基于机器视觉的煤尘在线检测系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿井下生产作业过程中会产生大量粉尘颗粒,它们能够较长时间悬浮在空气中,会在重力的作用下慢慢地沉积在工作面的底板、巷道壁、机电设备的表面等。若机械运转、局部通风、人员走动、放炮则会使已沉降的粉尘再次飞扬形成二次扬尘,骤然增加作业场所内空气中的粉尘浓度。悬浮着的粉尘会危害矿工的身体,导致尘肺病。此外,煤矿中的粉尘达到一定浓度(在爆炸下限至上限浓度范围内),遇明火还有可能发生爆炸,爆炸产生的冲击波会使积尘扬起,导致产生更为严重的后果。此外,煤炭生产已经实现了机械化,部分煤矿已经实现了生产自动化,大量的贵重设备和精密仪器应用在井下,煤尘颗粒的粘附会加速机械设备的磨损,缩短精密仪器的使用寿命。因此需要监测粉尘的变化,并依据检测结果指导井下作业环境中的抑尘、防尘、降尘和除尘。但传统的检查方法多为手动操作,只能定时定点对粉尘进行检测,测量结果不稳定、不能反映煤尘浓度的变化规律,实时性差、不能及时有效地指导防尘降尘工作。因此研制煤尘在线检测系统有着重要的理论意义和应用价值,本文研究的主要概括如下:
     (1)设计了一种基于机器视觉的煤尘颗粒在线检测系统。机器视觉技术因其直观、智能、易与其他系统集成而在工业生产过程中得到广泛应用。基于机器视觉粉尘检测系统可以实现长期、多点、非接触测量,因此本文提出了一种新的基于机器视觉的远程在线微米级颗粒检测方法,基于该方法实现远程监测煤矿井下粉尘。检测系统的功能包括两部分下位机的图像采集和上位机的图像分析。下位机系统实现煤尘样本采集、煤尘图像采集和图像远程传输,上位机对获得的图像进行处理和分析,并给出颗粒分析的报告。
     (2)提出了一种滤波参数自适应的非局部全变差滤噪算法。获得的粉尘图像经过压缩、传输、解压等一系列的步骤,图像信噪比低、对比度差,需经滤噪提高图像质量。非局部均值去噪的基本原理是遍历整幅图像,通过与其相似像素灰度值加权平均来估计每个像素点的灰度值。图像中不同像素点间灰度值越相似,它们具有的相似权系数就越大。非局部均值方法虽能有效地降低图像噪声并保持图像的细节,但也存在着最优滤波参数选择和运行速度慢的问题。通过分析滤波参数与噪声标准差之间的关系,发现滤波参数的选择对图像去噪的效果影响很大,因此文中给出了定量估计最优滤波参数的方法。此外,结合非局部均值滤波和全变分运算的思想,基于图像像素间的邻域相似性和搜索窗内相似性两个度量,建立了一种非局部均值全变差的滤噪模型。采用Split-Bregman迭代,在提高了运行效率的同时保持了图像的纹理和边缘。滤噪后的图像具有更高的信噪比,更快的运行效率,且去噪后的图像保持了纹理和边缘等细节特征。
     (3)提出了对比度自适应增强的多尺度Retinex颗粒图像增强算法。
     图像采集系统采用了暗场照明的方式,但所取得的图像由于环境的原因仍会出现背景不均匀的现象。若未加处理直接增强图像,则会将本应属于背景的区域错误地增强为目标,导致后续图像分析出现误差。多尺度Retienx算法是依据人眼视觉感知特性将图像分为照射分量和反射分量,通过将图像与多尺度高斯函数卷积估计照射分量,再从原图像中减去该照射分量,即可去掉光照对图像的影响,得到反射分量。经典Retienx算法能有效地压缩图像的动态范围,改善图像的质量,但仍存在着图像变灰的问题。为了增强图像的对比度,采用归一化的非完全Beta函数增强Retienx处理后的图像。根据实验采集图像的特点,确定了最优对比度时的非线性函数的两个参数的值。经过试验证明,增强后颗粒图像具有连续均匀的背景和更高的图像对比度。另外,通过对颗粒粒径测量的实验也佐证了处理后的图像能够显著减少因光照而导致的粒径测量的误差。
     (4)提出了基于改进微粒群算法的二维最大熵的自适应图像分割方法,获得了连续一致的图像分割结果。虽然图像分割的方法很多,但阈值法因其简单有效而被广泛应用。熵是信息量的表征,利用图像中各个像素的点灰度值及其区域灰度均值生成二维直方图,它所对应为二维熵原理,熵最大时的阈值为最优阈值。二维最大熵图像分割方法的核心内容是利用点灰度和区域灰度均值信息提取图像的有用信息,忽视了边界和噪声点,使得在图像信噪比低时也能取得好的分割效果。为了提高寻求最优阈值的速度,采用改进的微粒群算法寻找最优阈值,但微粒群算法存在过早收敛和微粒趋同的问题,因此引入的多群共享向量和概率学习变量的改进算法。多群共享向量实现多个独立的群之间的信息的共享,保留每代粒子中每一维的当前全局最优值,改进了“维数灾”的问题。为了解决因为微粒停滞导致优化陷入僵局的问题,引入学习概率变量,改进“颗粒趋同”的问题,即以一定的概率对几代内未更新的微粒重新初始化。基于改进微粒群算法选取的阈值稳定,寻优速度快,实现了图像的连续一致的自适应分割。
     (5)提出了一种基于凹点搜索和匹配的颗粒分离重叠颗粒,提高颗粒检测的准确率。煤尘颗粒形状不规则,边界凹凸不平,重叠颗粒的数目也较多,分水岭和腐蚀膨胀的方法不适用,因此提出了基于凹点搜索和匹配的方法。首先计算每个区域所包含的颗粒个数,判定是否为重叠区域。然后,计算点到不同长度弦的距离乘积表征曲率,并设定曲率阈值和夹角阈值,据以选取重叠颗粒的凹点。根据凹点和颗粒个数的对应关系确定不同的重叠类型和不同的匹配规则,用Bresenham画线连接匹配凹点分离颗粒。基于凹点搜索和匹配的颗粒分离方法可以实现不同重叠程度、多个粘连颗粒的分割。凹点的判别主要是简单的平方、相加和开根号等运算,算法的复杂度低,运行速度快,同时避免了重叠颗粒的过度分割。运算过程中无需多次腐蚀与膨胀,因此能够保持不规则颗粒图像的边缘,使得分离后的变形小,保证了后续颗粒分析的正确性。
     (6)最后设计仿真实验系统模拟煤矿井下的粉尘测量环境,验证检测结果的准确率和重复率。先采用标准微粒作为实验样本验证系统测量的准确性,然后采用真实的煤尘颗粒作为样本来验证系统的可重复性。仿真实验证明系统能够直观地监控煤尘浓度的变化,处理并分析颗粒图像。最后给出煤尘粒径的分布报告,并且颗粒粒径检测的准确率超过94%,重复率超过98%。
Lots of coal dust are produced during the process of production operation in all coal mine's working places. Coal dust can be suspended in air for a long time, and they will be slowly settled on those places under the gravitational attraction, such as the floor of mining face, walls of the tunnel, surface of electromechanical equipment. Dust concentration in the air will increase suddenly in workplaces, when settlement dusts were raised again, if machine operation, local ventilation, miner moving and blast firing. Suspended dust would endanger the body of miners and even lead to pneumoconiosis. In case of coal mine dust reaches a certain concentration (in the range of upper and lower range explosion concentration) and open flames, an explosion may be occur, explosion shock wave will kick up dust and result in more serious consequences. In addition, the mechanization of coal production has been achieved, some coal production automation has been achieved, a lot of expensive equipment and precision instruments used in mine, the adhesion of coal dust particles will accelerate wear of machinery and equipment, shorten life of precision instruments. For the above reasons, it is important to monitor changes of coal dust and guide reaching curb dust, falling dust, dust proof, removing dust. However most of traditional inspection methods are manually operated, and dust can only be detected on the fixed time and area, which will lead to uncertainty measurement, can not reflect the variation of dust concentration. Because the detection is not real-time, it can not effectively guide the work of reach curb dirt. Thus, development on-line detection system of coal dust may produce important theoretical significance and application value, and the major contributions in this dissertation are following:
