基于系统模型的盲分离算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盲信号分离是信号处理领域的一个重要研究课题,在语音识别、神经网络、数字通信、生物医学等领域都具有广泛的理论基础和应用前景,因而在短短二十多年内就已经取得了非常瞩目的研究成果。尽管该课题发展迅速,其依然存在如下问题:如何采用时频表示算法分离欠定混叠模型下的源信号?如何将平行因子分析工具应用到非独立元假设的盲分离领域?如何处理数字通信系统中真实存在的单输入-多输出有限脉冲响应信道的盲分离问题?如何分离相关源信号?本文依据所考虑的盲分离模型的不同,从如下几个方面继续探讨了盲分离问题:
     第一,详细研究了应用时频表示处理欠定混叠盲分离问题的算法。选用二次时频变换魏格纳-威利分布(WVD:Wigner-Ville Distribution)变换作为稀疏表示,将欠定模型由时域变换到时频域。与传统的稀疏算法不同,该算法在采用单源区间估计混叠矩阵时充分考虑了源信号的WVD的负值。在将所有的自项时频点都提取出来后,该算法采用Khatri_Rao矩阵乘积估计源信号的WVD取值。该算法对在任意时频点取值非零的源信号的个数完全不作限制,只要求源信号的个数和观测信号的个数满足一定的不等式关系。此外,该算法对自项时频点的提取也做了详细的讨论。
     第二,介绍了如何将平行因子分析工具应用到非独立信号的欠定混叠盲分离的一种算法。传统的平行因子分析与盲分离相结合的算法通常都是基于“源信号相互独立”的前提假设的,但该算法对源信号的相关性没有任何限制。该算法利用源信号在自项时频点的空间时频分布矩阵的对角线结构,结合平行因子分析,构造出一个三阶张量。通过平行因子分解算法,即可从该三阶张量中将信道和源信号的时频表示取值同时准确地估计出来。因此,与传统的二步法不同,该算法中不会产生噪声累积和传递,即:信道辨识不准确不会导致源信号恢复不准确。
     第三,分析了在通信系统中实际存在的单输入-多输入有限脉冲响应系统的盲均衡问题,并提出了一种基于信号二阶统计量的算法。传统的算法通常分两步求解,即先将信道估计出来,再根据辨识信道求解均衡器,比如截断传输矩阵(TTM:Truncated Transfer Matrix)算法。本文提出的算法可以直接求解均衡器,因此即使在系统很不稳定的情况下,该算法依旧能取得很理想的效果,即鲁棒性很好。此外,本文还证明了TTM算法在某些参数设置下完全无效,而本文算法则不受这些参数限制。
     最后,考虑了在超定/适定盲分离模型下如何分离相关源信号的问题,并提出了一种对已有算法改进效果显著的新算法。该算法引用概念新颖的预编码器,将信号从时域变换到z域后再对系统做盲均衡,并不需要将信道先估计出来。此外,该算法将预编码器的阶数降至最低,即一阶。这样做的好处有两点:简化了系统,需要处理的数据量明显减少;极大地提高了算法的性能和鲁棒性。
Blind source separation (BSS) is a hot topic in signal processing domain in the last two decades. It attracts more and more attentions because of its wide applications in speech identification, neural networks, digital communication, biomedicine and so on. Although a lot of important research results and theories have been achieved, there still exist some problems, such as how to apply Time-Frequency (TF) representation to underdetermined BSS? How to use PARAllel FACtor Analysis (PARAFAC) to deal with BSS, even though the sources are not independent on each other? How to tackle the BSS of Single-Input-Multiple-Output (SIMO) Finite-Impulse-Response (FIR) system, which practically exists in digital communication field? How to separate mutually correlated sources? This thesis explores BSS problems with different models from the following four aspects:
     First, it presents a novel algorithm dealing with underdetermined BSS by using TF representation. A kind of quadratic TF distribution, Wigner-Ville Distribution (WVD). is used to convert the time-domain BSS model into TF domain model. Unlike traditional Sparse Component Analysis (SCA) methods, the proposed algorithm takes the negative value of the auto WVD of the sources into account while using Single Source Domain (SSD) assumption to estimate the mixing matrix. Then after extracting all the auto-term TF points, it utilizes Khatri_Rao product of two matrices to find out the auto WVD value of sources at every auto-term TF point. It does not impose any constraints on the number of active sources at any auto-term TF points as long as the number of sources is less than twice the number of observed mixtures. Moreover, further discussion about the extraction of auto-term TF points is made to verify the effectiveness of the proposed algorithm.
     Second, it introduces a new TF approach to the underdetermined BSS using the PARAFAC of third-order tensors. PARAFAC is usually applied to BSS under Independent Component Analysis (ICA) assumption which is not necessary in the presented algorithm. This algorithm exploits the diagonal structure of the Spatial TF Distribution (STFD) matrices of the sources at the auto-term TF points and constructs a third-order tensor using the STFD matrices of the observed mixtures. Then the channel and the sources can be estimated directly at the same time by parallel factor decomposition. Thus unlike traditional two-stage methods, there is no noise propagation from the estimation of mixing matrix to the estimation of sources.
