理工大学学报(自然科学版)2007,4(3)40-43
    [43]李晓红.隧道新奥法及其量测技术[M].北京:科学出版社,2001
    [44]刘志忠.公路隧道施工监测在围岩动态分级中的应用研究[J].公路交通科技,2008,44(8)151-154
    [45]余顺.公路隧道施工信息化施工技术研究[D].西安:长安大学,2008
    [46]段韬.雪峰山隧道围岩变形监测及反馈技术初步研究[D].成都:成都理工大学,2006
    [47]刘波,陶龙光.地铁隧道施工引起地层变形的反分析预测研究[J].中国矿业大学学报,2004.33(3)
    [48]陈勇.灰色理论在隧道信息化施工中的应用及施工数值分析[D].长沙:中南大学,2006
    [49]朱建群,关辉辉,周勇等.探地雷达在黔东浅变质岩隧道地质预报中的应用[J].湖南科技大学学报(自然科学版),2010,25 (4)59-62
    [50]韩旭里,张宏伟.概率论与数理统计[M].长沙:国防科技大学出版社,2005
    [51]王梓坤.概率论基础及其应用[M].北京:高等教育出版社,1976
    [52]关治,陆金甫.数值方法[M].北京:清华出版社,2005
    [53] Burden R L, Faires J D. Numerical Analysis. 7th ed.北京:高等教育出版社,Thomson Learning. Inc, 2001
    [54] Gautschi W. Numerical Analysis, An Introduction. Baston; Birkhauser, 1997
    [55] Gerald C F, Patrick O W. Applied Numerical Analysis. 3rd ed. Addison-Wesley, Reading, Mass, 1984
    [56]丁黄平,佴磊,张振营.岩石抗压强度点荷载试验与回弹试验相关性分析[J].路基工程,2007,140(5)70-71
    [57]刘栋,高文华,关辉辉.厦蓉高速巫帮隧道监测方案及围岩变形预测[J].西部交通科技,2010,33(4)36-40
    [58]王思敬等.地下工程岩体稳定性分析[M].北京:科学出版社,1984
    [59]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1988
    [60]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990
    [61]易德生,郭萍.灰色理论与方法[M].北京:石油工业出版社,1992
    [62]杨利民,丁昆,刘树堂等.隧道围岩稳定性灰色聚类模型与应用[J].岩土工程界,2006,10(4)43-46
    [63]王迎超.山岭隧道塌方机制及防灾方法[D].浙江:浙江大学,2010
    [64] Deng Ju Long,“Introduction to grey system theory”, The Journal of Grey System,1.1-24,1989