     (1) A new remote on-line coal dust particle detection system based on machine vision is designed. Machine Vision has been widely used in the industrial production process because of its intuitive, intelligent and easy to integrate with other systems. Dust detection system based on machine vision can monitor particle in a way of long-term, multi-point and non-contact, so a new remote online micron particle detection method based on machine vision has been developed in this paper, which made it possible to realize remote monitoring coal dust. The chief function of single-chip microcomputer are collecting particle, obtaining image and transmitting image. Dust samples were collected using a low-cost particle collector sensor with a quick way, image of micron dust particles were obtained using image particle collector, then the image were transmitted to the particle analysis system in remote control room by cable.
     (2) A new adaptive non-local mean total variation algorithm is proposed to denoise and improve image quality. Obtained particle images with low signal to noise ratio and poor contrast after a series of steps, such as compression, transmission, decompression, so it is necessary to filter noise and improve image quality. The principle of Non-local means denosing is estimating gray value by weighted average of gray value between similar pixels by traversing the entire image. The more similar between two pixels, similar weights will be larger. Although non-local means method effectively reduced image noise and preserved image details, but there are problems of how to determine optimal filter parameter and slow speed. By analyzing the relationship between filter parameter and standard deviation of noise, we found that filter parameters would impact on the effect of denosing, so a quantitative estimate optimal filter parameters was given. In addition, a new denoise model based on similarity weight of pixel neighborhood and search window is proposed, which combined non-local mean filter with total variation algorithm. In order to improve the operational efficiency, Split-Bregman iteration was used. Experiments show that our proposed algorithm has quite good ability of noise suppressing as well as edge and texture preserving, operational efficiency is also faster.
     (3) Adaptive contrast enhancement algorithm based on multi-scale Retinex for particle image is proposed
     In order to obtain high contrast, multi-scale Retienx is used to enhance image. Dark-field illumination is designed in our system, but image background is uneven occasionally because of environmental, certain parts of the image background are darker and others are lighter. If we enhance images directly without handling uneven background, then some background will be mistaken as particles, which will lead to measurement errors in following image analysis, the principle of Multi-scale Retienx is simulate human visual perception characteristics, it divide image into light component and reflection component. Light component of image is estimated by convolution with the multi-scale Gaussian, and reflection component can be calculated by subtracting light component from the original image. Classic Retienx algorithm can effectively compress the dynamic range of images, improve image quality, but there is a gray-out problem. In order to enhance image contrast, a normalized nonlinear Beta function is used to enhance image processed by Retienx. According to the features of obtained images, two parameters of nonlinear function are determined. Experiments prove that processed images have more uniform background and higher contrast. Furthermore measurement errors caused by illumination are significantly reduced.