     Third, it analyzes the blind equalization in SIMO FIR system in digital communication, and presents a novel algorithm by exploiting the Second-Order Statistics (SOS) of the channel outputs. Usually, SOS-based blind equalization is carried out via two stages. In the first stage, the SIMO FIR channel is estimated using a blind identification method, such as the recently developed Truncated Transfer Matrix (TTM) method. In the second stage, an equalizer is derived from the estimate of the channel to recover the source signal. However, this type of two-stage approach does not give satisfactory blind equalization result if the channel is ill-conditioned, which is often encountered in practical applications. On the contrary, the proposed algorithm can estimate the equalizer directly without knowing the channel impulse response, thus it can work well even in the case that the channel is ill-conditioned. Besides, it proves that the TTM method does not work under some situations.
     Finally, it considers the separation of mutually correlated sources in the over-determined/determined BSS, and presents an effective improvement of a recently developed algorithm. The improvement employs the novel precoders combining with the novel z transform to deal with blind equalization. Similar to the third algorithm proposed in this thesis, it needs not to estimate the channel at first. Besides, the improvement decreases the filter order of the precoders to only one, which simplifies the system greatly, reduces the computational complexity and improves the performance of the algorithm to a large extent.
引文
[1]Jutten C., Herault J. Blind Source Separation of Sources, Part 1:an Adaptive Algorithm Based on Neuromimetic Architecture [J]. Signal Processing,1991,24(1):1-10.
    [2]张贤达,保铮.盲信号分离[J].电子学报,2001,29(12A):1766-1771.
    [3]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006.
    [4]Moudden Y., Bobin J. Hyperspectral BSS Using GMCA With Spatio-Spectral Sparsity Constraints [J]. Image Processing, IEEE Transactions on,20(3):872-879.
    [5]Tonazzini A., Gerace I., Martinelli F. Multichannel Blind Separation and Deconvolution of Images for Document Analysis [J]. Image Processing, IEEE Transactions on,2010, 19(4):912-925.
    [6]Fadili M. J., Starck J. L., Bobin J., et al. Image Decomposition and Separation Using Sparse Representations:An Overview [J]. Proceedings of the IEEE,2010,98(6): 983-994.
    [7]Lin Q.-H., Yin F.-L. Blind Source Separation Applied to Image Cryptosystems with Dual Encryption [J]. Electronics Letters,2002,38(19):1092-1094.
    [8]Kundur D., Hatzinakos D. Blind Image Deconvolution [J]. Signal Processing Magazine, IEEE,1996,13(3):43-64.
    [9]Giannakis G. B., Heath R. W., Jr. Blind Identification of Multichannel FIR Blurs and Perfect Image Restoration [J]. Image Processing, IEEE Transactions on,2000,9(11): 1877-1896.
    [10]张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报,2004,9(10):1145-1152.
    [11]Wooil K., Hansen J. H. L. Time-Frequency Correlation-Based Missing-Feature Reconstruction for Robust Speech Recognition in Band-Restricted Conditions [J]. Audio, Speech, and Language Processing, IEEE Transactions on,2009,17(7):1292-1304.
    [12]Rivet B., Girin L., Jutten C. Mixing Audiovisual Speech Processing and Blind Source Separation for the Extraction of Speech Signals From Convolutive Mixtures [J]. Audio, Speech, and Language Processing, IEEE Transactions on,2007,15(1):96-108.
    [13]Takahashi Y., Takatani T., Osako K., et al. Blind Spatial Subtraction Array for Speech Enhancement in Noisy Environment [J]. Audio, Speech, and Language Processing, IEEE Transactions on,2009,17(4):650-664.
    [14]吴小培,冯焕清,周荷琴,et al.基于独立分量分析的混合声音信号分离[J].中国科学技术大学学报,2001,31(1):68-73.
    [15]Xie S., Yang Z., Fu Y. Nonnegative Matrix Factorization Applied to Nonlinear Speech and Image Cryptosystems [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2008,55(8):2356-2367.
    [16]Lin Q.-H., Yin F.-L., Mei T.-M., et al. A Blind Source Separation Based Method For Speech Encryption [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on, 2006,53(6):1320-1328.
    [17]林秋华.基于盲源分离的图像与语音加密新方法研究[D].广州;华南理工大学,2006.
    [18]杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学生物医学工程分册,2000,23(3):129-135.
    [19]Ng. S.-C., Raveendran P. Enhanced mu Rhythm Extraction Using Blind Source Separation and Wavelet Transform [J]. Biomedical Engineering, IEEE Transactions on, 2009,56(8):2024-2034.
    [20]Guimaraes M. P., Dik Kin W., Uy E. T., et al. Single-Trial Classification of MEG Recordings [J]. Biomedical Engineering, IEEE Transactions on,2007,54(3):436-443.
    [21]Gupta A., Srivastava M. C., Khandelwal V. A Novel Approach to Fetal ECG Extraction and Enhancement Using Blind Source Separation (BSS-ICA) and Adaptive Fetal ECG Enhancer (AFE) [A]. proceedings of the Information, Communications & Signal Processing, 2007 6th International Conference on[C],2007.
    [22]Kam A., Cohen A. Maternal ECG Elimination and Foetal ECG Detection-Comparison of Several Algorithms [A]. proceedings of the Engineering in Medicine and Biology Society,1998 Proceedings of the 20th Annual International Conference of the IEEE[C], 1998.
    [23]蔡坤.胎儿心电信号的盲分离研究[D].广州;华南理工大学,2011.
    [24]Henneberg K. A., Plonsey R. Boundary Element Analysis of the Directional Sensitivity of the Concentric EMG Electrode [J]. Biomedical Engineering, IEEE Transactions on, 1993,40(7):621-631.