     (4) Image segmentation with 2-D maximum entropy based on improved particle swarm optimization is proposed to separate particle from particle in consistent manner. Although there are many methods of image segmentation, threshold method is widely used for its simple and effective. Entropy is the characterization of information.2-D maximum entropy consider of both gray information and spatial neighbors using the 2-D histogram of the image. Maximum entropy criterion is used to determine the optimal threshold. For sake of extraction useful information, image segmentation method with 2-D Maximum entropy make use of the gray value and average regional gray value, which ignores the boundaries and noise points, image can also achieve good segmentation results when the signal to noise ratio is low. However, the time-consuming computation is an obstacle for this method to be used in real time application systems. In order to improve the speed of finding the optimal threshold value, an improved PSO algorithm is used, but there are two problems premature convergence and particles convergence, so multi-group shared vector and probability learning variable are introduced. Multi-swarm shared vector is used to improve the problem of "dimension disaster" by information sharing among different swarm, which will retain current global optimal value of multiple independent particles in each generation each dimension. In order to solve the problems of "particle convergence" leaded by particle stagnation, learning probability variable is the introduced, which is a certain probability of the re-initialization if particles were not updated in several generations. Experiments show the proposed algorithm is effective and threshold stability, it can separate particles from image adaptively in a consistent manner.
     (5) An algorithm of powder particle automatic segmentation is proposed, which makes use of automatic finding and pairing concavity points to improve the accuracy of particle detection. Watershed and corrosion expansion method is ineffective in separating overlapping coal dust particle, because of particle shape irregular and uneven borders, in addition, the number of overlapping particles is greater. So a new algorithm based on the concave point search and matching is put forward. Firstly, each region is selected to determine overlapping or not according to the number of particles contained in it. Then, curvatures is calculated by the product of distance form point to chord with different length, concave points of overlap particles are decided according to angle and curvature threshold. Then, different kinds of matching rules are given by comparing the numbers of concave points with the numbers of particle. Segment lines are drawn based on Bresenham and overlapping particles are separated after obtaining matching concavity points. Because most of calculations are simple operations, such as power, square root and sum, and algorithm is effectively, low complexity, it can avoid over segmentation of overlapping particles. Without corrosion and expansion operations during operation, so edge and shape of irregular particles can be maintained, which will ensure the accuracy of particle analysis in following particle analysis.
     (6) In order to verify the accuracy and the repetition rate of the detecion system, simulation system is designed to simulate environment of dust measurements under coal mine. Standard particle and coal dust particle are used as sample to verify accuracy rate and repeat rate.Experimental results show that this system can directly monitor changes of dust concentration, process and analysis particle image. Finally, particle size distribution report is given, accuracy rate and repeat rate of particle size is greater than 93% and 98% respectively.
引文
[1]勒建伟.吕智海.煤矿安全[M].北京:煤炭工业出版社.2005.
    [2]赵清林.煤矿粉尘监测必读[M].北京:煤炭工业出版社.2007.
    [3]吴宗之.安全生产技术[M].北京:中国百科全书出版社.2008.
    [4]凌祥,涂善东,陈嘉南.计算机图像处理技术用于微粒的定量测量[J].南京化工大学学报,1999.21(1):54-57.
    [5]Particle Size Analysis Sub-committee of AMC.Classification of methods for determining particle size[R].1963,88,156.
    [6]Scarlett,B.Plenary.classification of particle sizing methods[A].1982.219-231.
    [7]杨粉荣,文洪杰,钟勤.几种粒度测定方法的比较[J].物理测试,2005,23(5):36-39.
    [8]Stanley-Wood N G,Allen T. Particle size analysis [M]. Cambridge:The Royal Society of Chemistry,1992.
    [9]艾伦T.颗粒大小测定[M].北京:中国建筑工业出版社.1984.
    [10]考尔菲尔德著,郑庸译.光全息手册[M].北京:科学出版社,1988.1.
    [11]Barth HowardG., Modern Methods of Particle Size Analysis. New York:Wiley, 1984.
    [12]夏阳华,熊惟皓,丰平.粉末粒度测试方法评述[J].硬质合金,2003,20(1):29-31.
    [13]童祜嵩.颗粒粒度与比表面测量原理[M].上海:上海科学技术文献出版社.1989.
    [14]P.Yongyingsakthavorn,P.Vallikul,B.Fungtammasan,et al.Application of the Max-imum Entropy Technique in Tomographic Reconstruction from Laser Diffraction Data to Determine Local Spray Drop Size Distribution.Experiments in Fluids.2007,42 (3):471-481.
    [15]M.X.Su,F.Xu,X.S.Cai,et al.Optimization of Regularization Parameter of Inversion in Particle Sizing using Light Extinction Method.China Particuology.2007,5(4): 295-299.
    [16]J.T.Mang,R.P.Hjelm,S.F.Son,et al.Characterization of Components of Nano-Energetics by Small-Angle Scattering Techniques.Journal of Materials Research. 2007,22(7):1907-1920.
    [17]L.Ehrl,M.Soos,M.Morbidelli.Sizing Polydisperse Dispersions by Focused Beam Reflectance and Small Angle Static Light Scattering.Particle and Particle Systems Characterization.2007,23(6):438-447.
    [18]Y.Deng,Q.Lu,Q.M.Luo.Determining Particle Size Distribution and Refractive Index in a Two-Layer Tissue Qhantom by Linearly Polarized Light.Chinese Optics Letters.2006,4(1):45-48.
    [19]郑刚,孙浩,黄廷磊等.颗粒浓度在线监测的双波长消光法[J].仪器仪表学报,2000,21(5),533-535.
    [20]刘铁英,张志伟,郑刚等.颗粒尺寸在线测量的光透消光法[J].光学仪器,1998,21[4],434-436.
    [21]Hideo Yamamoto,Tatsushi Matsuyama,Masanori Wada.Shape Distinction of Particulate Materials by Laser Diffraction Pattern Analysis[J]. Powder Technology,2002,122(2-3):205-211.
    [22]Frank Vanderhallen,Luc Deriemaeker,Bernard Manderick,et al.Shape and Size Determination by Laser Diffraction:Parametric Density Estimation by Neural Networks[J].Syst.Charact,2002,19(2):65-72.
    [23]Ma Zhenhua,Merkus Henk G,Scarlett B.Extending Laser Diffraction for Particle Shape Characterization:Technical Aspects and Application[J],Powder Technology, 2001.118(1-2):180-187.
    [24]李杨果,王耀南,王威.基于机器视觉大输液智能灯检机研究[J].光电工程,2006,33(11):69-74.
    [25]杨福刚,孙同景,宋松林.基于人工免疫算法的弱小目标检测方法[J].电子测量与仪器学报,2008,22(1):20-24.
    [26]江舟.基于显微数字摄影和颗粒图像识别技术的精铸耐火粉料的粒度粒形检测方法研究[D].硕士学位论文.成都:四川大学,2004.
    [27]叶茂.两相流的光散射在线测量方法研究[D].博士学位论文.南京:东南大学,2000.
    [28]Ma Zhenhua,Henk G.Merkus,Hilda G.van der Veen.On-line Measurement of Particle Size and Shape using Laser Diffraction[J].Syst.Charact,2001,18(5-6): 243-247.
    [29]R.A. Zahoransky, E. Lailel,B. Terwey,et.al,On-line/in-line Measurements of Particle Emissions of Diesel Engines by Optical Multi-wavelength Technique[C],4th Conference on Nanoparticle Measurement. ETH Zurich:2000.8
    [30]王自亮.粉尘浓度传感器的研制和应用[J].工业安全与环保,2006,32(4):24-27.
    [31]E. Dan Hirleman,Paul A. Dellenback. Adaptive Fraunhofer Diffraction Particle Sizing Instrument Using a Spatial Light Modulator[J], Appl Opt.1989.22(28): 4870-4878.
    [32]潘琦,赵延军,汤光华等.一种新型激光粉尘浓度在线测量仪的研究[J].仪器仪表学报,2007.28(6):1070-1074.
    [33]孔明.颗粒粒径和形态计算机视觉测量方法研究[D].博士学位论文.南京:东南大学.2005
    [34]Raphall N and Rohaui S.On-line Estimation of the Solid Concentration and Mean Particle Size Using Turbiditemetry Method[J].Powder Technology,1996,89(1-2): 378-395.
    [35]Wang Nai Ning and Wei Jing Ming,Optical Measurement of Wet Steam in Turbines[J] Journal of Engineering for Gas Turbines and Power.1998,120(4):146-159.
    [36]W O Marklund,W Birk,A Medvedev. Video Monitoring of Pulverized Coal Injection in Blast Furnace[J]. IEEE Transactions on Industry Applications,2002, 38(2):571-576.
    [37]A. Bredebusch, H. Burkhardt, et al. Visualization of Flow Structures Inside a Circulating Fluidized Bed by Means of Laser Sheet and Image Processing[J],Powder Technology,2001,114(3):71-83.
    [38]Casper K.Dahl,Kim H.Esbensen.et.al.Image Analytical Determination of Particle Size Distribution Characteristic of Natural and Industrial Bulk Aggregates[J].IEEE Transactions on Instrumentation and Measurement,2005.54(4):9-25.
    [39]Robert M.Carter,Yong Yan,Peter Lee,On-line Nonintrusive Measurement of Particle Size Distribution Through Digital Imaging. IEEE transactions on instrumentation and measurement[J],2006(6):2034-2038.
    [40]Liao ChihWei, Yu Jiun-Hung, Tarng Yeong-Shin. On-line Full Scan Inspection of Particle Size and Shape using Digital Image Processing[J].Particuology,2010.8(3): 268-292.
    [41]章毓晋.图像理解与计算机视觉[M].北京:清华大学出版社.2003.
    [42]Nello Zuech,Richard K.Miller.Cmfge. Machine Vision[M].New York:The Fairmont Press.Inc.1987.
    [43]Azriel Rosenfeld.Survey Image Analysis and Computer Vision[J].Computer Vision and Image Understanding.1995,61(1):90-143.
    [44]Reg Davies. Summary of the Particle Characterization Session.Powder Technology,1996,88(3),191-196.
    [45]Michael A. Taylor. Quantitative Measure for Shape and Size of Particles. Powder Technology,2002,124(2):94-100.