    [25]Shahid S., Walker J., Lyons G. M., et al. Application of Higher Order Statistics Techniques to EMG Signals to Characterize the Motor Unit Action Potential [J]. Biomedical Engineering, IEEE Transactions on,2005,52(7):1195-1209.
    [26]王宇,迟毅林,伍星,et a1.基于盲信号处理的机械噪声监测与故障诊断[J].振动与冲击,2009,28(6):32-42.
    [27]Zineb M.-S., Gerard B., Patrice A. A Subspace Method for Detection and Classification of Rail Defects [A]. proceedings of the EUSIPCO(16th European Signal Processing Conference)[C], Lausanne, Switzerland,2008.
    [28]马建仓,刘琦,马艳玲.飞机发动机混沌振动信号盲分离检测方法[J].航空学报,2009,30(1):81-85.
    [29]徐长江,酆广增.基于高阶累积量的盲自适应多用户检测[J].电子学报,2000,28(7):48-54.
    [30]Hu B., Yang L.-L., Hanzo L. Time-and Frequency-Domain-Spread Generalized Multicarrier DS-CDMA Using Subspace-Based Blind and Group-Blind Space-Time Multiuser Detection [J]. Vehicular Technology, IEEE Transactions on,2008,57(5): 3235-3241.
    [31]Nion D., De Lathauwer L. A Block Component Model-Based Blind DS-CDMA Receiver [J]. Signal Processing, IEEE Transactions on,2008,56(11):5567-5579.
    [32]万坚,涂世龙,廖灿辉.通信混合信号盲分离理论与技术[M].北京:国防工业出版社,2012.
    [33]Moulines E., Duhamel P., Cardoso J. R., et al. Subspace Methods for the Blind Identification of Multichannel FIR Filters [J]. Signal Processing, IEEE Transactions on, 1995,43(2):516-525.
    [34]Boss D., Kammeyer K. D., Petermann T. Is Blind Channel Estimation Feasible in Mobile Communication Systems? A Study Based on GSM [J]. Selected Areas in Communications, IEEE Journal on,1998,16(8):1479-1492.
    [35]丁奇.大话无线通信[M].北京:人民邮电出版社,2012.
    [36]樊昌信,曹丽娜.通信原理[M].北京:国防工业出版社,2011.
    [37]Coskun A., Kale I. Blind Multidimensional Matched Filtering Techniques for Single Input Multiple Output Communications [J]. Instrumentation and Measurement, IEEE Transactions on,2010,59(5):1056-1064.
    [38]Li X. Channel Independent Viterbi Algorithm (CIVA) for Blind Sequence Detection with Near MLSE Performance [A]. proceedings of the Signals, Systems and Computers,2001 Conference Record of the Thirty-Fifth Asilomar Conference on[C],2001.
    [39]Tugnait J. K., Tong L., Ding Z. Single-User Channel Estimation and Equalization [J]. Signal Processing Magazine, IEEE,2000,17(3):16-28.
    [40]周郭许.盲信号分离若干关键问题研究[D].广州;华南理工大学,2010.
    [41]Hyvarinen A., Oja E. Independent Component Analysis:Algorithms and Applications [J]. Neural Networks,2000,13(4):411-430.
    [42]牛德智,陈长兴,王曙钊,et al. FastICA在MIMO信道估计中的应用研究[J].计算机工程与应用,2012,48(6):106-109.
    [43]Shen J., Ding Z. Direct Blind MMSE Channel Equalization Based on Second-Order Statistics [J]. Signal Processing, IEEE Transactions on,2000,48(4):1015-1022.
    [44]Gu N., Xiang Y., Tan M., et al. A New Blind-Equalization Algorithm for an FIR SIMO System Driven by MPSK Signal [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2007,54(3):227-231.
    [45]Xiang Y, Ng S. K. An Approach to Nonirreducible MIMO FIR Channel Equalization [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2009,56(6):494-498.
    [46]Xiang Y, Ng S. K., Nguyen V. K. Blind Separation of Mutually Correlated Sources Using Precoders [J]. Neural Networks, IEEE Transactions on,2010,21(1):82-90.
    [47]Proakis J. Digital Communications [M]. New York:McGraw-Hill,1989.
    [48]Cherry E. C. Some Experiments on the Recognition of Speech, with One and Two Ears [J]. Journal of the Acoustical Society of America,1953,25(1):975-979.
    [49]Ainhoren Y., Engelberg S., Friedman S. The Cocktail Party Problem [Instrumentation Notes] [J]. Instrumentation & Measurement Magazine, IEEE,2008,11(3):44-48.
    [50]Lu W., Rajapakse J. C. Approach and Applications of Constrained ICA [J]. Neural Networks, IEEE Transactions on,2005,16(1):203-212.
    [51]Cardoso J. F. Blind Signal Separation: Statistical Principles [J]. Proceedings of the IEEE, 1998,86(10):2009-2025.
    [52]Hyvarinen A. Fast and Robust Fixed-Point Algorithms for Independent Component Analysis [J]. Neural Networks, IEEE Transactions on,1999,10(3):626-634.
    [53]Hyvarinen A. Gaussian moments for noisy independent component analysis [J]. Signal Processing Letters, IEEE,1999,6(6):145-147.