    [46]P. Dellino, G. Liotino. The Fractal and Multifractal Dimension of Volcanic Ash Particles Contour a Test Study on the Utility and Volcanological Relevance[J].Journal of Volcanology and Geothermal Research.2002,113(2),1-18.
    [47]G. Grasa,J.C.Abanades.A Calibration Procedure to Obtain Solid Concentrations from Digital Images of Bulk Powders.Powder technology,2001,114 (1-3):125-128.
    [48]唐敏然,一种新型粉尘浓度测定仪的测量原理与校准方法[J],广东科技,2004.24(11):52-53.
    [49]程学珍,刘玫,王永宝等.煤矿粉尘检测与控制技术[J].矿业研究与开发,2007,26(6):78-85.
    [50]明廷锋,朴甲哲,张永祥.基于超声波测量技术的颗粒尺寸分布模型研究[J],应用声,2005.24(2):103-107.
    [51]田国政,孙继平,朱建铭,等.光散射粉尘传感器的尘染补偿方法及光强分布的研究[J],1997.22(6):632-636.
    [52]朱震,叶茂,陆勇,等.光散射粒度测量中Mie理论的高精度算法[J].光电子·激光,1999,10(4):135-138.
    [53]刘铁英,张志伟,郑刚等.颗粒尺寸在线测量的光透消光法[J].光学仪器,1998,20(1):3-7.
    [54]郑刚,张志伟等.一种新颖的颗粒粒度分析仪—消光测粒仪[J].仪器仪表学报,1995,16(3):333-336.
    [55]张延松.煤矿粉尘传感器及测量仪器的研究[J].煤矿自动化,1994.2:24-31.
    [56]Cantrell-BK, Stein-SW, Patashnick-H, Hassel-D Oscillation.Microbalance-Based Continuous Respirable Coal Mine Dust Monitor[J], Appl Occup Env Hyg, 1996,11(7):624-629
    [57]A. D. Gillies,H. W. Wu. A New Real Time Personal Respirable Dust Monitor[C], Underground Coal Operators Conference, New South Wales,2006:77-92
    [58]Volkwein, J C, Vinson, R P, Mc Williams, L J, Tuchman, et al. Performance of a New Personal Respirable Dust Monitor for Mine Use,Report of Investigations 9663.National Institute for Occupational Safety and Health,Pittsburgh Research Laboratory. Pittsburgh. PA,2004.6.
    [59]俄罗斯专家研制出射频传感器,新华网ttp://www.cutech.edu.cn/cn/kjjj/gwkj/webinfo/2005/12/1180236648998680.htm
    [60]徐如瑜,田贻丽.张海燕.基于光散射的粉尘浓度测量研究[J].重庆职业技术学院学报,2004,,13(4):124-129.
    [61]郑刚,张志伟,蔡小舒等.颗粒浓度及粒度的光散射在线测量[J].中国激光,1998,25(3):285-288.
    [62]Realtek Semi-Conductor Co, LTD. RTL8019AS Realtek Full-Duplex Ethernet Controller with Plug and Play Fuction (RealPNP) [EB/OL].2001.
    [63]袁伟.井下煤尘浓度分析系统设计[D].硕士毕业论文.山东:山东大学.2008.
    [64]刘君星,闫冬梅,周奎臣.分子生物学仪器与实验技术[M].哈尔滨:黑龙江科学技术出版社.2009.
    [65]CARL D M, STEVEN T W. The Theory of Diffraction-limited Resolution in Microparticle Image Velocimetry [J].Measurement Science and Technology,2003,14 (7):1047-1053.
    [66]魏炳辉.基于粒度分析的矿物颗粒图像处理及参数分析研究与实现[D].硕士学位论文。江西:江西理工大学.2010.
    [67]张学军,左春柽,文伟力,朱梦义.基于计算机视觉的微观稀疏离散粒子尺寸的检测[J],光学精密工程,2007.4(15):611-614.
    [68]宋锦萍,职占江.图像分割方法研究[J].现代电子技术,2006,211(6):59-62.
    [69]杨晖.图像分割的阈值法研究[J].CT理论与应用研究,2006,33(2):135-137.
    [70]徐利娜,彭国华.图像分割中一种改进的图割模型[J].科学技术与工程,2006,6(18):2853-2857.
    [71]Lin denbaum M,Fischer M,Bruckstein A.On Gabors contribution to image enhancement [J].Pattern Recognition,1994,27(1):1-8.
    [72]Perona P,Malik J. Scale Space and Edge Detection Using anisotropic Diffusion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990, 12(7):629-639.
    [73]Khryashchev V V,Apalkov I V,Priorov A L,et al.Image Denoising Using Adaptive Switching Median Filter [C] In:Proceedings of IEEE International Conference on Image Processing,Genova,Italy,2005:117-120.
    [74]Yang P.Basir O A.Adaptive Weighted Median Filter Using Local Entropy for Ultrasonic Image Denoising[C] In:Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis,Rome,Italy,2003:799-803.
    [75]Tomasi C,Manduchi R.Bilateral.filtering for Gray and Color Images [C] Proceedings of the 6th International Conference on Computer Vision,Bombay, 1998:839-846.
    [76]Dai-Yu Wei, Chang-Cheng Yin.An Optimized Locally Adaptive Non-local Means Denoising Filter for Cryo-electron Microscopy Data[J], Journal of Structural Biology,2010.172(3):211-218.