    [54]Vigario R., Sarela J., Jousmiki V., et al. Independent component approach to the analysis of EEG and MEG recordings [J]. Biomedical Engineering, IEEE Transactions on,2000, 47(5):589-593.
    [55]Pham D. T. Mutual Information Approach to Blind Separation of Stationary Sources [J]. Information Theory, IEEE Transactions on,2002,48(7):1935-1946.
    [56]丁佩律,梅剑锋,张立明,et al.基于独立分量分析的人脸自动识别方法研究[J],红外与毫米波学报,2001,20(5):361-364.
    [57]Pham D. T, Cardoso J. F. Blind Separation of Instantaneous Mixtures of Nonstationary Sources [J]. Signal Processing, IEEE Transactions on,2001,49(9):1837-1848.
    [58]Zarzoso V., Comon P., Phlypo R. A Contrast Function for Independent Component Analysis Without Permutation Ambiguity [J]. Neural Networks, IEEE Transactions on, 2010,21(5):863-868.
    [59]Hild K. E., Erdogmus D., Principe J. Blind Source Separation Using Renyi's Mutual Information [J]. Signal Processing Letters, IEEE,2001,8(6):174-176.
    [60]Zhu X.-L., Zhang X.-D. Adaptive RLS Algorithm for Blind Source Separation Using a Natural Gradient [J]. Signal Processing Letters, IEEE,2002,9(12):432-435.
    [61]Zhu X.-L., Zhang X.-D., Ding Z.-Z., et al. Adaptive Nonlinear PCA Algorithms for Blind Source Separation without Prewhitening [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on,2006,53(3):745-753.
    [62]Li G., Liu Y., Yin J., et al. Projective Tracking Based on Second-Order Optimization on Lie Manifolds [A]. proceedings of the Pattern Recognition,2008 CCPR'08 Chinese Conference on[C],2008.
    [63]Chien J.-T., Hsieh H.-L. Convex Divergence ICA for Blind Source Separation [J]. Audio, Speech, and Language Processing, IEEE Transactions on,2012,20(1):302-313.
    [64]Heeyoul C, Seungjin C. Relative Gradient Learning for Independent Subspace Analysis [A]. proceedings of the Neural Networks,2006 IJCNN'06 International Joint Conference on[C],2006.
    [65]Ge R., Ma J. Spurious Solution of the Maximum Likelihood Approach to ICA [J]. Signal Processing Letters, IEEE,2010,17(7):655-658.
    [66]Belouchrani A., Abed-Meraim K., Cardoso J. F., et al. A Blind Source Separation Technique Using Second-Order Statistics [J]. Signal Processing, IEEE Transactions on, 1997,45(2):434-444.
    [67]刘琚,何振亚.盲源分离和盲反卷积[J].电子学报,2002,30(4):570-576.
    [68]Ferreol A., Albera L., Chevalier P. Fourth-Order Blind Identification of Underdetermined Mixtures of Sources (FOBIUM) [J]. Signal Processing, IEEE Transactions on,2005, 53(5):1640-1653.
    [69]De Lathauwer L., Castaing J., Cardoso J. F. Fourth-order Cumulant-Based Blind Identification of Underdetermined Mixtures [J]. Signal Processing, IEEE Transactions on, 2007,55(6):2965-2973.
    [70]O'Grady P. D., Pearlmutter B. A. The Lost Algorithm:Finding Lines and Separating Speech Mixtures [J]. EURASIP Journal on Advances in Signal Processing,2008, 2008(16):1-17.
    [71]谭北海,谢胜利.基于源信号数目估计的欠定盲分离[J].电子与信息学报,2008,30(4):863-867.
    [72]Massoud B.-Z., Jutten C. On the Stable Recovery of the Sparsest Overcomplete Representations in Presence of Noise [J]. Signal Processing, IEEE Transactions on,2010, 58(10):5396-5400.
    [73]Mohimani H., Massoud B.-Z., Jutten C. A Fast Approach for Overcomplete Sparse Decomposition Based on Smoothed L0 Norm [J]. Signal Processing, IEEE Transactions on,2009,57(1):289-301.
    [74]Donoho D. L. Compressed Sensing [J]. Information Theory, IEEE Transactions on,2006, 52(4):1289-1306.
    [75]Nguyen L.-T., Adel B., Karim A.-M., et al. Separating More Sources than Sensors Using Time-Frequency Distributions [J]. Eurasip Journal on Applied Signal Processing,2005, 2005(17):2828-2847.
    [76]Peng D. Z., Xiang Y. Underdetermined Blind Source Separation Based on Relaxed Sparsity Condition of Sources [J]. Signal Processing, IEEE Transactions on,2009,57(2): 809-814.
    [77]Harshman R. A. Determination and Proof of Minimum Uniqueness Conditionsfor PARAFAC [J]. UCLA Working Papers in Phonetics,1972,22(1):111-117.
    [78]Carroll J. D., Chang J.-J. Analysis of Individual Differences in Multimensional Scaling via an N-Way Generalization of 'Eckart-Young' Decomposition [J]. Psychometrika,1970, 35(3):283-319.
    [79]Harshman R. A. Foundations of The PARAFAC Procedure:Models and Conditions for an Explanatory, Multi-Model Factor Analysis [J]. UCLA Working Papers in Phonetics,1970, 16(1):1-84.
    [80]Bro R. PARAFAC:Tutorial and Applications [J]. Chemometrics and Intelligent Laboratory Systems,1997,38(2):149-171.
    [81]司马伟昌,张玉钧等.多波长LED阵列诱导荧光光谱在多组分析中的应用研究[J]. 光谱学和光谱分析,2008,28(1):165-168.
    [82]De Vos M..Vergult A.. De Lathauwer L.. et al. Canonical Decomposition of Ictal Scalp EEG Reliably Detects the Seizure Onset Zone [J]. Neuroimage.2007,37(3):844-854.
    [83]张小飞,黄希珠,徐大专.极化敏感均匀圆阵中PARAFAC信号检测算法[J].南京航空航天大学学报,2006,23(4):291-296.
    [84]R.B.Cattel. Parallel proportional profiles and other principles for determining the choice of factors by rotation [J]. Psychometrika,1944,9(267-283.
    [85]倪永年,蔡英俊.平行因子-同步荧光法测定食品中维生素B1,B2和B6[J].光谱学和光谱分析,2005,25(10):1641-1644.
    [86]A.D.Juan a. R. T. D. Spectroscopic imaging and chemometrics:a powerful combination for global and local sample analysis [J]. TrAC Trends in Analytical Chemistry,2004, 23(1):70-79.
    [87]Stegeman A., Berge J. M. F., De Lathauwer L. Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices [J]. Psychometrika, 2006,71(2):219-229.
    [88]梁军利,杨树元,赵峰,et a1.一种新的基于平行因子分析的近场源定位算法[J].系统工程与电子技术,2007,29(1):32-36.
    [89]Shashua A., Zass R., Hazan T. Multi-way clustering using super-symmetric non-negative tensor factorization [J]. Computer Vision-Eccv 2006, Pt 4, Proceedings,2006, 3954(595-608.
    [90]De Lathauwer L., Castaing J. Blind Identification of Underdetermined Mixtures by Simultaneous Matrix Diagonalization [J]. Signal Processing, IEEE Transactions on,2008, 56(3):1096-1105.
    [91]Sidiropoulos N. D., Giannakis G. B., Bro R. Blind PARAFAC Receivers for DS-CDMA Systems [J]. Signal Processing, IEEE Transactions on,2000,48(3):810-823.
    [92]Liu X. Q., Sidiropoulos N. D. Cramer-Rao Lower Bounds for Low-Rank Decomposition of Multidimensional Arrays [J]. Signal Processing. IEEE Transactions on,2001,49(9): 2074-2086.
    [93]Kruskal J. B. Three-Way Arrays:Rank and Uniqueness of Trilinear Decomposition, with Application to Arithmetic Complexity and Statistics [J]. Linear Algebra and Its Applications,1977,18(1):95-138.
    [94]Sidiropoulos N. D., Bro R. On the Uniqueness of Multilinear Decomposition of N-Way Arrays [J]. Journal of Chemometrics,2000,14(3):229-239.
    [95]Carroll J. D., Chang J.-J. Analysis of Individual Differences in Multidimensional Scaling via an N-Way Generalization of "Eckart-Young" Decomposition [J]. Psychometrika, 1970,35(3):283-319.
    [96]Tomasi G., Bro R. A Comparison of Algorithms for Fitting the PARAFAC Model [J]. Computational Statistics & Data Analysis,2006,50(7):1700-1734.
    [97]Vorobyov S. A., Yue R., Sidiropoulos N. D., et al. Robust Iterative Fitting of Multilinear Models [J]. Signal Processing, IEEE Transactions on,2005,53(8):2678-2689.
    [98]He Z., Cichocki A., Xie S., et al. Detecting the Number of Clusters in N-Way Probabilistic Clustering [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2010,32(11):2006-2021.
    [99]Papalexakis E. E., Sidiropoulos N. D. Co-Clustering as Multilinear Decomposition with Sparse Latent Factors [A], proceedings of the Acoustics, Speech and Signal Processing (ICASSP),2011 IEEE International Conference on[C],2011.
    [100]Xiang Y., Peng D., Guo S. Novel Z-Domain Precoding Method for Blind Separation of Spatially Correlated Signals [J]. Neural Networks and Learning Systems, IEEE Transactions on,2013,24(1):94-105.
    [101]杨祖元.盲信号分离算法分析与应用研究[D].广州;华南理工大学,2009.
    [102]Zhou G., Xie S., Yang Z., et al. Minimum-Volume-Constrained Nonnegative Matrix Factorization: Enhanced Ability of Learning Parts [J]. Neural Networks, IEEE Transactions on,2011,22(10):1626-1637.
    [103]Xiang Y, Nguyen V. K., Gu N. Blind Equalization of Nonirreducible Systems Using the CM Criterion [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on, 2006,53(8):758-762.
    [104]Gazzah H. Optimum Blind Multichannel Equalization Using the Linear Prediction Algorithm [J]. Signal Processing, IEEE Transactions on.2006.54(8):3242-3247.
    [105]Comon P. Independent Component Analysis, a New Concept? [J]. Signal Processing, 1994,36(3):287-314.
    [106]Gorodnitsky I. F., Rao B. D. Sparse Signal Reconstruction from Limited Data Using FOCUSS:a Re-Weighted Minimum Norm Algorithm [J]. Signal Processing, IEEE Transactions on,1997,45(3):600-616.