    [77]刘艳丽,郭延文,王进等.噪声方差未知的小波域中非局部均值图像去噪[J],计算机辅助设计与图形学报,2009.21(4):526-532.
    [78]Lei Yang, Richard Parton, Graeme Ball,et.al.An Adaptive Non-local Means Filter for Denoising Live-cell Images and Improving Particle Detection[J],Journal of Structural Biology,2010.172(3):233-243.
    [79]Chen Y, Han C. Improved Adaptive Wavelet Threshold for Image Denoising[J]. Electronics Letters,2005,41(10):586-587.
    [80]Donoho D L.Denoising by Soft Thresholding[J]. IEEE Transactions on Information Theory,1995,41 (3):613-627.
    [81]Chang S G,Yu B,Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression [J].IEEE Transactions on Image Processing,2000,9(9):1532-1546.
    [82]刘芳,刘文学,焦李成.基于复小波邻域隐马尔科夫模型的图像去噪[J].电子学报,2005,33(7):1284-1287.
    [83]Do M N,VETTERLI M.The Contourlet Transform:an Efficient Directional Multiresolution Image Representation[J].IEEE Transactions on Image Processing, 2005,14(12):2091-2106.
    [84]Eslami Ramin,Radha Hayder.Translation-invariant Contourlet Transform and Its Application to Image Denoising,IEEE Transaction on Image processing,2006, 15(11):3362-3374.
    [85]MahmoudiM,Sapiro G.Fast Image and Video Denoising via Non Local Means of Similar Neighborhoods [J].IEEE Signal Processing Letters,2005.12 (12):839-842.
    [86]孙伟峰,彭玉华.一种改进的非局部平均去噪方法[J].电子学报,2010.38(4):923-928.
    [87]王志明,张丽.自适应的快速非局部图像去噪算法[J].中国图象图形学 报2009.14(4):669-675.
    [88]肖亮,韦志辉.吴慧中.非局部数字全变差滤波算法[J].中国图象图形学报,2010,15(9):1318-1325.
    [89]T.F.Chan,G.H.Gloub,P.Mulet.A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration[J].Journal on Scientific Computing,1999,20 (6):1964-1977
    [90]Rudin L, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms[J]. Journal PhysicaD,1992,60(1-4):259-265.
    [91]A Buades,B Coll,J M Morel.Nonlocal Image and Movie Denoising[J]. International Journal of Computer Vision,2008,76(2):123-139
    [92]Goldstein T, Osher S. The Split Bregman Method for L1 Regularized Problems [J]. SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [93]李明,杨艳屏TV-Retinex一种快速图像增强算法[J].计算机辅助设计与图形学学报,2010.22(10):1777-1782.
    [94]Osher S, Burger M, Goldfarb D,et al. An Iterative Regularization Method for Total Variation-based Image Restoration [J]. Multiscale Modeling and Simulation, 2005,4(2):460-489.
    [95]庞志峰,杨余飞,林玲.图像去噪LOT模型的分裂Bregman方法[J].湖南大学学报(自然科学版),2010.37(9):83-87.
    [96]陈怡群,常春,汤伯敏.雾滴显微图像分析中处理亮度不均匀性的算法[J].农业工程学报,2009,25(1):149-153.
    [97]Yuanjie Zheng, Murray Grossman, Suyash P. Awate and James C. Gee,Automatic Correction of Intensity Nonuniformity from Sparseness of Gradient Distribution in Medical Images, Medical Image Computing and Computer-Assisted Intervention[J],2009,2:852-859.
    [98]王密,潘俊.一种数字航空影像的匀光方法[J].中国图象图形学报[J],2004,9(6):744-748.
    [99]张振,朱宝山,朱述龙,曹闻.小波变换改进的MASK匀光算法[J].遥感学报,2009,13(6):1078-1081.
    [100]郑军,徐春广,肖定国,理华,黄卉.数字图像中照度不均匀校正技术研究[J].北京理工大学学报,2003.23(3):285-289.
    [101]M. Elad,R. Kimmel.D. Shaked.and R. Keshet. Reduced complexity Retinex algorithm via the variational approach. J.Vis.Commun[J],2003,(14):369-388.
    [102]M.Ogata, T.Tsuchiya,T.Kubozono, and K.Ueda, Dynamic range compression based on illumination compensation[J].IEEE Trans Consumer Electron.2001,47 (3)548-558.
    [103]刘家朋,赵宇明等.基于单尺度Retinex算法的非线性图像增强算法[J].上海交通大学学报,2007,41(5):685-688.
    [104]Daniel J.Jobson,Zia-ur, Glenn A.Woodell, A Multiscale Retinex for Bridging the Gap Between Color Images and the Human Observation of Scenes[J],IEEE Transactions on image processing,1997,6(7):965-976.
    [105]Laurence Meylan,Sabine Susstrunk,High Dynamic Range Image Rendering With a Retinex-Based Adaptive Filter [J],IEEE Transactions On Image Processing, 2006,15(9):2820-2830.
    [106]Tubbs J D.A Note on Parametric Image Enhancement[J].Pattern Recognition, 1997,30(6):617-621.
    [107]SUN Yong-qiang,XU Wen-bo,SUN Jun.Research on Image Enhancement Based on Particle Swarm Optimization.Computer Engineering and Application,2008, 44(2):50-53.