    [107]Liu D., Hu S., Zhang H. Simultaneous Blind Separation of Instantaneous Mixtures With Arbitrary Rank [J]. Circuits and Systems I:Regular Papers, IEEE Transactions on, 2006,53(10):2287-2298.
    [108]Papadias C. B. Globally Convergent Blind Source Separation Based on a Multiuser Kurtosis Maximization Criterion [J]. Signal Processing, IEEE Transactions on,2000, 48(12):3508-3519.
    [109]Delfosse N., Loubaton P. Adaptive Separation of Independent Sources:a Deflation Approach [A].proceedings of the Acoustics, Speech, and Signal Processing,1994 ICASSP-94,1994 IEEE International Conference on[C],1994.
    [110]Karfoul A., Albera L., Birot G. Blind Underdetermined Mixture Identification by Joint Canonical Decomposition of HO Cumulants [J]. Signal Processing, IEEE Transactions on,2010,58(2):638-649.
    [111]Li Y., Amari S. I., Cichocki A., et al. Underdetermined Blind Source Separation Based on Sparse Representation [J]. Signal Processing, IEEE Transactions on,2006, 54(2):423-437.
    [112]Zhou G., Yang Z., Xie S., et al. Mixing Matrix Estimation From Sparse Mixtures With Unknown Number of Sources [J]. Ieee Transactions on Neural Networks,2011, 22(2):211-221.
    [113]何昭水,谢胜利,傅予力.信号的稀疏性分析[J].自然科学进展,2006,16(9): 1167-1173.
    [114]Kim S., Yoo C. D. Underdetermined Blind Source Separation Based on Subspace Representation [J]. Signal Processing, IEEE Transactions on,2009,57(7):2604-2614.
    [115]Pedersen M. S., Wang D., Larsen J., et al. Two-Microphone Separation of Speech Mixtures [J]. Neural Networks, IEEE Transactions on,2008,19(3):475-492.
    [116]Ichir M. M., Mohammad-Djafari A. Hidden Markov models for wavelet-based blind source separation [J]. Image Processing, IEEE Transactions on,2006,15(7):1887-1899.
    [117]肖明,谢胜利,傅予力.基于频域单源区间的具有延迟的欠定盲分离[J].电子学报,2007,35(12):2279-2283.
    [118]Yilmaz O., Rickard S. Blind Separation of Speech Mixtures via Time-Frequency Masking [J]. Signal Processing, IEEE Transactions on,2004,52(7):1830-1847.
    [119]Peng D., Xiang Y. Underdetermined Blind Separation of Non-Sparse Sources Using Spatial Time-Frequency Distributions [J]. Digital Signal Processing,2010,20(2): 581-596.
    [120]Luo Y., Wang W., Chambers J. A., et al. Exploitation of Source Nonstationarity in Underdetermined Blind Source Separation with Advanced Clustering Techniques [J]. Signal Processing, IEEE Transactions on,2006,54(6):2198-2212.
    [121]Abdeldjalil A.-E.-B., Nguyen L.-T., Karim A.-M., et al. Underdetermined Blind Separation of Nondisjoint Sources in the Time-Frequency Domain [J]. Signal Processing, IEEE Transactions on,2007,55(3):897-907.
    [122]Allen R. L., Mills D. W. Signal Analysis: Time, Frequency, Scale, and Structure [M]. New York:Wiley Press 2004.
    [123]Belouchrani A., Algiers Abed-Meraim K., Amin M. G., et al. Joint Anti-Diagonalization for Blind Source Separation [J].2001 IEEE International Conference on Acoustics, Speech, and Signal Processing,2001 Proceedings (ICASSP '01),2001,5(2789-2792.
    [124]Nguyen L.-T., Adel B., Karim A.-M., et al. Separating More Sources than Sensors Using Time-Frequency Distributions [M]. ISSPA2001:Sixth International Symposium on Signal Processing and Its Applications.2001:583-586.
    [125]Brewer J. Kronecker Products and Matrix Calculus in System Theory [J]. Circuits and Systems, IEEE Transactions on,1978,25(9):772-781.
    [126]Boudreaux-Bartels G., Parks T. Time-Varying Filtering and Signal Estimation Using Wigner Distribution Synthesis Techniques [J]. Acoustics, Speech and Signal Processing, IEEE Transactions on,1986,34(3):442-451.
    [127]Rabiner L., Juang B.-H. Fundermentals of Speech Recognition [M]. Prentice-Hall International, Inc.,1993.
    [128]Tyagi V., Bourlard H., Wellekens C. On Variable-Scale Piecewise Stationary Spectral Analysis of Speech Signals for ASR [J]. Speech Communication,2006,48(9): 1182-1191.
    [129]Kim S.-J., Koh K., Lustig M., et al. An Interior-Point Method for Large-Scale 11-Regularized Least Squares [J]. Selected Topics in Signal Processing, IEEE Journal of, 2007,1(4):606-617.
    [130]Cichocki A., Amari S., Siwek K., et al. ICALAB Toolboxes[Online]. Available: http://www.bsp.brain.riken.jp/ICALAB [M].
    [131]Xie S., Yang L., Yang J.-M., et al. Time-Frequency Approach to Underdetermined Blind Source Separation [J]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23(2):306-316.
    [132]Kruskal J. B. Rank, Decomposition, and Uniqueness for 3-Way and N-Way Arrays [M]. Multiway Data Analysis. Amsterdam; North-Holland Publishing Co.1989:7-18.
    [133]Jiang T., Sidiropoulos N. D. Kruskal's Permutation, Lemma and the Identification of CANDECOMP/PARAFAC and Bilinear Models with Constant Modulus Constraints [J]. Signal Processing, IEEE Transactions on,2004,52(9):2625-2636.
    [134]Kolda T., Bader B. Tensor Decompositions and Applications [J]. SIAM Review,2009, 1(51):455-500.
    [135]Lathauwer L. D. A Link between the Canonical Decomposition in Multi-Linear Algebra and Simultaneous Matrix Diagonalization [J]. SIAM Journal on Matrix Analysis and Applications,2006,28(3):642-666.
    [136]Kiers H. A. L. Towards a Standardized Notation and Terminology in Multiway Analysis [J]. Journal of Chemometrics,2000,14(3):105-122.
    [137]Zarzoso V., Comon, P. Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal Step Size [J]. Neural Networks, IEEE Transactions on,2010,21(2):248-261.
    [138]Guan N., Tao D., Luo Z., et al. Online Nonnegative Matrix Factorization With Robust Stochastic Approximation [J]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23(7):1087-1099.
    [139]Yang Z., Xiang Y., Xie S., et al. Nonnegative Blind Source Separation by Sparse Component Analysis Based on Determinant Measure [J]. Neural Networks and Learning Systems, IEEE Transactions on,2012,23(10):1601-1610.
    [140]Lin H., Amin M. A Dual-Mode Technique for Improved Blind Equalization for QAM Signals [J]. Signal Processing Letters, IEEE,2003,10(2):29-31.
    [141]Jian Y., Werner J. J., Dumont G. A. The Multimodulus Blind Equalization and its Generalized Algorithms [J]. Selected Areas in Communications, IEEE Journal on,2002, 20(5):997-1015.
    [142]Nong G., Yong X., Min T., et al. A New Blind-Equalization Algorithm for an FIR SIMO System Driven by MPSK Signal [J]. Circuits and Systems II:Express Briefs, IEEE Transactions on,2007,54(3):227-231.
    [143]Comon P., Jutten C. Handbook of Blind Source Separation:Indepen-dent Component Analysis and Applications, led. [M]. UK:Academic Press,2010.
    [144]An S., Hua Y, Manton J. H., et al. Group Decorrelation Enhanced Subspace Method for Identifying FIR MIMO Channels Driven by Unknown Uncorrelated Colored Sources [J]. Signal Processing, IEEE Transactions on,2005,53(12):4429-4441.
    [145]Santamaria I., Pantaleon C., Vielva L., et al. Blind Equalization of Constant Modulus Signals Using Support Vector Machines [J]. Signal Processing, IEEE Transactions on, 2004,52(6):1773-1782.
    [146]Xu G., Liu H., Tong L., et al. A Least-Squares Approach to Blind Channel Identification [J]. Signal Processing, IEEE Transactions on,1995,43(12):2982-2993.
    [147]Wang S., Manton J., Tay D. B. H., et al. An FFT-Based Method for Blind Identification of FIR SIMO Channels [J]. Signal Processing Letters, IEEE,2007,14(7): 437-440.
    [148]Abed-Meraim K., Moulines E., Loubaton P. Prediction Error Method for Second-Order Blind Identification [J]. Signal Processing, IEEE Transactions on,1997, 45(3):694-705.
    [149]Chow T. W. S., Wang B.-Y., Ng K. T. Linear Prediction Based Multipath Channel Identification Algorithm [J]. Circuits and Systems Ⅰ:Fundamental Theory and Applications, IEEE Transactions on,2003,50(6):769-774.
    [150]Diamantaras K. I., Papadimitriou T. An Efficient Subspace Method for the Blind Identification of Multichannel FIR Systems [J]. Signal Processing, IEEE Transactions on, 2008,56(12):5833-5839.
    [151]Inseon J., Seungjin C. Why Blind Source Separation for Blind Equalization of Multiple Channels? [A]. proceedings of the Sensor Array and Multichannel Signal Processing Workshop Proceedings,2002[C],2002.
    [152]Chen M., Viberg M. LMMSE Channel Prediction Based on Sinusoidal Modeling [A]. proceedings of the Sensor Array and Multichannel Signal Processing Workshop Proceedings,2004[C],2004.
    [153]Zeng H. H., Tong L. Blind Channel Estimation Using the Second-Order Statistics: Algorithms [J]. Signal Processing, IEEE Transactions on,1997,45(8):1919-1930.
    [154]Choi S., Cichocki A. Blind Equalisation Using Approximate Maximum Likelihood Source Separation [J]. Electronics Letters,2001,37(1):61-62.
    [155]Huang Y., Benesty J., Chen J. Using the Pearson Correlation Coefficient to Develop an Optimally Weighted Cross Relation Based Blind SIMO Identification Algorithm [A]. proceedings of the Acoustics, Speech and Signal Processing,2009 ICASSP 2009 IEEE International Conference on[C],2009.
    [156]Dogancay K., Kennedy R. A. Blind Detection of Equalization Errors in Communication Systems [J]. Information Theory, IEEE Transactions on,1997,43(2): 469-482.
    [157]Chi C.-Y., Chen C.-Y., Chen C.-H., et al. Blind Identification of SIMO Systems and Simultaneous Estimation of Multiple Time Delays from HOS-Based Inverse Filter Criteria [J]. Signal Processing, IEEE Transactions on,2004,52(10):2749-2761.