    [108]M. Elad,R.Kimmel,D. Shaked, R. Keshet. Reduced Complexity Retinex Algorithm via the Variational Approach, Journal.Visual Communation Image Represent[J],200314 (1):369-388.
    [109]周激流等.一种基于新型遗传算法的图像自适应增强算法的研究[J].计算机学报,2001,9(24):959-964.
    [110]郭肖静,吴志芳.集装箱图像对比度增强的自适应算法[J].核电子学与探测技术,2006,11(26):912-941.
    [111]章毓晋.图像工程(中册)--图像分析(Ⅱ)[M].北京:清华大学出版社.2006.
    [112]石岩,张天序,樊荣,江浩洋.基于两阶段搜索自适应正交投影分解的图像分割方法[J].中国图像图形学报,2005,10(9):1089-1095.
    [113]顾丹丹,汪西莉.结合区域生长和水平集的遥感影像道路提取[J].计算机应用,2010,(02):433-436,440.
    [114]Yang F,Jiang T.Pixon.Based image segmentation with Markov random fields.IEEE Trans.Image Process.,2003,12(12):1552-1559.
    [115]陶文兵.金海.一种新的基于图谱理论的图像阈值分割方法[J].计算机学报,2007,30(1):100-119.
    [116]张晨光,李玉鑑.哈希图半监督学习方法及其在图像分割中的应用[J].自动化学报,2010,(11):1527-1533
    [117]陈修桥,胡以华,黄友锐等.二维最大相关准则图像阈值分割递推算法[J].计算机工程与应用,2005,,32(28):91-93.
    [118]周晓伟,葛永慧.基于粒子群优化算法的最大类间方差多阈值图像分割[J].测绘科学,2010,(02):88-89,122
    [119]Kapur J N, Sahoo P K,Wong A K C.A New Method of Gray Level Picture Thresholding Using the Entropy of The Hisgogram [J].Computer Vision Graphics and Image Processing,1985 29(2):273-285.
    [120]Abutaleb A S.Automatic Thresholding of Gray-level Pictures Using Two Dimensional Entropy [J].Computer Vision Graphic Image Process,1989,47(1):22-32.
    [121]常发亮,刘静,乔谊正.基于自组织神经网络的彩色图像自适应聚类分割[J],控制与决策,2006,21(4):449-452.
    [122]郭海涛,田坦,王连玉,张春田.利用二维属性直方图的最大熵的图像分割方法[J].光学学报,2006.26(4):506-509.
    [123]杨海峰,侯朝桢.基于二维灰度直方图的蚁群图像分割.激光与红外[J],2005,35(8):614-617.
    [124]赵明旺,王杰.智能控制[M].武汉市:华中科技大学出版社,2010.
    [125]薛惠锋,吴晓军,解丹蕊,肖强.复杂性人工生命研究方法导论[M].北京市:国防工业出版社.2006.
    [126]潘立登.先进控制与在线优化技术及其应用[M].北京市:机械工业出版社.2009.
    [127]Colorni,A.,Dorigo,M.,and Maniezzo,VAn investigation of some Properties of an ant algorithm[C].the Parallel Problem Solving from Nature Conference, Brussels,Belgium,1992:509-520.
    [128]Dorigo,M.,Maniezzo,V, Colorni A.Ant system:optimization by a Colony of Cooperation agents[J].IEEE Transaction on Systems,Man and Cybernetics-Part B.1996,26(1):1-26.
    [129]Bergh F.v.d,Engelbrecht A P A. Cooperative Approach to Particle Swarm Optimization. IEEE Transactions on Evolutionary[J],2004,(6):225-239.
    [130]Liang, J. J., Qin, A. K., Suganthan, P. N. Comprehensive Learning Particle Swarm Optimization for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation [J],2006.6(10)281-295.
    [131]Liao C.W, Yu Jiun Hung, Tarng Yeong-Shin. On-line Full Scan Inspection of Particle Size and Shape Using Digital Image Processing. Particuology[J], 2010.8(3):286-292.
    [132]Bai Xianzhi, Sun Changmin,Zhou Fugen, Splitting Touching Cells Based on Concave Points and Ellipse Fitting[J].Pattern Recognition,2009,4(42):2434-2446.
    [133]荀一,鲍官军.粘连玉米籽粒图像的自动分割方法[J].农业机械学报,2010.4(41):163-167.
    [134]刘生浩,曾立波.重叠颗粒图象的分离[J].计算机工程,2008,28(2):198-199.
    [135]孙小伟,金光,王智.基于边界几何特征的重叠颗粒图像分割算法[J].计算机工程,2007.33(14):17-19.
    [136]尤育赛,于慧敏.一种重叠红细胞图像的分离方法[J].中国图象图形学报,2005,10(6):736-740.
    [137]袁天云,姜志国,孟如松.目标分割图中粘连对象的自动切割和分离[J].中国体视学与图像分析,2003,8(1):40-43.
    [138]SHAHIN M A,SYMONS S J.Seed Sizing from Images of Non-singulated Grain Samples.Canadian Biosystemss Engineering[J],2005.3(47):49-55.
    [139]肖助明,冯月亮,李涛,等.形态学分水岭算法在重叠米粒图像分割中的应用.计算机工程与应用[J],2007.43(24):196-199.
    [140]Wan YC, CHOU JJ.Automatie Segmentation of Touching Rice Kernels with An Active Contour Model. Transactions of the AS ABE[J],2005.47(5):1803-1811.