    [158]Gerstacker W. H., Taylor D. P. Blind Channel Order Estimation Based on Second-Order Statistics [J]. Signal Processing Letters, IEEE,2003,10(2):39-42.
    [159]Via J., Santamaria I., Perez J. Effective Channel Order Estimation Based on Combined Identification/Equalization [J]. Signal Processing, IEEE Transactions on, 2006,54(9):3518-3526.
    [160]Gabet J. D., Bojanczyk, A. W. Effective Channel Order Estimation Based on Nullspace Structure and Exponential Fit [J]. Signal Processing, IEEE Transactions on, 2010,58(10):5425-5430.
    [161]Karakutuk S., Tuncer, T. E. Channel Matrix Recursion for Blind Effective Channel Order Estimation [J]. Signal Processing, IEEE Transactions on,2011,59(4):1642-1653.
    [162]Abed-Meraim K., Cardoso J. F., Gorokhov A. Y., et al. On Subspace Methods for Blind Identification of Single-Input Multiple-Output FIR Systems [J]. Signal Processing, IEEE Transactions on,1997,45(1):42-55.
    [163]王保云.物联网技术研究综述[J].电子测量与仪器学报,2009,23(12):1-7.
    [164]Tozlu S., Senel M., Wei M., et al. WiFi Enabled Sensors for Internet of Things:a Practical Approach [J]. Communications Magazine, IEEE,2012,50(6):134-143.
    [165]Gluhak A., Krco S., Nati M., et al. A Survey on Facilities for Experimental Internet of Things Research [J]. Communications Magazine, IEEE,2011,49(11):58-67.
    [166]Sungmin H., Daeyoung K., Minkeun H., et al. SNAIL:an IP-Based Wireless Sensor Network Approach to the Internet of Things [J]. Wireless Communications, IEEE,2010, 17(6):34-42.
    [167]Iera A., Floerkemeier C. Mitsugi J.. et al. The Internet of Things [Guest Fditorial] [J]. Wireless Communications. IEEE.2010.17(6):8-9.
    [168]Guinard D., Trifa V.. Karnouskos S., et al. Interacting with the SOA-Based Internet of Things:Discovery, Query, Selection, and On-Demand Provisioning of Web Services [J]. Services Computing, IEEE Transactions on,2010,3(3):223-235.
    [169]IEEE Standard 802.15.4 [M].
    [170]Pradhan S. S., Kusuma J., Ramchandran K. Distributed Compression in a Dense Microsensor Network [J]. Signal Processing Magazine, IEEE,2002,19(2): 51-60.
    [171]Li X. Blind Channel Estimation and Equalization in Wireless Sensor Networks Based on Correlations Among Sensors [J]. Signal Processing, IEEE Transactions on,2005, 53(4):1511-1519.
    [172]Chang C.-Y., Maciejewski A. A., Balakrishnan V. Fast Eigenspace Decomposition of Correlated Images [J]. Image Processing, IEEE Transactions on,2000,9(11):1937-1949.
    [173]Saitwal K., Maciejewski A. A., Roberts R. G., et al. Using the Low-Resolution Properties of Correlated Images to Improve the Computational Efficiency of Eigenspace Decomposition [J]. Image Processing, IEEE Transactions on,2006,15(8):2376-2387.
    [174]Peng Y., Ganesh A., Wright J., et al. RASL:Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2012,34(11):2233-2246.
    [175]Tang X., Hua Y. Optimal Design of Non-Regenerative MIMO Wireless Relays [J]. Wireless Communications, IEEE Transactions on,2007,6(4):1398-1407.
    [176]Hammerstrom I., Wittneben A. Power Allocation Schemes for Amplify-and-Forward MIMO-OFDM Relay Links [J]. Wireless Communications, IEEE Transactions on,2007, 6(8):2798-2802.
    [177]Behbahani A. S., Merched R., Eltawil A. M. Optimizations of a MIMO Relay Network [J]. Signal Processing, IEEE Transactions on,2008.56(10):5062-5073.
    [178]Lioliou P., Viberg M., Coldrey M. Performance Analysis of Relay Channel Estimation [A]. proceedings of the Signals, Systems and Computers,2009 Conference Record of the Forty-Third Asilomar Conference on[C],2009.
    [179]Gao F., Cui T., Nallanathan A. On Channel Estimation and Optimal Training Design for Amplify and Forward Relay Networks [J]. Wireless Communications, IEEE Transactions on,2008,7(5):1907-1916.
    [180]Zhou G., Yang Z., Xie S., et al. Online Blind Source Separation Using Incremental Nonnegative Matrix Factorization With Volume Constraint [J]. Neural Networks, IEEE Transactions on,2011,22(4):550-560
    [181]Nguyen V. K., Xiang Y. MMSE Precoder for Unitary Space-Time Codes in Correlated Time-Varying Channels [J]. Signal Processing Letters, IEEE,2005,12(8): 569-572.
    [182]Zhou S., Giannakis G. B. Optimal Transmitter Eigen-Beamforming And Space-Time Block Coding Based On Channel Mean Feedback [J]. Signal Processing, IEEE Transactions on,2002,50(10):2599-2613.
    [183]Hua Y, An S., Xiang Y Blind Identification of FIR MIMO Channels by Decorrelating Subchannels [J]. Signal Processing, IEEE Transactions on,2003,51(5): 1143-1155.