    [141]Qufa Zhong, Ping Zhou, Qing Xing Yao, Ke Jun Mao.A Novel Segmentation Algorithm for Clustered Slender-Particles,Computers and Electronics in Agriculture [J],2009,12(69):118-127.
    [142]J. Serra.Image Analysis and Mathematical Morphology[M].London,London Academic Press in London,1984.
    [143]徐杰.数字图像处理[M].武汉市:华中科技大学出版社.2009.
    [144]阮秋琦.数字图像处理学[M].北京市:电子工业出版社,2001.
    [145]Urbach E.R,Wilkinson M.H.F.Efficient 2-D Grayscale Morphological Transformations With Arbitrary Flat Structuring Elements [J].Elements.Signal Processing,1991,22(1):1-8.
    [146]Vincent L, Soille P.Watershed in Digital Spaces:An Efficient Algorithm Based on Immersion Simulations [J].IEEE Trans On Pattern Analysis and Machine Intelligence,1991,13(6):583-589.
    [147]黄文明,陈庆全,陆荣.一种改进的重叠细胞图像分割研究[J].计算机工程与应用,2009.45(26):163-165.
    [148]高丽,杨树元,夏杰,等.基于标记的Watershed图像分割新算法[J],电子学报,2006.34(11):2018-2030.
    [149]关新平,黄娜,唐英干.一种基于标记阈值的分水岭分割新算法[J].系统工程与电子技术,2009.4(31):972-975.
    [150]Wang, W., Paliwal, J., Separation and Identification of Touching Kernels and Dockage Components in Digital Images[J]. Canadian Biosystems Engineering,2006. 48(7),1-7.
    [151]Bleau, A., Leon, L.J., Watershed-based Segmentation and Region Merging[J]. Computer Vision Image Understanding.2000,77 (3),317-370.
    [152]Casasent, D., Talukder, A., Keagy, P., Schatzki, T. Detection and Segmentation of Items in X-ray Imagery [J]. Transactions of the ASAE,2002,44 (2),337-347.
    [153]胡潭高,朱文泉,阳小琼,潘耀忠,张锦水.高分辨率遥感图像耕地地块提取方法研究[J].光谱学与光谱分析,2009,10(29):2703-2707.
    [154]沈晶,杨学志.一种新的基于纹理分水岭的纺织品缺陷检测方法[J].中国图象图形学报,2009,10(14):1997-2003.
    [155]沈晶,杨学志.一种新的边缘保持分水岭的图像分割算法[J].工程图学学报,2009,14(5):80-87.
    [156]Borgefors G. Distance Transformations In Arbitrary Dimensions [J].Computer Vision Graphics and Image P rocessing,1984,27(3):321-345.
    [157]马瑞,杨静宇.一种用于手写数字分割的滴水算法的改进[J].小型微型计算机系统,2007,11(28):2110-2112.
    [158]Canny J.A. Computational Approach to Edge Detection[J]. IEEE Trans on PAMI,1986.8(6):679-698.
    [159]韩晓军.数字图像处理技术与应用[M].北京市:电子工业出版社.2009.
    [160]张震,马驷良,张忠波,等.一种改进的基于Canny算子的图像边缘提取算法[J]吉林大学学报(理学版),2007.45(2):244-248.
    [161]A new plant image segmentation algorithm. In:Braccini, DeFloriani, Vernazza (Eds.), Lecture Notes in Computer Science[C], Proceedings of the 8th International Conferenc, Italy,12:229-234.
    [162]Visen, N.S., Shashidhar, N.S., Paliwal, J., Jayas, D.S.,Identification and Segmentation of Occluding Groups of Grain Kernels in A Grain Sample Image[J]. Journal of Agriculture Engineering Research,2001,79 (2),159-166.
    [163]Liang, J.. Intelligent Splitting the Chromosome Domain[J]. Pattern Recognition, 1989,22(5),519-532.
    [164]Qian, X.M., Zhu, H., Feng, C.L., et.al.An Overlapping Bubbles Partition Method in Waerated Water Flows[C]. the Third Conference on Machine Learning and Cybernetics, Shanghai China 2004:3746-3750.
    [165]彭铁根,吴惕华.基于负曲率极值点的零件识别与检测技术研究[J],系统仿真学,2006,11(18):3058-3062.
    [166]Qufa Zhong, Ping Zhou, QingXing Yao,Kejun Mao.A Novel Segmentation Algorithm for Clustered Slender-particles[J].Computers and Electronics in Agriculture,2009.12(69):118-127.
    [167]MOHAMMAD AWRANGJEB,GUOJUN LU,Robust. Image Corner Detection Based on the Chord-to-Point Distance Accumulation Technique [J]. IEEE transactions on multimedia,2008.11(10):1059-1072.
    [168]J. H. HAN,T. T. POSTON. Chord-to-Point Distance Accumulation and Planar Curvature:A New Approach to Discrete Curvature[J].Pattern Recognition Letters, 2001(22):1133-1144.
    [169]应德标.超细粉体技术[M].北京:化学工业出版社,2006.
    [170]Rushton, A. S. Ward, R. G. Holdich.Solid-Liquid Filtration and Separation Technology[M]. VCH,1996.
    [171]刘红丽,张伟,李昌禧.室内可吸入颗粒物浓度与粒径分布检测方法的研究[J].仪器仪表学报,2009,30(2):340-345.